1
|
Wang X, Wei L, Wu J, Zhu A, Zhang Q, Liu Q. Supported core-shell catalysts for enhancing ethanol electrooxidation by C1 pathway. J Colloid Interface Sci 2025; 694:137719. [PMID: 40319719 DOI: 10.1016/j.jcis.2025.137719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/18/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
The direct ethanol fuel cell (DEFC) are considered a promising clean energy conversion technology due to their high energy density and low emissions. However, the anodic ethanol oxidation reaction (EOR) follows a dual-pathway mechanism (C1 pathway and C2 pathway) with low efficiency, which limits the performance and industrial application of DEFC. A multi-strategy approach to balance activity, stability, and C1 pathway selectivity in this work was adopted in order to design high-performance core-shell supported palladium (Pd) based catalysts. Au1@Pdx/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO of core-shell supported catalyst were successfully prepared using the sol-gel method, which show high performance in the EOR. The peak mass current density of the Au1@Pd1.5/TiO2-GO and Au1@Pd1.5Sn0.05/TiO2-NGO catalyst is 4914.8 mA mgPd-1 and 5038.1 mA mgPd-1, which was 6.0 and 6.2 times of the Pd/C(JM) catalyst (816.4 mA mgPd-1), respectively. At the same time, their residual current density after 5000 s of stability testing is 1757.9 mA mgPd-1 and 2160.5 mA mgPd-1, which was 27.3 and 33.5 times of the Pd/C(JM) catalyst (64.5 mA mgPd-1), respectively. The synergistic effect between the core-shell structure and the composite support effectively enhanced the C1 pathway selectivity, regenerative ability, and resistance to CO poisoning of the catalyst in the EOR.
Collapse
Affiliation(s)
- Xiaosen Wang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Longbo Wei
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Jianyang Wu
- Department of Physics, Jiujiang Research Institute, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Aimei Zhu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qiugen Zhang
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| | - Qinglin Liu
- Department of Chemical & Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
2
|
Wang Y, Chen Z, Zhang C, Yang L, Jiang Q, Zhang J, He H, Huang H. Mesoporous Hollow Carbon Sphere-Embedded MXene Architectures Decorated with Ultrafine Rh Nanocrystals toward Methanol Electrooxidation. Inorg Chem 2024; 63:16888-16896. [PMID: 39196849 DOI: 10.1021/acs.inorgchem.4c02740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The development of advanced Pt-alternative anode electrocatalysts with high activity and reliable stability is critical to overcoming the technical challenges of direct methanol fuel cells. Here, we propose a robust bottom-up strategy for the spatial construction of mesoporous hollow carbon sphere (HCS)-embedded MXene architectures decorated with ultrafine Rh nanocrystals (Rh/HCS-MX) via stereoscopic coassembly reactions. The rational intercalation of HCS effectively separates the MXene nanowalls to achieve a rapid mass-transfer efficiency, while the intimate coupling of the hybrid carrier with Rh nanocrystals enables their electronic structure optimization, thus contributing to strong synergistic catalytic effects. Accordingly, the resulting Rh/HCS-MX architectures exhibit outstanding methanol electrooxidation properties in terms of large electrochemical active surface areas, high mass/specific activities, and good long-term stability, all of which are significantly superior to the traditional Rh/carbon black, Rh/HCS, and Rh/MXene as well as commercial Pt/carbon balck and Pd/carbon balck electrocatalysts.
