1
|
Li P, Jiang J, Yan H, Zhai Y, Fu W, Sun Y, Dai Y. Ultrafine PtGa Clusters Confined in Porous ZrO x/SiO 2 Nanofibers for Enhanced Propane Dehydrogenation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:29649-29658. [PMID: 40338024 DOI: 10.1021/acsami.5c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Ultrafine Pt clusters exhibit superior activity for propane dehydrogenation compared to larger Pt nanoparticles; however, they are prone to sintering at high operating temperatures, leading to a decline in both activity and selectivity. In this work, porous ZrOx/SiO2 nanofibers featuring highly dispersed ZrOx nanodomains within a SiO2 matrix were successfully fabricated via a high-throughput blow-spinning process. The abundant and thermal-stable 1.6 nm micropores significantly stabilize 1.5 nm PtGa clusters against sintering at temperatures over 800 °C, due to the pore confinement. Moreover, the electron transfer from Ga to Pt is significantly enhanced in close proximity to ZrOx, contributing to metallic Pt with exceptional activity toward C-H bond activation. Thereby, the sinter-resistant PtGa/ZrOx/SiO2 nanofibers maintained 98.8% propylene selectivity and 43.2% propane conversion rate over 100 h of reaction, with a deactivation rate constant down to 0.0045 h-1. This work explores a sinter-resistant catalytic system based on oxide nanofibers and elaborates a new logic for the design of high-performance propane dehydrogenation catalysts with long-term stability.
Collapse
Affiliation(s)
- Pangpang Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jingyi Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Han Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuexin Zhai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
2
|
Hong H, Xu Z, Mei B, Hu W, Fornasiero P, Wang C, Wang T, Yue Y, Li T, Yang C, Cui Q, Zhu H, Bao X. A self-regenerating Pt/Ge-MFI zeolite for propane dehydrogenation with high endurance. Science 2025; 388:497-502. [PMID: 40208961 DOI: 10.1126/science.adu6907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/12/2025]
Abstract
Supported noble metal cluster catalysts are typically operated under severe conditions involving switching between reducing and oxidizing atmospheres, causing irreversible transformation of the catalyst structure and thereby leading to permanent deactivation. We discovered that various platinum (Pt) precursors spontaneously disperse in a germanium-MFI (Ge-MFI) zeolite, which opposes the Ostwald ripening phenomenon, producing self-regenerating Pt/Ge-MFI catalysts for propane dehydrogenation. These catalysts reversibly switch between Pt clusters and Pt single atoms in response to reducing reaction and oxidizing regeneration conditions. This environmental adaptability allows them to completely self-regenerate over 110 reaction and regeneration cycles in propane dehydrogenation, and they exhibited unprecedented sintering resistance when exposed to air at 800°C for 10 days. Such spontaneous metal dispersion in a Ge-MFI zeolite is a robust and versatile methodology for fabricating various rhodium, ruthenium, iridium, and palladium cluster catalysts.
Collapse
Affiliation(s)
- Huizhen Hong
- State Key Laboratory of Fluorine & Nitrogen Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Zhikang Xu
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Wende Hu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, China Petrochemical Corporation, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, China
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamician, University of Trieste, ICCOM-CNR Trieste Research Unit and Consortium INSTM Trieste Research Unit, Trieste, Italy
| | - Chuanming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, China Petrochemical Corporation, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, China
| | - Tinghai Wang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Yuanyuan Yue
- State Key Laboratory of Fluorine & Nitrogen Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Tiesen Li
- State Key Laboratory of Fluorine & Nitrogen Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
| | - Chen Yang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Qingyan Cui
- State Key Laboratory of Fluorine & Nitrogen Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Haibo Zhu
- State Key Laboratory of Fluorine & Nitrogen Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Xiaojun Bao
- Qingyuan Innovation Laboratory, Quanzhou, China
| |
Collapse
|
3
|
Alghannam A, Pattison AJ, Das S, Dun C, Ercius P, Urban JJ, Gates BC, Bell AT. Unraveling the Unique Behavior of Atomically Dispersed Pt on Zeolite Fe-DeAlBEA for Catalyzing Propane Dehydrogenation with Cofed Hydrogen. J Am Chem Soc 2025; 147:13784-13798. [PMID: 40216523 DOI: 10.1021/jacs.5c01730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Propene, used on a large scale to manufacture polypropylene and several commodity chemicals, is increasingly produced by catalytic propane dehydrogenation (PDH). Atomically dispersed Pt has emerged as a promising candidate catalyst for PDH; however, stabilizing atomically dispersed Pt at high temperatures is challenging. Here, we demonstrate the use of dealuminated zeolite beta with a high Fe content as a host for stabilizing isolated Pt, which is anchored strongly to the zeolite support by Pt-Fe bonds. The isolated Pt-Fe sites exhibit promising PDH performance, including a high apparent forward rate coefficient for propene formation (404.8-26.4 mol propene/mol Pt·bar·s) and a high selectivity (≥96%) at 823 K in the presence of H2. Kinetics data characterizing the rate of PDH with a range of Pt loadings show that atomically dispersed Pt catalyzes propene formation at rates independent of H2 partial pressure, whereas metallic Pt clusters, formed at high Pt loadings, catalyze the reaction with a slightly negative dependence on H2 partial pressure. The shift in Pt speciation with Pt loading, confirmed by infrared spectroscopy of adsorbed CO, X-ray absorption spectroscopy, and high-angle angular dark field scanning transmission electron microscopy, suggests that the observed change in kinetics with Pt dispersion is a consequence of a change in the reaction mechanism.
