1
|
Zhang C, Zhou P, Li S, Zhang X, Xia Z, Rao Z, Ma X, Hu Y, Chen Y, Chen J, He Y, Tao G, Cai R. From Hemostasis to Angiogenesis: A Self-Healing Hydrogel Loaded with Copper Sulfide-Based Nanoenzyme for Whole-Process Management of Diabetic Wounds. Biomater Res 2025; 29:0208. [PMID: 40416940 PMCID: PMC12099055 DOI: 10.34133/bmr.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 05/27/2025] Open
Abstract
Diabetic wounds pose considerable healing challenges due to factors such as impaired angiogenesis, persistent inflammation, elevated levels of reactive oxygen species, and bacterial infections. In this study, we synthesized copper sulfide nanoparticles (NPs) using sericin as a biotemplate and functionalized them with tannic acid-Fe (TA-Fe) metal-phenolic network coatings to create CuS-based nanoenzymes (CuS-Se@TA-Fe NPs). These NPs were integrated into a composite hydrogel formed from polyvinyl alcohol, carboxymethyl chitosan, and borax. The hydrogen bonding between polyvinyl alcohol and carboxymethyl chitosan, combined with the borate ester bonds from borax and the electrostatic interactions with CuS-Se@TA-Fe NPs, resulted in a hydrogel with remarkable adhesion, self-healing capabilities, and shape retention (PCCuT hydrogel). Additionally, the PCCuT hydrogel demonstrated superoxide dismutase and catalase mimetic activities to eliminate excess free radicals, along with excellent photothermal conversion and antimicrobial properties due to the photothermal effect. Both in vitro and in vivo investigations indicated that the PCCuT hydrogel could enhance angiogenesis and promote the transformation of macrophages into the M2 anti-inflammatory phenotype. Notably, in a rat model of diabetic wound infection, the hydrogel exhibited substantial wound-healing benefits. In summary, the PCCuT hydrogel holds promise for advancing the treatment of diabetic wounds complicated by infection.
Collapse
Affiliation(s)
- Chuankai Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Peirong Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Shoucheng Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Xuancheng Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Zhaoxin Xia
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Zihan Rao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Xuemin Ma
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Yajuan Hu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Yongcen Chen
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Junliang Chen
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology,
Southwest Medical University, Luzhou 646000, China
- Department of General Dentistry, The Affiliated Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Yun He
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology,
Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital,
Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology,
Southwest Medical University, Luzhou 646000, China
| | - Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital,
Southwest Medical University, Luzhou 646000, China
- Institute of Stomatology,
Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Cai R, Zhao J, Zhou P, Ma X, Zhang C, Wu Z, Hu L, Hu Y, Chen Y, Huang C, Tao G. A brief strategy for the preparation of silk fibroin-copper sulfide-based electrospun nanofibrous membranes with photothermal antimicrobial properties to accelerate the infected wound healing. Mater Today Bio 2025; 31:101605. [PMID: 40092224 PMCID: PMC11910131 DOI: 10.1016/j.mtbio.2025.101605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/01/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Bacterial infections often hinder the wound-healing process. Antibiotics are commonly used to eradicate bacteria, but long-term use can lead to the development of drug-resistant bacteria. Photothermal therapy (PTT) is a promising technology that utilizes a photothermal agent (PTA) to convert near-infrared radiation into heat, which can eliminate bacteria and has the advantages of being highly effective, controllable, and low drug resistance. In this study, we obtained silk fibroin-copper sulfide nanoparticles(SF/CuS NPs)in situ with excellent photothermal responsive properties by a green synthesis strategy using silk fibroin proteins as biological templates. Then, the SF/CuS NPs were mixed with PVA solution, and the photothermal nanofiber membrane (PVA-SF/CuS) was prepared using the electrostatic spinning technique. The synthesized SF/CuS NPs endowed the nanofiber membrane with excellent photothermal sterilization properties. In addition, the constructed PVA-SF/CuS nanofibrous membranes had good cytocompatibility and haemocompatibility. Meanwhile, in vivo experiments confirmed that PVA-SF/CuS nanofibrous membrane could inhibit the expression of pro-inflammatory factor (IL-6), promote the expression of angiogenic factor (VEGF), and accelerate collagen deposition and neovascularization under near-infrared light irradiation, which could then promote the healing of infected wounds. Thus, the PVA-SF/CuS nanofiber membrane provides a new candidate material for treating bacterially infected wounds.
