1
|
Lin X, Chen H, Huang L, Liu S, Cai C, Li Y, Li S. Advanced chitin-based composite hydrogels enabled by quercetin-mediated assembly for multifunctional applications. Int J Biol Macromol 2025; 291:139043. [PMID: 39710027 DOI: 10.1016/j.ijbiomac.2024.139043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances. The quercetin-mediated strategy could effectively modulate the non-covalent interactions within hydrogel, which served as the sacrificial bonds to dissipate large energy, leading to the high toughness of chitin-based composite hydrogels (0.70-1.02 MJ·m-3). Furthermore, through utilizing quercetin-assisted non-covalent interactions, effective dispersion of inorganic materials (e.g., molybdenum disulfide, carbon nanotube and calcium carbonate) within hydrogels was achieved, resulting in composite hydrogels with diverse functionalities. Our quercetin-mediated strategy conceptualized in this work paves the way for the development of a diverse array of chitin-based composite hydrogels which incorporate various functional inorganic materials.
Collapse
Affiliation(s)
- Xinghuan Lin
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China.
| | - Hanji Chen
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuang Liu
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Chunsheng Cai
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Yibao Li
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China
| | - Shanshan Li
- Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Amalia FR, Wang L, Bielan Z, Markowska-Szczupak A, Wei Z, Kowalska E. Gels in Heterogeneous Photocatalysis: Past, Present, and Future. Gels 2024; 10:810. [PMID: 39727568 DOI: 10.3390/gels10120810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024] Open
Abstract
Photocatalysis has attracted more and more attention as a possible solution to environmental, water, and energy crises. Although some photocatalytic materials have already proven to perform well, there are still some problems that should be solved for the broad commercialization of photocatalysis-based technologies. Among them, cheap and easy recycling, as well as stability issues, should be addressed. Accordingly, the application of gels, either as a photocatalytic material or as its support, might be a good solution. In this review, various propositions of gel-based photocatalysts have been presented and discussed. Moreover, an easy nanoarchitecture design of gel-based structures enables fundamental studies, e.g., on mechanism clarifications. It might be concluded that gels with their unique properties, i.e., low density, high specific surface area, great porosity, and low-cost preparation, are highly prospective for solar-energy-based reactions, water treatment, photodynamic cancer therapies, and fundamental research.
Collapse
Affiliation(s)
| | - Lei Wang
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Zuzanna Bielan
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| | - Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, 71-065 Szczecin, Poland
| | - Zhishun Wei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Ewa Kowalska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
3
|
Arif M, Javed M, Akhter T. Crosslinked polymeric networks of TiO 2-polymer composites: a comprehensive review. RSC Adv 2024; 14:33843-33863. [PMID: 39469015 PMCID: PMC11514414 DOI: 10.1039/d4ra06922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
The crosslinked network of TiO2-organic polymer composites has gained considerable attention over the past few years. The low band gap of TiO2 particles and the stimuli-responsive behavior of organic polymers make these composites suitable for a wide range of applications in biomedicine, environmental fields, and catalysis. Diverse morphologies and structures of TiO2-polymer composites (TPCs) are documented in the available literature, where the specific architecture of these composites intensely influences their efficiency in various applications. Consequently, a particular shaped TPC is carefully designed to suit specific purposes. This comprehensive review describes the classifications, synthetic approaches, characterizations, and applications of TiO2 nanoparticles decorated in crosslinked organic polymers. It delves into the biomedical, catalytic, adsorption, and environmental applications of these TiO2-polymer composites. The review takes a tutorial approach, systematically exploring and clarifying the applications of TiO2-polymer composites, offering a comprehensive understanding of their different capabilities and uses.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
4
|
Laghaei M, Ghasemian M, Ferdowsi MRG, Schütz JA, Kong L. Enhanced pollutant photodegradation over nanoporous titanium-vanadium oxides with improved interfacial interactions. J Colloid Interface Sci 2023; 646:11-24. [PMID: 37178611 DOI: 10.1016/j.jcis.2023.04.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
This study addressed the separation problem of colloidal catalytic powder from its solution and pore blockage of traditional metallic oxides by fabricating nanoporous composites of titanium (Ti)-vanadium (V) oxide via magnetron sputtering, electrochemical anodization, and annealing processes. The effect of V-deposited loading on the composite semiconductors was investigated by varying V sputtering power (20-250 W) to correlate their physicochemical properties to the photodegradation performance of methylene blue. The obtained semiconductors revealed circular and elliptical pores (14-23 nm) and formed different metallic and metallic oxide crystalline phases. Within the nanoporous composite layer, V ions substituted Ti4+, leading to Ti3+ formation accompanied by decreased band gap values and higher visible-light absorption. Thus, the band gap of TiO2 was 3.15 eV, while that of Ti-V oxide with the maximum V content (at 250 W) was 2.47 eV. The interfacial separators between clusters in the mentioned composite created traps disrupting the charge carrier movements between crystallites, thereby decreasing the photoactivity. In contrast, the composite prepared with the minimum V content showed approximately 90% degradation efficiency under solar-simulated irradiation resulting from the homogeneous V dispersion and the lower recombination possibility, owing to its p-n heterojunction constituent. The nanoporous photocatalyst layers with their novel synthesis approach and outstanding performance can be applied in other environmental remediation applications.