Collapse
Affiliation(s)
- Yan Wang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Ziyue Chen
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Haiyan He
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Huajie Huang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Ebenezer J, Lal A, Velayudham P, Borenstein A, Schechter A. Laser-Induced Pd-PdO/rGO Catalysts for Enhanced Electrocatalytic Conversion of Nitrate into Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36433-36443. [PMID: 38961637 PMCID: PMC11261573 DOI: 10.1021/acsami.4c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Electrochemical reduction of nitrate to ammonia (eNO3RR) is proposed as a sustainable solution for high-rate ammonia synthesis under ambient conditions. The complex, multistep eNO3RR mechanism necessitates the use of a catalyst for the complete conversion of nitrate to ammonia. Our research focuses on developing a novel Pd-PdO doped in a reduced graphene oxide (rGO) composite catalyst synthesized via a laser-assisted one-step technique. This catalyst demonstrates dual functionality: palladium (Pd) boosts hydrogen adsorption, while its oxide (PdO) demonstrates considerable nitrogen adsorption affinity and exhibits a maximum ammonia yield of 5456.4 ± 453.4 μg/h/cm2 at -0.6 V vs reversible hydrogen electrode (RHE), with significant yields for nitrite and hydroxylamine under ambient conditions in a nitrate-containing alkaline electrolyte. At a lower potential of -0.1 V, the catalyst exhibited a minimal hydrogen evolution reaction of 3.1 ± 2.2% while achieving high ammonia selectivity (74.9 ± 4.4%), with the balance for nitrite and hydroxylamine. Additionally, the catalyst's stability and activity can be regenerated through the electrooxidation of Pd.
Collapse
Affiliation(s)
- James Ebenezer
- Department
of Chemical Sciences, Ariel University, Ariel 40 700, Israel
| | - Aneena Lal
- Department
of Chemical Sciences, Ariel University, Ariel 40 700, Israel
| | | | - Arie Borenstein
- Department
of Chemical Sciences, Ariel University, Ariel 40 700, Israel
| | - Alex Schechter
- Department
of Chemical Sciences, Ariel University, Ariel 40 700, Israel
- Research
and Development Centre for Renewable Energy, New Technology Centre, University of West Bohemia, 301 00 Pilsen, Czech Republic
| |
Collapse
|
4
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Vu MT, Ngan Nguyen TT, Hung TQ, Pham-Truong TN, Osial M, Decorse P, Nguyen TT, Piro B, Thu VT. Insights into Structural Behaviors of Thiolated and Aminated Reduced Graphene Oxide Supports to Understand Their Effect on MOR Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13897-13907. [PMID: 37738086 DOI: 10.1021/acs.langmuir.3c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
It is essential to develop novel catalysts with high catalytic activity, strong durability, and good stability for further application in methanol fuel cells. In this work, we present for the first time the effect of the chemical functional groups (thiol and amine) with different electron affinity in reduced graphene oxide supports on the morphology and catalytic activity of platinum nanoparticles for the methanol oxidation reaction. Hydroxyl groups on graphene oxide were initially brominated and then transformed to the desired functional groups. The good dispersion of metal nanoparticles over functionalized carbon substrates (particle size less than 5 nm) with good durability, even at a limited functionalization degree (less than 7%) has been demonstrated by morphological and structural studies. The durability of the catalysts was much improved via strong coordination between the metal and nitrogen or sulfur atoms. Impressively, the catalytic activity of platinum nanoparticles on aminated reduced graphene oxide was found to be much better than that on thiolated graphene oxide despite the weaker affinity between amine and noble metals. These findings support further developing new graphene derivatives with the desired functionalization for electronics and energy applications..
Collapse
Affiliation(s)
- Minh Thu Vu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Thi Thanh Ngan Nguyen
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Tran Quang Hung
- Vietnam Academy of Science and Technology (VAST), Institute of Chemistry (IOC), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | | | - Magdalena Osial
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Philippe Decorse
- Université Paris Cité, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, Paris F-75013, France
| | - Thi Thom Nguyen
- Vietnam Academy of Science and Technology (VAST), Institute of Tropical Technology (ITT), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| | - Benoit Piro
- Université Paris Cité, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, Paris F-75013, France
| | - Vu Thi Thu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, Hanoi 10000, Vietnam
| |
Collapse
|
6
|
Shen B, Wei Y, Sun P, He H, Ying G, Huang H. Immobilizing ultrasmall Pt nanocrystals on 3D interweaving BCN nanosheet-graphene networks enables efficient methanol oxidation reaction. Dalton Trans 2023; 52:13644-13652. [PMID: 37702016 DOI: 10.1039/d3dt02512h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Currently, the state-of-the-art anode catalysts employed in direct methanol fuel cells (DMFCs) consist of nanosize Pt dispersed on a carbonaceous support; however, the relatively weak Pt-carbon interfacial interactions severely affect their overall electrocatalytic activity and service life. Herein, we demonstrate a convenient and robust stereo-assembly strategy for the efficient immobilization of ultrasmall Pt nanocrystals on 3D interweaving porous B-doped g-C3N4 nanosheet-graphene networks (Pt/BCN-G) by combining thermal annealing and solvothermal processes. This delicate configuration endowed the resulting hybrid nanoarchitecture with unusual textural merits, including 3D crosslinked porous skeletons, well-separated ultrathin nanosheets, rich B and N species, homogeneous Pt dispersion, stable heterointerface, and high electrical conductivity. Consequently, the 3D Pt/BCN-G nanoarchitecture with an optimized composition exhibited a large electrochemically active surface area of up to 121.2 m2 g-1, high mass activity of 1782.2 mA mg-1, superior poison tolerance, and excellent cycling stability towards the electrooxidation of methanol, all of which exceeded that of the reference Pt/graphene, Pt/BCN, Pt/carbon nanotube, Pt/carbon black, and Pt/g-C3N4 catalysts.