Collapse
Affiliation(s)
- Rui Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Jiayu Zhao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Peirong Zhou
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xuemin Ma
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Chuankai Zhang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Zhaodan Wu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Liyu Hu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Yajuan Hu
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yongcen Chen
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Chenglong Huang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
3
|
Guo Z, Wang M, Qiao L, He Z. Non-fluorinated lignin-based melamine sponges with superhydrophobic and photothermal properties for multi-functional applications. Int J Biol Macromol 2024; 279:135168. [PMID: 39214199 DOI: 10.1016/j.ijbiomac.2024.135168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Frequent oil spills and the discharge of oily wastewaters become a significant threat to the environment and ecosystem. Herein, a non-fluorinated lignin-based melamine sponge with superhydrophobic and photothermal properties (labeled as MS@COF/LPs/PDMS) has been achieved by decorating with covalent organic framework (COF), lignin particles (LPs) and PDMS. The MS@COF/LPs/PDMS shows excellent surface superhydrophobicity with a water contact angle of 152.3° and a sliding angle of 6°. The adsorption capacities of the MS@COF/LPs/PDMS range from 38.4 g/g to 100.3 g/g for various oils and organic solvents, and the separation efficiency of the MS@COF/LPs/PDMS for CCl4 reaches 99.7 %. Furthermore, the maximum surface temperature of the MS@COF/LPs/PDMS reaches 61.2 °C because of the thermal vibration of LPs and COF under solar irradiation (1.0 kW/m2). Surprisingly, the MS@COF/LPs/PDMS can rapidly adsorb a droplet of crude oils within 32 s due to the superoleophilicity and excellent photothermal effect. Besides, the melting time of the MS@COF/LPs/PDMS (400 s) reduces by 70 % for an ice droplet under solar irradiation than that of pristine melamine sponge (1330 s). Thus, this study provides new insights into the rational design of low-cost lignin-based melamine sponges for the applications of oil/water separation, crude oil recovery, and de-icing.
Collapse
Affiliation(s)
- Zhibiao Guo
- Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Mingkun Wang
- Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lei Qiao
- Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhiwei He
- Anti-Icing Materials (AIM) Laboratory, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Tan X, Huang Z, Pei H, Jia Z, Zheng J. Highly Porous, Ultralight, Biocompatible Silk Fibroin Aerogel-Based Triboelectric Nanogenerator. ACS Sens 2024; 9:3938-3946. [PMID: 39096301 DOI: 10.1021/acssensors.4c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
This study presents the fabrication of an ultralight, porous, and high-performance triboelectric nanogenerator (TENG) utilizing silk fibroin (SF) aerogels and PDMS sponges as the friction layer. The transition from two-dimensional film friction layers to three-dimensional porous aerogels significantly increased the specific surface area, offering an effective strategy for designing high-performance SF aerogel-based TENGs. The TENG incorporating the porous SF aerogel exhibited optimal output performance at a 3% SF concentration, achieving a maximum open circuit voltage of 365 V, a maximum short-circuit current of 11.8 μA, and a maximum power density of 7.52 W/m2. In comparison to SF-film-based TENGs, the SF-aerogel based TENG demonstrated a remarkable 6.5-fold increase in voltage and a 4.5-fold increase in current. Furthermore, the power density of our SF-based TENG surpassed the previously reported optimal values for SF-based TENGs by 2.4 times. Leveraging the excellent mechanical stability and biocompatibility of TENGs, we developed an SF-based TENG self-powered sensor for the real-time monitoring of subtle biological movements. The SF-based TENG exhibits promising potential as a wearable bioelectronic device for health monitoring.
