1
|
Akay S, Nazim M, Foroughian R, Kristensen CK, Higazy D, Posselt D, Ciofu O, Yaghmur A. Liquid crystalline coatings loaded with colistin for preventing development of biofilms on orthopedic implants. J Colloid Interface Sci 2025; 687:630-642. [PMID: 39983390 DOI: 10.1016/j.jcis.2025.02.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
The current antibacterial strategies focus on antibiotic therapy and extensive hygienic measures during orthopedic surgery. However, potential development of implant-associated infections remains a persistent clinical challenge. There is, therefore, a growing interest in introducing innovative safe antibacterial strategies for preventing and combating biofilm development on implants. Antibacterial coatings, particularly, are attractive for local delivery of antibacterial agents. We aim in this proof-of-concept study at introducing a novel and translatable implant coating approach, focusing on directed assembly of inverse non-lamellar lyotropic liquid crystalline (LLC) nanostructures on implants for prevention of initial bacterial attachment and biofilm formation through local delivery of the widely used cationic antibiotic colistin (COL). On exposure of dry lipid films deposited on model implants to aqueous solutions of COL prepared at different COL concentrations, a set of LLC coatings based on a commercial distilled monoglyceride product (or glycerol monooleate) were produced. In addition to small-angle X-ray scattering (SAXS) characterization investigations, in vitro studies were conducted for evaluating the antibacterial and antibiofilm properties of the LLC coatings against the Gram-negative bacteria Pseudomonas aeruginosa. The SAXS analysis indicated that all samples are inverse bicontinuous cubic Pn3m phases. Significant COL's antibacterial activity and efficient protection against bacterial adhesion were demonstrated on coating model implants with LLC surface films produced by using aqueous solutions containing COL at concentrations of 50 and 500 µg/mL. On exposure to serum, the detected structural alterations and changes in COL's antibacterial activity are also discussed. This study also highlights the implications of LLC self-assemblies for designing nanostructural coatings on orthopedic implants, which can prevent implant-associated biofilm infections through local delivery of antibacterial agents.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark.
| | - Manija Nazim
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Roudabeh Foroughian
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | | | - Doaa Higazy
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Dorthe Posselt
- IMFUFA, FRUSTMI, Department of Science and Environment, Roskilde University 4000 Roskilde, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen 2200 Copenhagen, Denmark.
| |
Collapse
|
2
|
Caselli L, Conti L, De Santis I, Berti D. Small-angle X-ray and neutron scattering applied to lipid-based nanoparticles: Recent advancements across different length scales. Adv Colloid Interface Sci 2024; 327:103156. [PMID: 38643519 DOI: 10.1016/j.cis.2024.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Lipid-based nanoparticles (LNPs), ranging from nanovesicles to non-lamellar assemblies, have gained significant attention in recent years, as versatile carriers for delivering drugs, vaccines, and nutrients. Small-angle scattering methods, employing X-rays (SAXS) or neutrons (SANS), represent unique tools to unveil structure, dynamics, and interactions of such particles on different length scales, spanning from the nano to the molecular scale. This review explores the state-of-the-art on scattering methods applied to unveil the structure of lipid-based nanoparticles and their interactions with drugs and bioactive molecules, to inform their rational design and formulation for medical applications. We will focus on complementary information accessible with X-rays or neutrons, ranging from insights on the structure and colloidal processes at a nanoscale level (SAXS) to details on the lipid organization and molecular interactions of LNPs (SANS). In addition, we will review new opportunities offered by Time-resolved (TR)-SAXS and -SANS for the investigation of dynamic processes involving LNPs. These span from real-time monitoring of LNPs structural evolution in response to endogenous or external stimuli (TR-SANS), to the investigation of the kinetics of lipid diffusion and exchange upon interaction with biomolecules (TR-SANS). Finally, we will spotlight novel combinations of SAXS and SANS with complementary on-line techniques, recently enabled at Large Scale Facilities for X-rays and neutrons. This emerging technology enables synchronized multi-method investigation, offering exciting opportunities for the simultaneous characterization of the structure and chemical or mechanical properties of LNPs.
Collapse
Affiliation(s)
- Lucrezia Caselli
- Physical Chemistry 1, University of Lund, S-221 00 Lund, Sweden.
| | - Laura Conti
- Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Debora Berti
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy; Consorzio Sistemi a Grande Interfase, Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
3
|
Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024; 29:1172. [PMID: 38474684 DOI: 10.3390/molecules29051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Leu JSL, Teoh JJX, Ling ALQ, Chong J, Loo YS, Mat Azmi ID, Zahid NI, Bose RJC, Madheswaran T. Recent Advances in the Development of Liquid Crystalline Nanoparticles as Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051421. [PMID: 37242663 DOI: 10.3390/pharmaceutics15051421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.