Collapse
Affiliation(s)
- Afnan Alghannam
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander J Pattison
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sonali Das
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai 400076, India
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Ercius
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey J Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bruce C Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Gu Y, Tao Z, Zhang S, Wang X, Yan H, Liu X, Wang L, Xu J, Shi H. (Ga, Al)-H-MFI Catalysts with Highly Dispersed Ga Sites and Proximal Protonic Sites Enable Methane-Propane Coaromatization. Inorg Chem 2024. [PMID: 39556842 DOI: 10.1021/acs.inorgchem.4c04152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Methane-propane coaromatization (MPCA) upgrades two abundant and inexpensive light alkanes into value-added aromatic products. While Ga-loaded MFI zeolites represent by far the most promising catalysts for MPCA reaction, they often contain a sizable portion of Ga species at the external surface of zeolites, which are remote from the Brønsted acid sites (BAS) within MFI pores and thus inefficient for MPCA. Here, we show that Ga can be introduced into MFI pores at fairly high loadings via a simple cocrystallization approach, yielding catalysts possessing well-dispersed Ga sites predominantly residing inside the pores and framework. Adjacency between Ga and BAS within the constraints of MFI channels makes these (Ga, Al)-H-MFI catalysts more active toward methane and propane activation and more selective toward aromatics compared to the Ga/MFI counterparts prepared by impregnation that inevitably leaves a large fraction of Ga at the external surface (i.e., without confinement and few adjacent BAS). Further, the effects of the Si/Al ratio on MPCA performance have been investigated for (Ga, Al)-H-MFI catalysts. Due to the multifold roles of BAS in the overall reaction sequence, an increased BAS concentration generally results in higher propane conversion and productivity of aromatics together with lower net methane conversion and severer coking.
Collapse
Affiliation(s)
- Yu Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Zhiqiang Tao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Shujia Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiaohui Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Hao Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xinmei Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
5
|
Pornsetmetakul P, Maineawklang N, Wattanakit C. Preparation of Metal-Supported Nanostructured Zeolite Catalysts and their Applications in the Upgrading of Biomass-Derived Furans: Advances and Prospects. Chempluschem 2024; 89:e202400343. [PMID: 39231200 DOI: 10.1002/cplu.202400343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Indexed: 09/06/2024]
Abstract
The development of platform chemicals derived from biomass, in particular, 5-hydroxymethylfurfural (5-HMF) and furfural (FUR), is of crucial importance in biorefinery. Over the past decades, metal-supported nanostructured zeolites, in particular, metal-supported hierarchically porous zeolites or metal-encapsulated zeolites, have been extensively elaborated because of their multiple functionalities and superior properties, for example, shape-selectivity, (hydro)thermal stability, tunable acidity and basicity, redox properties, improved diffusion, and intimacy of multiple active sites. In this review, the effects of such properties of metal-supported nanostructured zeolites on the enhanced catalytic performances in furanic compound upgrading are discussed. In addition, the recent rational design of metal-supported nanostructured zeolites is exemplified. Consequently, the ongoing challenges for further developing metal-supported nanostructured zeolites-based catalysts and their applications in HMF and FUR upgrading are identified.