Collapse
Affiliation(s)
- Milad Laghaei
- School of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia; Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Mohsen Ghasemian
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Jürg A Schütz
- Commonwealth Scientific and Industrial Research Organization (CSIRO), 75 Pigdons Road, Waurn Ponds, Vic 3216, Australia
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
5
|
Hajareh Haghighi F, Mercurio M, Cerra S, Salamone TA, Bianymotlagh R, Palocci C, Romano Spica V, Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J Mater Chem B 2023; 11:2334-2366. [PMID: 36847384 DOI: 10.1039/d2tb02576k] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
In recent years, titanium(IV) dioxide nanoparticles (TiO2NPs) have shown promising potential in various biological applications such as antimicrobials, drug delivery, photodynamic therapy, biosensors, and tissue engineering. For employing TiO2NPs in these fields, their nanosurface must be coated or conjugated with organic and/or inorganic agents. This modification can improve their stability, photochemical properties, biocompatibility, and even surface area for further conjugation with other molecules such as drugs, targeting molecules, polymers, etc. This review describes the organic-based modification of TiO2NPs and their potential applications in the mentioned biological fields. In the first part of this review, around 75 recent publications (2017-2022) are mentioned on the common TiO2NP modifiers including organosilanes, polymers, small molecules, and hydrogels, which improve the photochemical features of TiO2NPs. In the second part of this review, we presented 149 recent papers (2020-2022) about the use of modified TiO2NPs in biological applications, in which specific bioactive modifiers are introduced in this part with their advantages. In this review, the following information is presented: (1) the common organic modifiers for TiO2NPs, (2) biologically important modifiers and their benefits, and (3) recent publications on biological studies on the modified TiO2NPs with their achievements. This review shows the paramount significance of the organic-based modification of TiO2NPs to enhance their biological effectiveness, paving the way toward the development of advanced TiO2-based nanomaterials in nanomedicine.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Martina Mercurio
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | | | - Roya Bianymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy. .,Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Romano Spica
- Department of Movement, Health and Human Sciences, University of Rome Foro Italico, Piazza Lauro De Bosis, 15, 00135 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
6
|
Mansurov RR, Pavlova IA, Safronov AP. Adhesion of Polymer to TiO
2
Particles Decreases Photocatalytic Activity of Polyelectrolyte Hydrogel Photocatalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202202775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Irina A. Pavlova
- Institute of Electrophysics 106 Amundsen Str. 620016 Yekaterinburg, RF
| | | |
Collapse
|
7
|
Makhado E, Motshabi BR, Allouss D, Ramohlola KE, Modibane KD, Hato MJ, Jugade RM, Shaik F, Pandey S. Development of a ghatti gum/poly (acrylic acid)/TiO 2 hydrogel nanocomposite for malachite green adsorption from aqueous media: Statistical optimization using response surface methodology. CHEMOSPHERE 2022; 306:135524. [PMID: 35779687 DOI: 10.1016/j.chemosphere.2022.135524] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/06/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The primary goal of this study is to prepare and characterize a ghatti gum/poly(acrylic acid)/TiO2 (GG/poly(AA)/TiO2) hydrogel nanocomposite for adsorption of the dye malachite green (MG) from the aqueous phase in a discontinuous system. A variety of approaches were used to investigate the structure, morphology, and thermomechanical characteristics of the synthesized hydrogel nanocomposite. Response surface methodology (RSM) was performed to analyze the impact of three processing parameters, namely adsorbent dosage, dye concentration, contact duration, and their interactions on MG dye adsorption capacity. Analysis of variance was used to assess the experimental findings, which revealed that the quadratic regression model was statistically acceptable. The integration of TiO2 nanoparticles into the hydrogel matrix improved its thermal stability, mechanical strength, and performance in adsorbing MG dye from water. The kinetics and isotherm were evaluated, and the adsorption process was well fitted with pseudo-second order and Temkin isotherm models, respectively. Using the Langmuir equation, the maximum adsorption capacity at 45 °C within 50 min was calculated to be 2145 mg/g. Thermodynamic analysis at 25-45 °C revealed that the MG dye was spontaneously absorbed by the hydrogel nanocomposite. The prepared hydrogel nanocomposite demonstrated excellent reusability without a noticeable loss in MG dye adsorption capability for 6 cycles.