Collapse
Affiliation(s)
- Xueqiang Tan
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zuyi Huang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hairun Pei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jimin Zheng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Sun Y, Ma L, Wei T, Zheng M, Mao C, Yang M, Shuai Y. Green, Low-carbon Silk-based Materials in Water Treatment: Current State and Future Trends. CHEMSUSCHEM 2024; 17:e202301549. [PMID: 38298106 DOI: 10.1002/cssc.202301549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
The improper and inadequate treatment of industrial, agricultural, and household wastewater exerts substantial pressure on the existing ecosystem and poses a serious threat to the health of both humans and animals. To address these issues, different types of materials have been employed to eradicate detrimental pollutants from wastewater and facilitate the reuse of water resources. Nevertheless, owing to the challenges associated with the degradation of these traditional materials post-use and their incompatibility with the environment, natural biopolymers have garnered considerable interest. Silk protein, as a biomacromolecule, exhibits advantageous characteristics including environmental friendliness, low carbon emissions, biodegradability, sustainability, and biocompatibility. Considering recent research findings, this comprehensive review outlines the structure and properties of silk proteins and offers a detailed overview of the manufacturing techniques employed in the production of silk-based materials (SBMs) spanning different forms. Furthermore, it conducts an in-depth analysis of the state-of-the-art SBMs for water treatment purposes, encompassing adsorption, catalysis, water disinfection, desalination, and biosensing. The review highlights the potential of SBMs in addressing the challenges of wastewater treatment and provides valuable insights into prospective avenues for further research.
Collapse
Affiliation(s)
- Yuxu Sun
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Lantian Ma
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Tiancheng Wei
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Meidan Zheng
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, Zhejiang, P. R. China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, 999077, Hong Kong SAR, P. R.China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| | - Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
6
|
Men HJ, Huang BJ, Li JC. Effect of Interfacial Modification on the Low-Temperature Fatigue Properties of Polymer/MXene Flexible Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7489-7499. [PMID: 38299787 DOI: 10.1021/acsami.3c15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Maintaining an excellent force-electric response under cyclic bending at low temperatures is still challenging for resistive-type electrically conductive polymer composite-based pressure sensors. In this study, the effect of low temperature on the fatigue failure of flexible MXene/polymer pressure sensors was systematically investigated through the silane functionalization of MXene nanosheets embedded with different polymer matrixes. The results show that the MXene/polymer interfaces are the primary factors affecting the temperature-dependent bending fatigue of the Cu/MXene/polymer/Cu sensor. Using finite element analysis and theoretical calculations, we reveal that the MXene/polymer interfaces are affected by free volume changes and the molecular chain motion under different temperatures. At room temperature, the well-distributed free volume in the polydimethylsiloxane (PDMS) matrix permits local segmental mobility that promotes the affinity between the polymer and MXene. As the temperature decreases, the free volume in the matrix shrinks with less space left for molecular chains to slide relatively, weakening the polymer/MXene interfacial bonding strength. However, for PDMS/MXene sensors with the interface modified using the silane coupling agent KH550, the nanoconstrained structure formed by strong hydrogen bonds and covalent bonds at the PDMS/MXene interface can hinder the mobility of polymer chains, which greatly helps to dissipate the inter/intrachain friction. It thus alleviates the debonding energy dissipation during cyclic bending at subzero temperatures.