Collapse
Affiliation(s)
- Jassica S L Leu
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Jasy J X Teoh
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Angel L Q Ling
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Joey Chong
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Rajendran J C Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| |
Collapse
|
5
|
Sun X, Tan A, Boyd BJ. Magnetically‐activated lipid nanocarriers in biomedical applications: A review of current status and perspective. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1863. [PMID: 36428234 DOI: 10.1002/wnan.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/27/2022] [Accepted: 09/03/2022] [Indexed: 11/28/2022]
Abstract
Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Xiaohan Sun
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
| | - Ben J. Boyd
- Drug Delivery, Disposition and Dynamics Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) Parkville Victoria Australia
- Department of Pharmacy University of Copenhagen Copenhagen Denmark
| |
Collapse
|
6
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
7
|
Chavda VP, Dawre S, Pandya A, Vora LK, Modh DH, Shah V, Dave DJ, Patravale V. Lyotropic liquid crystals for parenteral drug delivery. J Control Release 2022; 349:533-549. [PMID: 35792188 DOI: 10.1016/j.jconrel.2022.06.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
The necessity for long-term treatments of chronic diseases has encouraged the development of novel long-acting parenteral formulations intending to improve drug pharmacokinetics and therapeutic efficacy. Lately, one of the novel approaches has been developed based on lipid-based liquid crystals. The lyotropic liquid crystal (LLC) systems consist of amphiphilic molecules and are formed in presence of solvents with the most common types being cubic, hexagonal and lamellar mesophases. LC injectables have been recently developed based on polar lipids that spontaneously form liquid crystal nanoparticles in aqueous tissue environments to create the in-situ long-acting sustained-release depot to provide treatment efficacy over extended periods. In this manuscript, we have consolidated and summarized the various type of liquid crystals, recent formulation advancements, analytical evaluation, and therapeutic application of lyotropic liquid crystals in the field of parenteral sustained release drug delivery.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India; Department of Pharmaceutics & Pharm, Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India.
| | - Shilpa Dawre
- Department of Pharmaceutics, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, India
| | - Anjali Pandya
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| | - Dharti H Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Vidhi Shah
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm, Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400 019, India
| |
Collapse
|
8
|
Mertz N, Bock F, Østergaard J, Yaghmur A, Weng Larsen S. Investigation of diclofenac release and dynamic structural behavior of non-lamellar liquid crystal formulations during in situ formation by UV-Vis imaging and SAXS. Int J Pharm 2022; 623:121880. [PMID: 35661744 DOI: 10.1016/j.ijpharm.2022.121880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
In situ formation of high viscous inverse lyotropic non-lamellar liquid crystalline phases is a promising approach for sustained drug delivery in the joint. The in situ forming process on exposure of two diclofenac-loaded preformulations to aqueous media was characterized with respect to depot size and shape, initial release and structural transitions using UV-Vis imaging and spatially and time-resolved synchrotron small-angle X-ray scattering (SAXS). The preformulations consisted of 10 % (w/w) ethanol, 10 % (w/w) water and a binary lipid mixture of glycerol monooleate (GMO):1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) or GMO:medium chain triglycerides (MCT). Upon injection of preformulations into an employed injection-cell containing excess of bio-relevant medium, rapid generation of liquid crystalline depots was observed. UV-Vis images and constructed 2D SAXS maps of the injection-cell showed depots with different shapes and sizes, and features with high nanostructural heterogeneity. More extensive swelling of the GMO:DOPG-based preformulation was observed compared to the GMO:MCT-based preformulation. The UV image analysis found that a higher amount of diclofenac was released in the image area after 20 h from the GMO:MCT-depot compared to the GMO:DOPG-depot. The injection-cell setup employing UV-Vis imaging and synchrotron SAXS constitutes an attractive approach for evaluating the in situ forming processes of liquid crystalline depots.
Collapse
Affiliation(s)
- Nina Mertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Frederik Bock
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Susan Weng Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
9
|
Zhang F, Richter G, Bourgeois B, Spreitzer E, Moser A, Keilbach A, Kotnik P, Madl T. A General Small-Angle X-ray Scattering-Based Screening Protocol for Studying Physical Stability of Protein Formulations. Pharmaceutics 2021; 14:69. [PMID: 35056965 PMCID: PMC8778066 DOI: 10.3390/pharmaceutics14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.