Collapse
Affiliation(s)
- Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane, Sovenga 0727, South Africa.
| | - Boitumelo Rejoice Motshabi
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane, Sovenga 0727, South Africa
| | - Dalia Allouss
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles (MaCaVa) URAC 24, FST, Hassan II University, Casablanca, Morocco
| | - Kabelo Edmond Ramohlola
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane, Sovenga 0727, South Africa
| | - Kwena Desmond Modibane
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane, Sovenga 0727, South Africa
| | - Mpitloane Joseph Hato
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Polokwane, Sovenga 0727, South Africa
| | - Ravin M Jugade
- Department of Chemistry, R. T. M. Nagpur University, Nagpur 440010, Maharashtra, India
| | - Feroz Shaik
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Saudi Arabia
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
8
|
Polysaccharides-based nanofibrils: From tissue engineering to biosensor applications. Carbohydr Polym 2022; 291:119670. [DOI: 10.1016/j.carbpol.2022.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022]
|
9
|
In-situ structuring a robust cellulose hydrogel with ZnO/SiO2 heterojunctions for efficient photocatalytic degradation. Carbohydr Polym 2022; 296:119957. [DOI: 10.1016/j.carbpol.2022.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022]
|
10
|
Yang J, Liu D, Song X, Zhao Y, Wang Y, Rao L, Fu L, Wang Z, Yang X, Li Y, Liu Y. Recent Progress of Cellulose-Based Hydrogel Photocatalysts and Their Applications. Gels 2022; 8:270. [PMID: 35621568 PMCID: PMC9141161 DOI: 10.3390/gels8050270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
With the development of science and technology, photocatalytic technology is of great interest. Nanosized photocatalysts are easy to agglomerate in an aqueous solution, which is unfavorable for recycling. Therefore, hydrogel-based photocatalytic composites were born. Compared with other photocatalytic carriers, hydrogels have a three-dimensional network structure, high water absorption, and a controllable shape. Meanwhile, the high permeability of these composites is an effective way to promote photocatalysis technology by inhibiting nanoparticle photo corrosion, while significantly ensuring the catalytic activity of the photocatalysts. With the growing energy crisis and limited reserves of traditional energy sources such as oil, the attention of researchers was drawn to natural polymers. Like almost all abundant natural polymer compounds in the world, cellulose has the advantages of non-toxicity, degradability, and biocompatibility. It is used as a class of reproducible crude material for the preparation of hydrogel photocatalytic composites. The network structure and high hydroxyl active sites of cellulose-based hydrogels improve the adsorption performance of catalysts and avoid nanoparticle collisions, indirectly enhancing their photocatalytic performance. In this paper, we sum up the current research progress of cellulose-based hydrogels. After briefly discussing the properties and preparation methods of cellulose and its descendant hydrogels, we explore the effects of hydrogels on photocatalytic properties. Next, the cellulose-based hydrogel photocatalytic composites are classified according to the type of catalyst, and the research progress in different fields is reviewed. Finally, the challenges they will face are summarized, and the development trends are prospected.