Collapse
Affiliation(s)
- Binfeng Shen
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Yujie Wei
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Pengyun Sun
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Guobing Ying
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| |
Collapse
|
7
|
Huang H, Xiao D, Zhu Z, Zhang C, Yang L, He H, You J, Jiang Q, Xu X, Yamauchi Y. A 2D/2D heterojunction of ultrathin Pd nanosheet/MXene towards highly efficient methanol oxidation reaction: the significance of 2D material nanoarchitectonics. Chem Sci 2023; 14:9854-9862. [PMID: 37736638 PMCID: PMC10510762 DOI: 10.1039/d3sc03735e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023] Open
Abstract
Two-dimensional (2D) Pd nanosheet-based catalysts have recently garnered widespread attention due to their high atom utilization efficiency. However, their catalytic ability and structural stability still require significant enhancement before they can be widely applied. In this study, we presented the rational design and controllable fabrication of a novel 2D/2D heterojunction, which consists of ultrathin Pd nanosheets (NSs) grown on the Ti3C2Tx MXene surface (Pd NSs/MXene). This heterostructure was achieved through a robust and convenient stereo-assembly strategy. The newly developed Pd NSs/MXene heterojunction not only provides numerous exposed active Pd atoms with an optimized electronic structure but also enables an intimate Pd/MXene interfacial interaction, ensuring a stable hybrid configuration. Consequently, the resulting Pd NSs/MXene heterojunction exhibits exceptional methanol oxidation properties. It possesses a large electrochemically active surface area, high mass and specific activities, and a long operating life, which are significantly superior to those of traditional Pd nanoparticle/carbon and Pd nanosheet/carbon catalysts. Theoretical simulations further reveal strong electronic interactions between the Pd nanosheet and MXene, which dramatically enhance the adsorption energy of the Pd component and simultaneously lower its d-band center. As a result, the Pd NSs/MXene heterojunction is less susceptible to CO poisoning. This work introduces a new 2D/2D heterojunction based on MXene and noble metallic materials and holds significance for the development of other novel heterojunctions, particularly within the realm of 2D material nanoarchitectonics.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Di Xiao
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Zihan Zhu
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University Zhoushan 316022 China
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
8
|
Iordache M, Oubraham A, Sorlei IS, Lungu FA, Capris C, Popescu T, Marinoiu A. Noble Metals Functionalized on Graphene Oxide Obtained by Different Methods-New Catalytic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040783. [PMID: 36839151 PMCID: PMC9962709 DOI: 10.3390/nano13040783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 05/14/2023]
Abstract
In recent years, research has focused on developing materials exhibiting outstanding mechanical, electrical, thermal, catalytic, magnetic and optical properties such as graphene/polymer, graphene/metal nanoparticles and graphene/ceramic nanocomposites. Two-dimensional sp2 hybridized graphene has become a material of choice in research due to the excellent properties it displays electrically, thermally, optically and mechanically. Noble nanomaterials also present special physical and chemical properties and, therefore, they provide model building blocks in modifying nanoscale structures for various applications, ranging from nanomedicine to catalysis and optics. The introduction of noble metal nanoparticles (NPs) (Au, Ag and Pd) into chemically derived graphene is important in opening new avenues for both materials in different fields where they can provide hybrid materials with exceptional performance due to the synergistical result of the specific properties of each of the materials. This review presents the different synthetic procedures for preparing Pt, Ag, Pd and Au NP/graphene oxide (GO) and reduced graphene oxide (rGO) composites.
