1
|
Jia Y, Zhang S, Li J, Han Z, Zhang D, Qu X, Wu Z, Wang H, Chen S. Wearable Device with High Thermoelectric Performance and Long-Lasting Usability Based on Gel-Thermocells for Body Heat Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401427. [PMID: 39285822 DOI: 10.1002/smll.202401427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Utilizing the thermogalvanic effect, flexible thermoelectric materials present a compelling avenue for converting heat into electricity, especially in the context of wearable electronics. However, prolonged usage is hampered by the limitation imposed on the thermoelectric device's operational time due to the evaporation of moisture. Deep eutectic solvents (DESs) offer a promising solution for low-moisture gel fabrication. In this study, a bacterial cellulose (BC)/polyacrylic acid (PAA)/guanidinium chloride (GdmCl) gel is synthesized by incorporating BC into the DES. High-performance n-type and p-type thermocells (TECs) are developed by introducing Fe(ClO4)2/3 and K3/4Fe(CN)6, respectively. BC enhances the mechanical properties through the construction of an interpenetrating network structure. The coordination of carboxyl groups on PAA with Fe3+ and the crystallization induced by Gdm+ with [Fe(CN)6]4- remarkably improve the thermoelectric performance, achieving a Seebeck coefficient (S) of 2.4 mV K-1 and ion conductivity (σ) of 1.4 S m-1 for the n-type TEC, and ‒2.8 mV K-1 and 1.9 S m-1 for the p-type TEC. A flexible wearable thermoelectric device is fabricated with a S of 82 mV K-1 and it maintains a stable output over one month. This research broadens the application scope of DESs in the thermoelectric field and offers promising strategies for long-lasting wearable energy solutions.
Collapse
Affiliation(s)
- Yuhang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shengming Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiliang Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Dong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Qu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhuotong Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shiyan Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
2
|
Zou M, Tan C, Yuan Z, Wu M, Jian J, Zhang L, Zhang Y, Ma Z, Zhou H. In situ preparation of Ag@AgCl/Bio-veins composites and their photocatalytic activity and recyclability. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Yi J, Wu X, Wu H, Guo J, Wu K, Zhang L. Facile synthesis of novel NH 2-MIL-53(Fe)/AgSCN heterojunction composites as a highly efficient photocatalyst for ciprofloxacin degradation and H 2 production under visible-light irradiation. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00349f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel NH2-MIL-53(Fe)/AgSCN composite photocatalyst was successfully prepared by a one-step chemical precipitation method, the composite show high photocatalytic activity for antibiotics degradation and H2 evolution under visible light irradiation.
Collapse
Affiliation(s)
- Jungang Yi
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Xianghui Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Huadong Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Jia Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Kun Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
- The College of Post and Telecommunication of Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Linfeng Zhang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
4
|
Shang Y, Sun L, Wang H, Li S, Cao K, Huo P. Azobenzene-modified Ag/Ag 2O/CN photocatalysts with photoresponsive performance for controllable photodegradation of tetracyclines. NEW J CHEM 2021. [DOI: 10.1039/d1nj00933h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, an Azo@Ag/Ag2O/CN composite photocatalyst with light-responsive performance was successfully prepared by precipitation and emulsion polymerization. Azo@Ag/Ag2O/CN exhibits cis-trans isomerism under different light exposures.
Collapse
Affiliation(s)
- Ye Shang
- School of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
- School of Chemical and Environmental Engineering
| | - Linlin Sun
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Huiqin Wang
- School of Energy and Power Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Songtian Li
- School of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
- School of Chemical and Environmental Engineering
| | - Kesheng Cao
- School of Chemical and Environmental Engineering
- Pingdingshan University
- Pingdingshan 467000
- P. R. China
| | - Pengwei Huo
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|