Collapse
Affiliation(s)
- Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Xiaofang Song
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yayang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
11
|
Chemically triggered life control of “smart” hydrogels through click and declick reactions. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Gutierrez AM, Frazar EM, X Klaus MV, Paul P, Hilt JZ. Hydrogels and Hydrogel Nanocomposites: Enhancing Healthcare through Human and Environmental Treatment. Adv Healthc Mater 2022; 11:e2101820. [PMID: 34811960 PMCID: PMC8986592 DOI: 10.1002/adhm.202101820] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/08/2021] [Indexed: 12/11/2022]
Abstract
Humans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.g., swelling behavior, biocompatibility, stimuli responsiveness, functionality, etc.) have deemed them ideal platforms for removal of environmental contaminants, detoxification, and reduction of body burden from exogenous chemical exposures for prevention of disease initiation, and advanced treatment of chronic diseases, including cancer, diabetes, and cardiovascular disease. In this review, three main junctures where the use of hydrogel and hydrogel nanocomposite materials can intervene to positively impact human health are highlighted: 1) preventing exposures to environmental contaminants, 2) prophylactic treatments to prevent chronic disease initiation, and 3) treating chronic diseases after they have developed.
Collapse
Affiliation(s)
- Angela M Gutierrez
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Erin Molly Frazar
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Maria Victoria X Klaus
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Pranto Paul
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, 177 F Paul Anderson Tower, Lexington, KY, 40506, USA
- Superfund Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
13
|
Li J, Li H, Wu C, Zhang W. PVA-AAm-AG multi-network hydrogel with high mechanical strength and cell adhesion. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Yue Y, Shen S, Cheng W, Han G, Wu Q, Jiang J. Construction of mechanically robust and recyclable photocatalytic hydrogel based on nanocellulose-supported CdS/MoS2/Montmorillonite hybrid for antibiotic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Hydrogels produced from natural polymers: a review on its use and employment in water treatment. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Dynamics of diffusion-limited photocatalytic degradation of dye by polymeric hydrogel with embedded TiO2 nanoparticles. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Composite hydrogel membrane with high mechanical strength for treatment of dye pollutant. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Kakar MU, Khan K, Akram M, Sami R, Khojah E, Iqbal I, Helal M, Hakeem A, Deng Y, Dai R. Synthesis of bimetallic nanoparticles loaded on to PNIPAM hybrid microgel and their catalytic activity. Sci Rep 2021; 11:14759. [PMID: 34285274 PMCID: PMC8292321 DOI: 10.1038/s41598-021-94177-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
This study was designed to preparecarboxyl-functionalized poly (N-isopropylacrylamide) PNIPAM microgels having excellent catalytic properties.Recently, researchers are trying to fabricate cost effective and efficient hybrid catalytic materials for the synthesis of nitrogenous compounds along with enhanced optical properties. For the same motive, synthesis of carboxyl-functionalized PNIPAM microgels was performed by using polymerization of soap-free emulsion of N-isopropyl acrylamide, which is NIPAM along with acrylic acid (AA). The thiol group was introduced through the imide bond mediated by carbodiimide, between carboxyl-functionalized microgels through carboxyl group and aminoethanethiol (AET). Copper, Palladium and Cu/Pd nanoparticles were incorporated successfully into thiol-functionalized PNIPAM microgels through metals thiol linkage. The synthesized microgels and hybrid encompassing metallic nanoparticles were characterized in detail by using Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron (XPS) and Fourier transformed infrared spectroscopy for structural interpretation. The thermal properties of the pure and hybrid microgels were inspected by TG analysis. The prepared nanocomposites PNIPAM-Cu, PNIPAM-Pd and PNIPAM-Cu/Pd exhibited decent catalytic properties for the degradation of 4-Nitrophenol and methylene blue, but the bimetallic Cu/Pd have remarkable catalytic properties. The catalytic reaction followed pseudo-first-order reaction with rate constants 0.223 min-1, 0.173 min-1 for 4-Nitrophenol and methylene blue in that order. In this study,we were able to establish that Cu/Pd hybrid is an efficient catalyst for 4-Nitrophenol and methylene blue as compared to its atomic analogue.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
| | - Khakemin Khan
- Department of Chemistry, Hazara University, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Akram
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia.