Collapse
Affiliation(s)
- Mihaela Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Anisoara Oubraham
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
- Correspondence: (A.O.); (A.M.)
| | - Ioan-Sorin Sorlei
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Florin Alexandru Lungu
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Catalin Capris
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Tudor Popescu
- Faculty of Chemical Engineering and Biotechnologies, 011061 Bucharest, Romania
| | - Adriana Marinoiu
- National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI, 4 Uzinei Street, 240050 Râmnicu Vâlcea, Romania
- Correspondence: (A.O.); (A.M.)
| |
Collapse
|
9
|
Shu J, Ma H, Tang G, Li R, Ma S, Meng J, Yang H, Li S. Ultrafine oxygenophilic nanoalloys induced by multifunctional interstitial boron for methanol oxidation reaction. J Colloid Interface Sci 2023; 629:482-491. [PMID: 36174291 DOI: 10.1016/j.jcis.2022.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
Abstract
Interface construction is one of the most feasible approaches to optimize the physical and chemical properties of noble metal-based catalysts and consequently improve their catalytic performance. Herein, the design of effective reaction interfaces by bimetallic, trimetallic or polymetallic alloying has been extensively explored. In this research, metalloid boron (B) was alloyed within palladium-iridium (Pd-Ir) nanoalloy supported on nitrogen-doped graphene (NG) to promote the methanol oxidation reaction (MOR) in alkaline media. Being benefited from this, the optimum Pd7IrBx/NG catalyst exhibited enhanced EOR activity mass activity (1141.7 mA mg-1) and long-term stability (58.2 % current density retention rate after 500 cycles of cyclic voltammetry). The mechanism was further studied by electrochemical experiments and characterization, which highlighted that the multifunctional effect of electronic effect and strain effect and kinetic optimization induced by boron doping played a very positive role on MOR.
Collapse
Affiliation(s)
- Junhao Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Haojie Ma
- Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan' an University, Yan' an, Shaanxi 716000, PR China
| | - Gangjun Tang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Ruxia Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Sizhuo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Jianqi Meng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Honglei Yang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| | - Shuwen Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
10
|
PdMo supported by graphene for synergistic boosting electrochemical catalysis of methanol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Anodic TiO2 nanotube layers decorated by Pd nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Li Q, Wan T, Yang X, Xiang D, Yuan X, Sun Z, Li P, Zhu M. Low Pt-Doped Crystalline/Amorphous Heterophase Pd 12P 3.2 Nanowires as Efficient Catalysts for Methanol Oxidation. Inorg Chem 2022; 61:12466-12472. [PMID: 35894934 DOI: 10.1021/acs.inorgchem.2c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-based catalysts are attractive anodic electrocatalysts for direct methanol fuel cells owing to their low cost and natural abundance. However, they suffer from sluggish reaction kinetic and insufficient electroactivity in methanol oxidation reaction (MOR). In this work, we developed a facile one-pot approach to fabricate low Pt-doped Pd12P3.2 nanowires with crystalline/amorphous heterophase (termed Pt-Pd12P3.2 NWs) for MOR. The unique crystalline/amorphous heterophase structures promote the catalytic activity by the plentiful active sites at the phase boundaries and/or interfaces and the synergistic effect between different phases. Moreover, the incorporation of trace Pt into Pd lattices modifies the electronic structure and improves the electron transfer ability. Therefore, the obtained Pt-Pd12P3.2 NWs display significantly enhanced electrocatalytic performance toward MOR with the mass activity of 2.35 A mgPd+Pt-1, which is 9.0, 2.9, and 2.0 times higher than those of the commercial Pd/C (0.26 A mgPd-1), Pd12P3.2 NWs (0.82 A mgPd-1), and commercial Pt/C (1.19 A mgPt-1). The high mass activity enables the Pt-Pd12P3.2 NWs to be the promising Pd-based catalysts for MOR.