Collapse
Affiliation(s)
- Hai-Jiao Men
- Vacuum and fluid engineering research center, School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Bing-Jing Huang
- Vacuum and fluid engineering research center, School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Jian-Chang Li
- Vacuum and fluid engineering research center, School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
7
|
Fan B, Pan S, Bao X, Liu Y, Yu Y, Zhou M, Wang Q, Wang P. Highly elastic photothermal nanofibrillated cellulose aerogels for solar-assisted efficient cleanup of viscous oil spill. Int J Biol Macromol 2024; 256:128327. [PMID: 38000597 DOI: 10.1016/j.ijbiomac.2023.128327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Frequent oil spills and illegal industrial pollutant discharge cause ecological and resource damages, so it is necessary to establish efficient adsorption and recovery strategies for oils in wastewater. Herein, inspired by solar-driven viscosity-breaking, we propose a facile approach to fabricate multifunctional nanofibrillated cellulose-based aerogel with high elasticity, excellent photothermal conversion, efficient selective oil adsorption and antibacterial properties. Firstly, copper sulfide (CuS) nanoparticles were in situ deposited on the template of oxidative nanofibrillated cellulose (ONC), aiming at achieving efficient photothermal effect and antibacterial properties. Ethylene glycol diglycidyl ether (EGDE) was employed to establish multiple crosslinking network between CuS@ONC and polyethyleneimine (PEI). A thin hydrophobic PMTS layer deposited on the surface of aerogel via a facile gas-solid reaction ensured stable oil selectivity. The resulting composite aerogel can rapidly adsorb oil under solar self-heating, significantly reducing the adsorption time from 25 to 5 min. Furthermore, it exhibits excellent adsorption capacities for various oils, retaining over 92 % of its initial capacity even after 20 adsorption-desorption cycles, and the antibacterial properties extend its lifespan. This work offers a promising method for constructing multifunctional aerogels for efficient oil-water separation, especially beneficial for high-viscosity and high-melting-point oil cleanup.
Collapse
Affiliation(s)
- Bingjie Fan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shanshan Pan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueming Bao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ying Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Guo Y, Xie B, Jiang M, Yuan L, Jiang X, Li S, Cai R, Chen J, Jiang X, He Y, Tao G. Facile and eco-friendly fabrication of biocompatible hydrogel containing CuS@Ser NPs with mechanical flexibility and photothermal antibacterial activity to promote infected wound healing. J Nanobiotechnology 2023; 21:266. [PMID: 37563585 PMCID: PMC10416498 DOI: 10.1186/s12951-023-02035-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Bacterial infections can significantly impede wound healing and pose a serious threat to the patient's life. The excessive use of antibiotics to combat bacterial infections has led to the emergence of multi-drug-resistant bacteria. Therefore, there is a pressing need for alternative approaches, such as photothermal therapy (PTT), to address this issue. In this study, for the first time, CuS NPs with photothermal properties were synthesized using sericin as a biological template, named CuS@Ser NPs. This method is simple, green, and does not produce toxic and harmful by-products. These nanoparticles were incorporated into a mixture (XK) of xanthan gum and konjac glucomannan (KGM) to obtain XK/CuS NPs composite hydrogel, which could overcome the limitations of current wound dressings. The composite hydrogel exhibited excellent mechanical flexibility, photothermal response, and biocompatibility. It also demonstrated potent antibacterial properties against both Gram-positive and negative bacteria via antibacterial experiments and accelerated wound healing in animal models. Additionally, it is proved that the hydrogel promoted tissue regeneration by stimulating collagen deposition, angiogenesis, and reducing inflammation. In summary, the XK/CuS NPs composite hydrogel presents a promising alternative for the clinical management of infected wounds, offering a new approach to promote infected wound healing.
Collapse
Affiliation(s)
- Ye Guo
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Bingqing Xie
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Min Jiang
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Lingling Yuan
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xueyu Jiang
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Silei Li
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Rui Cai
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Junliang Chen
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xia Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yun He
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Gang Tao
- Oral and Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
9
|
Pakdel E, Sharp J, Kashi S, Bai W, Gashti MP, Wang X. Antibacterial Superhydrophobic Cotton Fabric with Photothermal, Self-Cleaning, and Ultraviolet Protection Functionalities. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37399520 DOI: 10.1021/acsami.3c04598] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Cotton fabrics with superhydrophobic, antibacterial, UV protection, and photothermal properties were developed using Ag/PDMS coatings, and the role of coating formulations on the obtained functionalities was studied. Specific attention was paid to understanding the relationships between the fabrics' superhydrophobicity and antibacterial activity against Escherichia coli (E. coli) bacteria. UV protection performance of Ag/PDMS coatings was thoroughly evaluated based on the variation of UV transmission rate through coated fabrics and photoinduced chemiluminescence spectra. Moreover, the effect of silver nanoparticles (Ag NPs) and PDMS on developing a photothermal effect on fabrics was discussed. It was found that the content of Ag NPs and PDMS played critical roles in determining the water contact angle (WCA) on modified fabrics. The largest WCA was 171.31°, which was durable even after numerous accelerated wash cycles and abrasions. Antibacterial activity of fabrics showed the positive effect of pure PDMS in bacterial growth inhibition. Moreover, it was found that the antibacterial performance was greatly affected by the content of Ag NPs loaded on fabrics rather than their superhydrophobic status. Moreover, increasing the content of Ag NPs boosted the UV protection level of fabrics, improved fabrics photostability, and reduced the UV transmission rate through fabrics. Testing the photothermal effect confirmed that the content of Ag NPs and PDMS both played prominent roles, where Ag acted as a photothermal agent and PDMS determined the NIR reflection rate from the coated surface. The modified fabrics were characterized using TGA, SEM, FTIR, and XRD techniques, and it was confirmed that using a higher amount of PDMS increased the amount of Ag NPs deposition on fabrics.