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif, 21944, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, People's Republic of China
| | - Mahmoud Helal
- Department of Mechanical Engineering, Faculty of Engineering, Taif University, Taif, Saudi Arabia
| | - Abdul Hakeem
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences (LUAWMS), Uthal, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, People's Republic of China.
| |
Collapse
|
19
|
Sivaselvam S, Selvakumar R, Viswanathan C, Ponpandian N. Rapid one-pot synthesis of PAM-GO-Ag nanocomposite hydrogel by gamma-ray irradiation for remediation of environment pollutants and pathogen inactivation. CHEMOSPHERE 2021; 275:130061. [PMID: 33677277 DOI: 10.1016/j.chemosphere.2021.130061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Designing a cost-effective, high potential and recyclable catalyst remains a challenge. In the present work, a monolithic PAM-GO-Ag hydrogel is prepared by a facile, eco-friendly method using gamma-ray irradiation. The formation of GO-Ag composite by gamma radiation is also investigated and it is authenticated by XRD, FTIR, Raman, XPS and TEM analysis. The PAM-GO-Ag hydrogel exhibits excellent catalytic activity to different catalysant like methylene blue, Rhodamine-B, and pharmaceutical compound ciprofloxacin. The high catalyst carrying capacity and rapid electron shuttling ability of GO plays a significant role in the high performance of PAM-GO-Ag hydrogel. The PAM-GO-Ag hydrogel also exhibits excellent antibacterial activity. The damaged cell membrane, protein leakage, and increased ROS level contribute to the antibacterial activity of PAM-GO-Ag. The monolithic structure of PAM-GO-Ag hydrogel makes it easy to handle, recover, and reuse for several runs without significant loss of catalytic and antibacterial activity. All these results showed the possible application of PAM-GO-Ag hydrogel as a promising catalyst for the reduction of different pollutants and antibacterial agents on a large scale with good reusability.
Collapse
Affiliation(s)
- S Sivaselvam
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - R Selvakumar
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, 641 004, India
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, 641 046, India.
| |
Collapse
|
20
|
Wang C, Ma X, Fu Z, Hu X, Fan J, Liu E. Highly efficient photocatalytic H 2 evolution over NiCo 2S 4/Mn 0.5Cd 0.5S: Bulk twinned homojunctions and interfacial heterojunctions. J Colloid Interface Sci 2021; 592:66-76. [PMID: 33639539 DOI: 10.1016/j.jcis.2021.02.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
A twinned Mn0.5Cd0.5S (T-MCS) homojunction, consisting of wurtzite and zinc-blende Mn0.5Cd0.5S with different energy band structures, was fabricated using a facile hydrothermal method, resulting in the formation of a type-II bulk phase twinned homojunction. Furthermore, NiCo2S4 nanoparticles were deposited on the surface of T-MCS to form a surface heterojunction. The activities of T-MCS and NiCo2S4/T-MCS were tested in the photocatalytic H2 evolution reaction. T-MCS exhibits a superior H2 evolution rate of 61.4 mmol∙g-1∙h-1 under visible light (λ > 420 nm) irradiation owing to faster bulk phase charge separation, which is 8.2 and 1.9 times higher than those of wurtzite and zinc-blende Mn0.5Cd0.5S, respectively. Moreover, NiCo2S4 can facilitate interfacial electron transfer and can lower the H2 evolution overpotential; the H2 evolution rate is boosted to 127.3 mmol∙ g-1∙h-1 with an apparent quantum yield (AQY) of 23.4% with irradiation of 2 wt%-NiCo2S4/T-MCS under 400 ± 7.5 nm light. This work demonstrates that bulk phase twinned homojunctions and a surface heterojunction can combine to promote bulk and interfacial charge transfer and separation, simultaneously improving the kinetics of photocatalytic H2 evolution.