Collapse
Affiliation(s)
- Qiuyu Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Tingting Wan
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xianlong Yang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Dong Xiang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Xiaoyou Yuan
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Zhenjie Sun
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China
| | - Peng Li
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials, School of Materials Science and Engineering, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, Anhui, P. R. China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
13
|
Cost-Effective Nanoporous Gold Obtained by Dealloying Metastable Precursor, Au33Fe67, Reveals Excellent Methanol Electro-Oxidation Performance. COATINGS 2022. [DOI: 10.3390/coatings12060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, we report nanoporous gold (NPG) as an economic, efficient, and stable alternative electrocatalyst for methanol electro-oxidation. The said sample was successfully prepared from an Fe-rich metastable Au33Fe67 supersaturated solid solution acting as the precursor, which was formed into ribbons by the phenomenon of rapid solidification using melt-spinning technique. The as-quenched ribbon was then chemically dealloyed in 1 M HCl at 70 °C for different durations of time. A homogeneous, free-standing, and mechanically stable NPG sample was obtained with tunable ligament shape and size. The morphology and composition were characterized by using SEM with EDS, while the structure by XRD. The sample was examined as an electrocatalyst for methanol electro-oxidation profiting off its large surface area; cyclic voltammetry (CV) was the technique employed for electrochemical studies. In a basic solution of methanol and KOH, the sample displays a low peak potential of 0.47 V vs. Ag/AgCl for methanol electro-oxidation with a high peak current density of 0.43 mA/cm2. In addition, it demonstrates outstanding stability and high poisoning tolerance. It is noteworthy that the fabrication process of the NPG sample from start to end was intentionally opted to be sustainable, cost-effective, rapid, and feasible. The usage of critical raw materials was avoided. As a whole, the properties and results put forth by the NPG sample make it an inexpensive, sustainable, and excellent alternative as an electrocatalyst for methanol electro-oxidation.
Collapse
|
14
|
Xiao D, Jiang Q, Xu C, Yang C, Yang L, He H, Huang H. Interfacial engineering of worm-shaped palladium nanocrystals anchored on polyelectrolyte-modified MXene nanosheets for highly efficient methanol oxidation. J Colloid Interface Sci 2022; 616:781-790. [PMID: 35247815 DOI: 10.1016/j.jcis.2022.02.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
The development of high-efficiency methanol oxidation electrocatalysts with acceptable costs is central to the practical use of direct methanol fuel cell. In this work, a convenient interfacial engineering strategy is developed to the design and construction of quasi-one-dimensional worm-shaped palladium nanocrystals strongly coupled with positively-charged polyelectrolyte-modified Ti3C2Tx MXene (Pd NWs/PDDA-MX) via the direct electrostatic attractions. Because of the intriguing structural features including ultrathin-sheet nature, homogeneous Pd dispersion, numerous grain boundaries, strong electronic interaction, and high metallic conductivity, the as-fabricated Pd NWs/PDDA-MX hybrid shows superior electrocatalytic performance with a large electrochemically active surface area of 105.3 m2 g-1, a high mass activity of 1526.5 mA mg-1, and reliable long-term durability towards alkaline methanol oxidation reaction, far outperforming the commercial Pd nanoparticle/carbon catalysts. Density functional theory calculation further demonstrate that there are strong electronic interactions in the Pd nanoworm/Ti3C2Tx model with a depressed CO adsorption energy, thereby guaranteeing a stable interfacial contact as well as strong antitoxic ability.
Collapse
Affiliation(s)
- Di Xiao
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| | - Chenyu Xu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Cuizhen Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.
| |
Collapse
|
15
|
Xue Y, Xiong J, Zhang H, He H, Huang H. Ultrafine Rh nanocrystals immobilized on 3D boron and nitrogen co-doped graphene-carbon nanotube networks: high-efficiency electrocatalysts towards methanol oxidation reaction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01234k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodium (Rh)-based nanocrystals are recently recognized as promising platinum (Pt)-alternative electrocatalysts for methanol oxidation due to their unique catalytic activity as well as strong anti-poisoning capacity in the alkaline media....
Collapse
|