Collapse
Affiliation(s)
- Esfandiar Pakdel
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Julie Sharp
- Deakin University, Institute for Frontier Materials, Geelong, VIC 3216, Australia
| | - Sima Kashi
- Deakin University, Institute for Frontier Materials, Geelong, VIC 3216, Australia
| | - Wenli Bai
- Deakin University, Institute for Frontier Materials, Geelong, VIC 3216, Australia
| | - Mazeyar Parvinzadeh Gashti
- GTI Chemical Solutions, Inc., Wellford, South Carolina 29385, United States
- InsectaPel, LLC, Wellford, South Carolina 29585, United States
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
10
|
Ma T, Kong Y, Liu H, Xu X, Yue Q, Gao B, Gao Y. One-step synthesis of Enteromorpha graphene aerogel modified by hydrophilic polyethylene glycol achieving high evaporation efficiency and pollutant tolerance. J Colloid Interface Sci 2023; 633:628-639. [PMID: 36481423 DOI: 10.1016/j.jcis.2022.11.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Photothermal evaporation using solar energy is a sustainable way to produce fresh water from seawater. Aiming to explore functional materials as a solar-energized evaporator with enhanced evaporation rate and pollutant tolerance, this study was to synthesize a self-floating composite graphene aerogel (GA) doped with Enteromorpha and modified polyethylene glycol (PEG), named as PEGA using solar energy for desalination. Physio-chemical properties and evaporative mechanism of PEGA were experimentally investigated and analyzed with respect to molecular weight, PEG dosage, and ratio of Enteromorpha and graphene oxide. Experimental data revealed that the modification of PEG improved hydrophilic functional ability of PEGA, resulting in increasing the evaporation rate and photothermal conversion efficiency up to 2.55 kg/(m2·h) and 105.71 %, respectively. The ion removal rate of seawater exceeds 99.99 % via the PEGA conducted solar evaporation. Furthermore, PEGA possessed an excellent property of salinity emulsion pollution tolerance. Particularly, the evaporation rate of the PEG-modified biomass-based aerogel was 2.84 kg/(m2·h) in a 15 wt% NaCl solution (1 sun, 6 h) and 2.50 kg/(m2·h) at 1 h. The formation of hydrogen bonds between -OH of PEG and water molecules assist to conduct water along the graphene matrix to improve water evaporation. The cost of the graphene aerogel modified by Enteromorpha was reduced by 38.88 % less than the original graphene aerogel. The results from this study will greatly promote the application of graphene aerogel for desalination via solar evaporation.