Collapse
Affiliation(s)
- Chenxuan Wang
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Xinyi Ma
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Zhongyuan Fu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Xiaoyun Hu
- School of Physics, Northwest University, Xi'an 710069, PR China
| | - Jun Fan
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China
| | - Enzhou Liu
- School of Chemical Engineering/Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
21
|
Fu GB, Xie R, Qin JW, Deng XB, Ju XJ, Wang W, Liu Z, Chu LY. Facile Fabrication of Photocatalyst-Immobilized Gel Beads with Interconnected Macropores for the Efficient Removal of Pollutants in Water. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guo-Bao Fu
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| | - Jia-Wang Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| | - Xi-Bin Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065 Sichuan, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065 Sichuan, China
| |
Collapse
|
22
|
Li P, Zhuang Z, Zhang Z, Guo J, Fang Z, Chen W. Interfacial heterojunction construction by introducing Pd into W18O49 nanowires to promote the visible light-driven photocatalytic degradation of environmental organic pollutants. J Colloid Interface Sci 2021; 590:518-526. [DOI: 10.1016/j.jcis.2021.01.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
|
23
|
Jiao Y, Lu Y, Lu K, Yue Y, Xu X, Xiao H, Li J, Han J. Highly stretchable and self-healing cellulose nanofiber-mediated conductive hydrogel towards strain sensing application. J Colloid Interface Sci 2021; 597:171-181. [PMID: 33866209 DOI: 10.1016/j.jcis.2021.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Hydrogel-based sensors have attracted considerable attention due to potential opportunities in human health monitoring when both mechanical flexibility and sensing ability are required. Therefore, the integration of excellent mechanical properties, electrical conductivity and self-healing properties into hydrogels may improve the application range and durability of hydrogel-based sensors. EXPERIMENTS A novel composite hydrogel composed of polyaniline (PANI), polyacrylic acid (PAA) and 2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNFs) was designed. The viscoelastic, mechanical, conductive, self-healing and sensing properties of hydrogels were studied. FINDINGS The TOCNF/PANI/PAA hydrogel exhibits a fracture strain of 982%, tensile strength of 74.98 kPa and electrical conductivity of 3.95 S m-1, as well as good mechanical and electrical self-healing properties within 6 h at ambient temperature without applying any stimuli. Furthermore, owing to the high sensitivity of the TOCNF/PANI/PAA-0.6 hydrogel-based strain sensor (gauge factor, GF = 8.0), the sensor can accurately and rapidly detect large-scale motion and subtle localized activity. The proposed composite hydrogel is as a promising material for use as soft wearable sensors for health monitoring and smart robotics applications.
Collapse
Affiliation(s)
- Yue Jiao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ya Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kaiyue Lu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yiying Yue
- Biology and Environment College, Nanjing Forestry University, Nanjing 210037, China
| | - Xinwu Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Chemical Engineering Department, New Brunswick University, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jian Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Jingquan Han
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Wei Q, Bai J, Wang H, Ma G, Li X, Zhang W, Hu Z. Photo-induced programmable degradation of carboxymethyl chitosan-based hydrogels. Carbohydr Polym 2021; 256:117609. [PMID: 33483085 DOI: 10.1016/j.carbpol.2020.117609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Hydrogels are widely used in the biomedical field, due to their high similarity to native extracellular matrix (ECM). Most responsive hydrogels could only passively receive stimuli and independently change their properties. In this study, a photosensitive o-nitrobenzyl (NB) ester linker of polyethylene glycol (PEG) with maleimido (Mal) as terminal groups (PEG-NB-Mal) and a 5-methylfurfuryl (mF) grafted carboxymethyl chitosan (CMCS) derivative (CMCS-mF) were synthesized and used to prepare functional hydrogels via Diels-Alder (DA) reactions. The hydrogel exhibited programmable degradation properties after sequential exposure to UV light and acid treatments. It can maintain high integrity upon the single stimuli, the cascade acid and UV light treatments or the cascade UV light and alkaline treatments. Moreover, the hydrogel exhibited well controlled release profile of rhodamine B (RB). In summary, such CMCS-based hydrogels show great potential in biomedical applications. In addition, the usage of photo-induced cascade reaction in sequential degradation hydrogels can be extended to design other types of programmable smart materials.