Collapse
Affiliation(s)
- Peerapol Pornsetmetakul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Narasiri Maineawklang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| | - Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
6
|
Li J, Zhang Q, He G, Zhang T, Li L, Li J, Hao D, Zhang W, Terasaki O, Mei D, Yu J. Silanol-Stabilized Atomically Dispersed Pt δ+-O x-Sn Active Sites in Protozeolite for Propane Dehydrogenation. J Am Chem Soc 2024; 146:24358-24367. [PMID: 39167721 DOI: 10.1021/jacs.4c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Crystalline zeolites have been proven to be excellent supports for confining subnanometric metal catalysts to boost the propane dehydrogenation (PDH) reaction. However, the introduced metallic species may suffer from severe sintering and limited stability during the catalytic process, especially when utilizing an industrial impregnation method for metal incorporation. In this study, we developed a new type of support based on amorphous protozeolite (PZ), taking advantage of its adjustable silanol chemistry and zeolitic microporous characteristic for stabilizing atomically dispersed PtSn catalyst via a simple, cost-effective coimpregnation process. The combination of X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, in situ diffuse reflectance infrared Fourier transform spectroscopy under CO atmosphere, and density functional theory calculations confirmed the formation of highly dispersed active Ptδ+-Ox-Sn species in PtSn/PZ. The PtSn/PZ catalyst exhibited a high propane conversion of 45.4% and a high propylene selectivity of 99% (WHSV= 3.6 h-1, 550 °C), with a high apparent rate coefficient of 565 molC3H6·gPt-1·h-1·bar-1 at a high WHSV of 108 h-1, presenting a top-level performance among the state-of-the-art Pt-based catalysts prepared by in situ synthesis and impregnation methods. The silanol density determined the chemical state of PtSn species, showing a change from atomically dispersed Ptδ+-Ox-Sn sites to PtSn alloy with decreasing silanol density of supports. This work provides a general strategy using silanol-rich amorphous protozeolite as support for stabilizing various metal catalysts by the simple impregnation method and also offers an effective way for fine tailoring the chemical state of metallic species via a silanol-engineered approach.
Collapse
Affiliation(s)
- Jialiang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guangyuan He
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Tianjun Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, 180 Wusidong Road, Baoding 071000, P. R. China
| | - Lin Li
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Dapeng Hao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei Zhang
- Electron Microscopy Center, Jilin University, Changchun 130012, P. R. China
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin University, Changchun 130012, P. R. China
| | - Osamu Terasaki
- Centre for High-Resolution Electron Microscopy (CℏEM), School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Donghai Mei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Luo L, Zhou T, Li W, Li X, Yan H, Chen W, Xu Q, Hu S, Ma C, Bao J, Pao CW, Wang Z, Li H, Ma X, Luo L, Zeng J. Close Intimacy between PtIn Clusters and Zeolite Channels for Ultrastability toward Propane Dehydrogenation. NANO LETTERS 2024. [PMID: 38837959 DOI: 10.1021/acs.nanolett.4c01131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Propane dehydrogenation (PDH) serves as a pivotal intentional technique to produce propylene. The stability of PDH catalysts is generally restricted by the readsorption of propylene which can subsequently undergo side reactions for coke formation. Herein, we demonstrate an ultrastable PDH catalyst by encapsulating PtIn clusters within silicalite-1 which serves as an efficient promoter for olefin desorption. The mean lifetime of PtIn@S-1 (S-1, silicalite-1) was calculated as 37317 h with high propylene selectivity of >97% at 580 °C with a weight hourly space velocity (WHSV) of 4.7 h-1. With an ultrahigh WHSV of 1128 h-1, which pushed the catalyst away from the equilibrium conversion to 13.3%, PtIn@S-1 substantially outperformed other reported PDH catalysts in terms of mean lifetime (32058 h), reaction rates (3.42 molpropylene gcat-1 h-1 and 341.90 molpropylene gPt-1 h-1), and total turnover number (14387.30 kgpropylene gcat-1). The developed catalyst is likely to lead the way to scalable PDH applications.