Collapse
Affiliation(s)
- Tengfei Ma
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yan Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Haibao Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
11
|
DS-guided Deposition of PEDOT onto Silk Fabrics for Rapid Photothermal Antibacterial and Respiratory Sensing. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
12
|
Su Y, Zhang X, Wei Y, Gu Y, Xu H, Liao Z, Zhao L, Du J, Hu Y, Lian X, Chen W, Deng Y, Huang D. Nanocatalytic Hydrogel with Rapid Photodisinfection and Robust Adhesion for Fortified Cutaneous Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6354-6370. [PMID: 36692869 DOI: 10.1021/acsami.2c17366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chronic inflammation caused by invasive bacterial infections severely interferes with the normal healing process of skin regeneration. Hypoxia of the infection microenvironment (IME) seriously affects the antibacterial effect of photodynamic therapy in phototherapy. To address this serious issue, a nanocatalytic hydrogel with an enhanced phototherapy effect consisting of a hydrogel polyvinyl alcohol (PVA) scaffold, MXene/CuS bio-heterojunction, and polydopamine (PDA) for photothermal antibacterial effects and promoting skin regeneration is designed. The MXene/CuS bio-heterojunction has a benign photothermal effect. Singlet oxygen (1O2) and hydroxyl radicals (·OH) were generated under near-infrared light, which made the hydrogel system have good antioxidant and antibacterial properties. The addition of PDA further improves the biocompatibility and endows the nanocatalytic hydrogel with adhesion. Additionally, in vivo assays display that the nanocatalytic hydrogel has good skin regeneration ability, including ability to kill bacteria, and promotes capillary angiogenesis and collagen deposition. This work proposes an approach for nanocatalyzed hydrogels with an activated IME response to treat wound infections by enhancing the phototherapeutic effects.
Collapse
Affiliation(s)
- Yimeng Su
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiumei Zhang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Yu Gu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Huilun Xu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ziming Liao
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Liqin Zhao
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Jingjing Du
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
- Analytical & Testing Center, Hainan University, Haikou 570028, China
| | - Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Xiaojie Lian
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Weiyi Chen
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
13
|
Sun S, Deng Y, Sun F, Mao Z, Feng X, Sui X, Liu F, Zhou X, Wang B. Engineering regenerated nanosilk to efficiently stabilize pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Cui Y, Kang W, Hu J. Construction of a carbon nanosphere aerogel with magnetic response for efficient oil/water separation. NEW J CHEM 2022. [DOI: 10.1039/d2nj04450a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A magnetic carbon nanosphere aerogel with high adsorption capacity was synthesized, which could realize positioning adsorption and rapid recovery.
Collapse
Affiliation(s)
- Yan Cui
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Weiwei Kang
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan 030024, China
| | - Jifan Hu
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| |
Collapse
|
15
|
Hao L, Liu N, Bai H, He P, Niu R, Gong J. High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. J Colloid Interface Sci 2021; 608:840-852. [PMID: 34689113 DOI: 10.1016/j.jcis.2021.10.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022]
Abstract
Hydrogel has been regarded as one of the most promising candidates for next-generation solar evaporation technology to produce freshwater from non-potable water. However, synthesizing hydrogel absorbers that can precisely regulate water state and significantly reduce the water vaporization enthalpy remains a grand challenge. Herein, we report the rational design of a novel hydrogel hybrid solar evaporator constructed by poly(vinyl alcohol) and sodium lignosulfonate (SLS), with addition of carbon nanotube as a light absorption material. The abundant sulfonate and hydroxyl groups of SLS enhance the interplay between hydrogel and water molecule through electrostatic interaction and hydrogen bond. As such, the presence of SLS not only remarkably promotes the hydrophilicity and water transport of hydrogel, but also precisely tunes the state of water molecule and the content of intermediate water for reducing the water vaporization enthalpy. The combined advantageous features endow the as-prepared hydrogel with an evaporation rate up to 2.09 kg m-2 h-1 under 1 Sun illumination, along with good anti-acid/basic abilities, antibacterial property, high salt-tolerance, and self-cleaning capability in purifying different types of wastewater. Finally, an outdoor solar seawater desalination device is designed to generate drinking water from seawater. The daily drinking water production amount per square meter is ca. 13 kg, which satifies the five adults' daily water consumption (12.5 kg). The present study highlights that rationally constructing the molecular architecture of hydrogel and tuning the interplay between water and hydrogel are effective strategies to fabricate advanced hydrogel solar evaporators for addressing the global freshwater shortage.
Collapse
Affiliation(s)
- Liang Hao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ning Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiying Bai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Panpan He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|