Collapse
Affiliation(s)
- Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Armin Moser
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | | | - Petra Kotnik
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
10
|
Yaghmur A, Mu H. Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharm Sin B 2021; 11:871-885. [PMID: 33996404 PMCID: PMC8105777 DOI: 10.1016/j.apsb.2021.02.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The use of lipid nanocarriers for drug delivery applications is an active research area, and a great interest has particularly been shown in the past two decades. Among different lipid nanocarriers, ISAsomes (Internally self-assembled somes or particles), including cubosomes and hexosomes, and solid lipid nanoparticles (SLNs) have unique structural features, making them attractive as nanocarriers for drug delivery. In this contribution, we focus exclusively on recent advances in formation and characterization of ISAsomes, mainly cubosomes and hexosomes, and their use as versatile nanocarriers for different drug delivery applications. Additionally, the advantages of SLNs and their application in oral and pulmonary drug delivery are discussed with focus on the biological fates of these lipid nanocarriers in vivo. Despite the demonstrated advantages in in vitro and in vivo evaluations including preclinical studies, further investigations on improved understanding of the interactions of these nanoparticles with biological fluids and tissues of the target sites is necessary for efficient designing of drug nanocarriers and exploring potential clinical applications.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| | - Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen Ø 2100, Denmark
| |
Collapse
|
11
|
Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids Surf B Biointerfaces 2021; 201:111633. [PMID: 33639513 DOI: 10.1016/j.colsurfb.2021.111633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Microfluidic platforms have become highly attractive tools for synthesis of nanoparticles, including lipid nano-self-assemblies, owing to unique features and at least three important aspects inherent to miniaturized micro-devices. Firstly, the fluids flow under controlled conditions in the microchannels, providing well-defined flow profiles and shorter diffusion lengths that play important roles in enhancing the continuous production of lipid and polymer nanoparticles with relatively narrow size distributions. Secondly, various geometries adapted to microfluidic device designs can be utilized for enhancing the colloidal stability of nanoparticles and improving their drug loading. Thirdly, microfluidic devices are usually compatible with in situ characterization methods for real-time monitoring of processes occurring inside the microchannels. This is unlike conventional nanoparticle synthesis methods, where a final solution or withdrawn aliquots are separately analysed. These features inherent to microfluidic devices provide a tool-set allowing not only precise nanoparticle size control, but also real-time analyses for process optimization. In this review, we focus on recent advances and developments in the use of microfluidic devices for synthesis of lipid nanoparticles. We present different designs based on hydrodynamic flow focusing, droplet-based methods and controlled microvortices, and discuss integration of microfluidic platforms with synchrotron small-angle X ray scattering (SAXS) for in situ structural characterization of lipid nano-self-assemblies under continuous flow conditions, along with major challenges and future directions in this research area.
Collapse
|
12
|
Lombardo D, Calandra P, Kiselev MA. Structural Characterization of Biomaterials by Means of Small Angle X-rays and Neutron Scattering (SAXS and SANS), and Light Scattering Experiments. Molecules 2020; 25:E5624. [PMID: 33260426 PMCID: PMC7730346 DOI: 10.3390/molecules25235624] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Scattering techniques represent non-invasive experimental approaches and powerful tools for the investigation of structure and conformation of biomaterial systems in a wide range of distances, ranging from the nanometric to micrometric scale. More specifically, small-angle X-rays and neutron scattering and light scattering techniques represent well-established experimental techniques for the investigation of the structural properties of biomaterials and, through the use of suitable models, they allow to study and mimic various biological systems under physiologically relevant conditions. They provide the ensemble averaged (and then statistically relevant) information under in situ and operando conditions, and represent useful tools complementary to the various traditional imaging techniques that, on the contrary, reveal more local structural information. Together with the classical structure characterization approaches, we introduce the basic concepts that make it possible to examine inter-particles interactions, and to study the growth processes and conformational changes in nanostructures, which have become increasingly relevant for an accurate understanding and prediction of various mechanisms in the fields of biotechnology and nanotechnology. The upgrade of the various scattering techniques, such as the contrast variation or time resolved experiments, offers unique opportunities to study the nano- and mesoscopic structure and their evolution with time in a way not accessible by other techniques. For this reason, highly performant instruments are installed at most of the facility research centers worldwide. These new insights allow to largely ameliorate the control of (chemico-physical and biologic) processes of complex (bio-)materials at the molecular length scales, and open a full potential for the development and engineering of a variety of nano-scale biomaterials for advanced applications.
Collapse
Affiliation(s)
- Domenico Lombardo
- CNR-IPCF, Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- CNR-ISMN, Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Mikhail A. Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980 Moscow, Russia;
| |
Collapse
|