Collapse
Affiliation(s)
- Lei Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tao Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wenjie Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xu Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Han Yan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Weiye Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinlong Ma
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Laihao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
8
|
Wang H, Zhang X, Su Z, Chen T. Amorphous CeO x Islands on Dealuminated Zeolite Beta to Stabilize Pt Nanoparticles as Efficient and Antisintering Catalysts for Propane Dehydrogenation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18366-18379. [PMID: 38065685 DOI: 10.1021/acs.langmuir.3c02471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Pt-based catalysts have been widely used in propane dehydrogenation due to their superior activation of C-H bonds and weak scission of C-C bonds. However, in the process of repeated calcination to remove deposited coke, the active Pt species tend to sinter, resulting in a significant decline in catalytic activity. In this study, amorphous CeOx islands loaded on dealuminated Beta zeolite were prepared via simple wetness impregnation. Then, partially embedded Pt nanoparticles in CeOx islands were obtained after reduction owing to the affinity of CeOx for Pt. In the propane dehydrogenation reaction, Pt/Ce5-SiBeta with a Ce loading of 4.55 wt % and Pt loading of 0.72 wt % exhibited the highest activity and the lowest inactivation constant at 550 °C. More importantly, due to the anchoring effect of CeOx on Pt, the catalytic activity of Pt could be recovered after a simple calcination-reduction regeneration process, avoiding the chlorination treatment for the redispersion of Pt species used in industry. In addition, to improve the selectivity of the Pt/Ce5-SiBeta catalyst, a PtSn/Ce5-SiBeta catalyst with excellent activity, selectivity, and recycling stability has been prepared by introducing Sn into Pt/Ce5-SiBeta. The use of amorphous CeOx islands to improve the sintering resistance of Pt opens up new prospects for the design of stable industrial dehydrogenation catalysts.
Collapse
Affiliation(s)
- Huan Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & Cangzhou Bohai New Area Green Chemical Institute, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Xueyin Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & Cangzhou Bohai New Area Green Chemical Institute, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Zhipeng Su
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & Cangzhou Bohai New Area Green Chemical Institute, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University & Cangzhou Bohai New Area Green Chemical Institute, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
9
|
Computational study of propene selectivity and yield in the dehydrogenation of propane via process simulation approach. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Propene is a vital feedstock in the petrochemical industry with a vast range of applications. And there is a continuous rise in propene demand. To gain insight into how the on-purpose method could help meet the demand in the propene market, we investigated the impact of temperature (T) and pressure (P) on product distribution in terms of product yield and selectivity using the process simulation approach. Existing related studies were deployed to identify possible products that could be evaluated in the simulation. In the study, we used Gibbs minimization (with Gibb’s reactor) to predict the likely products obtained at different T and P. The impact of feed purity on product distribution was also evaluated. The study was aided by using the Aspen HYSYS process simulator, while Design Expert was used to search for the optimum conditions for higher conversion, yield, and selectivity. Results obtained for the modeling and simulation of the process show that operating the production process at a lower pressure would favor higher selectivity within the temperature range of 500–600 °C. In comparison, the one run at a higher pressure was predicted to be only promising, showing better selectivity within the range of 550–650 °C. The feed purity significantly impacts the propene amount, especially for one with sulfur impurity, leading to the formation of smaller olefins and sulfide compounds. Our study reveals the importance of reviewing feed purity before charging them into the dehydrogenation reactor to prevent poisoning, coking, and other activities, which do lead to undesired products like methane and ethylene. A catalyst can also be designed to efficiently dehydrogenate the propane to propene at a lower temperature to prevent side reactions.
Collapse
|
10
|
Farzaneh A, Moghaddam MS. Low-temperature propane oxidative dehydrogenation over UiO-66 supported vanadia catalysts: Role of support confinement effects. J Colloid Interface Sci 2023; 629:404-416. [PMID: 36166967 DOI: 10.1016/j.jcis.2022.09.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
Overoxidation is the principal barrier against commercializing propane oxidative dehydrogenation (PODH) catalysts for propylene production. The current approach to reducing overoxidation, i.e., coating the non-selective support surface with a monolayer of active phase, can itself increase the probability of overoxidation of the produced propylene due to polymerization of active phase species. Incorporating the "confinement agents" onto the metal oxide support might be considered as an alternative solution to prevent hydrocarbons from reaching the support and overoxidizing. Herein, the UiO-66 metal-organic framework, which contains numerous organic ligands connected to the zirconia nodes, was used as support for the vanadia active phase to highlight the role of support's confinement effects on the overall catalytic performance toward the PODH. The UiO-66 supported vanadia catalysts with various vanadium loadings were fabricated via an ultrasonic-assisted wet impregnation procedure. The catalytic function is related to the underlying chemical processes at catalyst surfaces using physicochemical characterization techniques, PODH performance measurements, and machine learning tools. The results showed that the catalyst with a relatively low vanadia density of 2.7 nm-2, equivalent to less than half of the entire support surface coverage, could achieve propylene productivity of 4.43 [Formula: see text] , propane conversion of 17.1%, and propylene selectivity of 49.7% at 350 °C.