Collapse
Affiliation(s)
- Qingcong Wei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Jiahao Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huan Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guanglei Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinjuan Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
25
|
Guo H, Li Z, Lin S, Li D, Jiang N, Wang H, Han J, Li J. Multi-catalysis induced by pulsed discharge plasma coupled with graphene-Fe 3O 4 nanocomposites for efficient removal of ofloxacin in water: Mechanism, degradation pathway and potential toxicity. CHEMOSPHERE 2021; 265:129089. [PMID: 33261841 DOI: 10.1016/j.chemosphere.2020.129089] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/01/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Herein, degradation of ofloxacin (OFX) by pulsed discharge plasma (PDP) coupled with multi-catalysis using graphene-Fe3O4 nanocomposites was inspected. The graphene-Fe3O4 nanocomposites were prepared by hydrothermal synthesis, and their morphology, specific surface area, chemical bond structure and magnetic property were characterized systematically. Compared with sole Fe3O4, the specific surface area of graphene-Fe3O4 nanocomposites increased from 26.34 m2/g to 125.04 m2/g. The prepared graphene-Fe3O4 nanocomposites had higher paramagnetism and the magnetic strength reached 66.05 emu/g, which was prone to separate from solution. Graphene-Fe3O4 nanocomposites could further accelerate OFX degradation compared to sole Fe3O4. When graphene content was 18 wt%, graphene-Fe3O4 nanocomposites exhibited the highest catalytic activity, and the removal efficiency of OFX enhanced from 65.0% (PDP alone) to 99.9%. 0.23 g/L dosage and acid solution were beneficial for OFX degradation. Higher stability of graphene-Fe3O4 nanocomposites could be maintained although four times use. Graphene-Fe3O4 nanocomposites could catalyze H2O2 and O3 to produce more ·OH. The degradation products of OFX were identified by liquid chromatography mass spectrometry (LC-MS) and ion chromatography (IC). According to the identified products and discrete Fourier transform (DFT), the degradation pathway was inferred. Further toxicity assessment of products manifested that the toxicity of oral rat 50% lethal dose (LD50) and the developmental toxicity of OFX were reduced.
Collapse
Affiliation(s)
- He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhen Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Siying Lin
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongsheng Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Nan Jiang
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Huijuan Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Jie Li
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
26
|
Yue Y, Gu J, Han J, Wu Q, Jiang J. Effects of cellulose/salicylaldehyde thiosemicarbazone complexes on PVA based hydrogels: Portable, reusable, and high-precision luminescence sensing of Cu 2. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123798. [PMID: 33113738 DOI: 10.1016/j.jhazmat.2020.123798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Novel portable, high-precision, and reusable fluorescent polyvinyl alcohol (PVA)-borax hydrogel sensors were prepared to detect Cu2+ in aqueous environment. A TEMPO-oxidized cellulose nanofibers/salicylaldehyde thiosemicarbazone (TOCN/ST) complex was further incorporated into the PVA-borax matrix. The in situ polymerization of TOCN/ST complex enhanced the mechanical properties of the hydrogels and improved the accuracy of detection. The resultant hydrogels were thermo reversible, and it converted to the liquid state during heating, which could greatly reduce the deviations caused in the detection of solid sensors. After cooling, the hydrogel could transform into the solid condition, which was easily portable. The sensor induced a significant luminescence quenching to the Cu2+ at 485 nm, with a detection limit of 0.086 μM. In the presence of ethylenediaminetetraacetic acid disodium, Cu2+ were tightly seized, causing the liberation of TOCN/ST complex and thus, a reversible "ON-OFF-ON" fluorescence behavior was displayed. The fluorescence intensity was maintained at 82 % after 10 uses, and the mechanical strength was maintained at 85 % after 3 uses. The anti-bacterial activity test also confirmed the TOCN/ST complex was extremely potent in suppressing the growth and reproduction of Escherichia coli. The proposed hydrogel provides a new insight into the detection of Cu2+ in aqueous environments.
Collapse
Affiliation(s)
- Yiying Yue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Jiamin Gu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jingquan Han
- College of Material Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Qinglin Wu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge 70803, LA, USA
| | - Jianchun Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
27
|
Adsorption of organic and inorganic arsenic from aqueous solutions using MgAl-LDH with incorporated nitroprusside. J Colloid Interface Sci 2020; 575:194-205. [DOI: 10.1016/j.jcis.2020.04.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022]
|