Collapse
Affiliation(s)
- Ali Farzaneh
- Department of Chemical and Energy Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, P.O. Box 9477177870, Iran.
| | - Mojtaba Saei Moghaddam
- Department of Chemical and Energy Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, P.O. Box 9477177870, Iran.
| |
Collapse
|
11
|
Zhao Q, Liao C, Chen G, Liu R, Wang Z, Xu A, Ji S, Shih K, Zhu L, Duan T. In Situ Confined Synthesis of a Copper-Encapsulated Silicalite-1 Zeolite for Highly Efficient Iodine Capture. Inorg Chem 2022; 61:20133-20143. [PMID: 36426769 DOI: 10.1021/acs.inorgchem.2c03582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Effective capture of radioactive iodine is highly desirable for decontamination purposes in spent fuel reprocessing. Cu-based adsorbents with a low cost and high chemical affinity for I2 molecules act as a decent candidate for iodine elimination, but the low utilization and stability remain a significant challenge. Herein, a facile in situ confined synthesis strategy is developed to design and synthesize a copper-encapsulated flaky silicalite-1 (Cu@FSL-1) zeolite with a thickness of ≤300 nm. The maximum iodine uptake capacity of Cu@FSL-1 can reach 625 mg g-1 within 45 min, which is 2 times higher than that of a commercial silver-exchanged zeolite even after nitric acid and NOX treatment. The Cu nanoparticles (NPs) confined within the zeolite exert superior iodine adsorption and immobilization properties as well as high stability and fast adsorption kinetics endowed by the all-silica zeolite matrix. This study provides new insight into the design and controlled synthesis of zeolite-confined metal adsorbents for efficient iodine capture from gaseous radioactive streams.
Collapse
Affiliation(s)
- Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Changzhong Liao
- Key Laboratory of New Processing for Nonferrous Metal and Materials (Ministry of Education), School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Guangyuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Anhu Xu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiyin Ji
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 852, HKSAR, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
12
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
13
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
14
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
15
|
Wang J, Zhu P, Liu C, Liu H, Zhang W, Zhang X. Regulating Encapsulation of Small Pt Nanoparticles inside Silicalite-1 Zeolite with the Aid of Sodium Ions for Enhancing n-Hexane Reforming. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinshan Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Peng Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Cun Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haiou Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- Dalian Institute of Chemical Physics Xi’an Clean Energy (Chemical) Research Institute, Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710065, China
| | - Xiongfu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Bian W, Shen X, Tan H, Fan X, Liu Y, Lin H, Li Y. The triggering of catalysis via structural engineering at atomic level: Direct propane dehydrogenation on Fe-N3P-C. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Qu Z, Sun Q. Advances in Zeolite-Supported Metal Catalysts for Propane Dehydrogenation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00653g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propylene is one of the building blocks of the modern industrial mansion, which is the feeding stock for polypropylene, acrylonitrile, and other important chemicals. Propane dehydrogenation (PDH) is one of...
Collapse
|
18
|
Propylene Synthesis: Recent Advances in the Use of Pt-Based Catalysts for Propane Dehydrogenation Reaction. Catalysts 2021. [DOI: 10.3390/catal11091070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Propylene is one of the most important feedstocks in the chemical industry, as it is used in the production of widely diffused materials such as polypropylene. Conventionally, propylene is obtained by cracking petroleum-derived naphtha and is a by-product of ethylene production. To ensure adequate propylene production, an alternative is needed, and propane dehydrogenation is considered the most interesting process. In literature, the catalysts that have shown the best performance in the dehydrogenation reaction are Cr-based and Pt-based. Chromium has the non-negligible disadvantage of toxicity; on the other hand, platinum shows several advantages, such as a higher reaction rate and stability. This review article summarizes the latest published results on the use of platinum-based catalysts for the propane dehydrogenation reaction. The manuscript is based on relevant articles from the past three years and mainly focuses on how both promoters and supports may affect the catalytic activity. The published results clearly show the crucial importance of the choice of the support, as not only the use of promoters but also the use of supports with tuned acid/base properties and particular shape can suppress the formation of coke and prevent the deep dehydrogenation of propylene.
Collapse
|