1
|
Li Y, Liu X, Xu J, Chen S. Ruthenium-Based Electrocatalysts for Hydrogen Evolution Reaction: from Nanoparticles to Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402846. [PMID: 39072957 DOI: 10.1002/smll.202402846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Benefiting from similar hydrogen bonding energy to Pt and much lower price compare with Pt, Ru based catalysts are promising candidates for electrocatalytic hydrogen evolution reaction (HER). The catalytic activity of Ru nanoparticles can be enhanced through improving their dispersion by using different supports, and the strong metal supports interaction can further regulate their catalytic performance. In addition, single-atom catalysts (SACs) with almost 100% atomic utilization attract great attention and the coordinative atmosphere of single atoms can be adjusted by supports. Moreover, the syngenetic effects of nanoparticles and single atoms can further improve the catalytic performance of Ru based catalysts. In this review, the progress of Ru based HER electrocatalysts are summarized according to their existing forms, including nanoparticles (NPs), single atoms (SAs) and the combination of both NPs and SAs. The common supports such as carbon materials, metal oxides, metal phosphides and metal sulfides are classified to clarify the metal supports interaction and coordinative atmosphere of Ru active centers. Especially, the possible catalytic mechanisms and the reasons for the improved catalytic performance are discussed from both experimental results and theoretical calculations. Finally, some challenges and opportunities are prospected to facilitate the development of Ru based catalysts for HER.
Collapse
Affiliation(s)
- Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Xuan Liu
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Junlong Xu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
2
|
Feng W, Zhang W, Lin Q, Zhang H, Qiao J, Xia L, Moloto N, He W, Sun Z. Metal–support interactions of 2D carbon-based heterogeneous catalysts for the hydrogen evolution reaction. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:18866-18878. [DOI: 10.1039/d4ta02079k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The synthesis, modulation and effect of MSI on 2D carbon-based heterogeneous catalysts for the HER.
Collapse
Affiliation(s)
- Weihang Feng
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Quanying Lin
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Heshuang Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jingyuan Qiao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Linhong Xia
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhengming Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| |
Collapse
|
3
|
Feng T, Cui Z, Guo P, Wang X, Li J, Liu X, Wang W, Li Z. Fabrication of Ru/WO 3-W 2N/N-doped carbon sheets for hydrogen evolution reaction. J Colloid Interface Sci 2023; 636:618-626. [PMID: 36669455 DOI: 10.1016/j.jcis.2023.01.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Recent experimental analysis indicates WO3-based nanostructures exhibit poor hydrogen evolution reactivity, particularly in alkaline medium, arising from the low electron transfer rate. It is imperative to tune the composition and structure of WO3 to boost the cleavage of H-OH bond. Here, we construct Ru/WO3-W2N/N-doped carbon sheets (Ru/WO3-W2N/NC) using m-WO3 nanosheets as precursors with the aid of RuCl3, Tris (hydroxymethyl) aminomethane, and dopamine. Structural investigation reveals the formation of N-doped carbon sheets, Ru nanoparticles, and WO3-W2N. As a result, hydrogen evolution reactivity is greatly improved on Ru/WO3-W2N/N-doped carbon sheets with 64 mV at 10 mA/cm2 in 1 mol/L (M) KOH, outperforming most of WO3-based electrocatalysts in previous literatures. Meanwhile, it facilitates the generation of H2 in 0.5 M H2SO4 with the excellent activity of 110 mV at 10 mA/cm2. Our work provides an efficient strategy to tailor the electronic structure of WO3 to catalyze acidic and alkaline hydrogen evolution reaction.
Collapse
Affiliation(s)
- Tiantian Feng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhijie Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pengfei Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuehong Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Juan Li
- Jiangsu Provincial Key Laboratory of Eco-Environmental Materials, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xien Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenpin Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhongcheng Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Atchudan R, Perumal S, Jebakumar Immanuel Edison TN, Aldawood S, Vinodh R, Sundramoorthy AK, Ghodake G, Lee YR. Facile synthesis of novel molybdenum disulfide decorated banana peel porous carbon electrode for hydrogen evolution reaction. CHEMOSPHERE 2022; 307:135712. [PMID: 35843438 DOI: 10.1016/j.chemosphere.2022.135712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen is one of the cleanest renewable and environmentally friendly energy resource that can be generated through water splitting. However, hydrogen evolution occurs at high overpotential, and efficient hydrogen evolution catalysts are desired to replace state-of-the-art catalysts such as platinum. In the present work, a novel molybdenum disulfide decorated banana peel porous carbon (MoS2@BPPC) catalyst has been developed using banana peel carbon and molybdenum disulfide (MoS2) for hydrogen evolution reaction (HER). Banana peel porous carbon (BPPC) was initially synthesized from the banana peel (biowaste) by a simple carbonization method. Subsequently, 20 wt% of bare MoS2 was distributed on the pristine BPPC matrix using the dry-impregnation method. The resulting MoS2@BPPC composites were systematically investigated to determine the morphology and structure. Finally, using a three-electrode cell system, pristine BPPC, bare MoS2, and MoS2@BPPC composite were used as HER electrocatalysts. The developed MoS2@BPPC composite showed greater HER activity and possessed excellent stability in the acid solution, including an overpotential of 150 mV at a current density of -10 mA cm-2, and a Tafel slope of 51 mV dec-1. This Tafel study suggests that the HER takes place by Volmer-Heyrovsky mechanism with a rate-determining Heyrovsky step. The excellent electrochemical performance of MoS2@BPPC composite for HER can be ascribed to its unique porous nanoarchitecture. Further, due to the synergetic effect between MoS2 and porous carbon. The HER activity using the MoS2@BPPC electrode advises that the prepared catalyst may hold great promise for practical applications.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | | | - S Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rajangam Vinodh
- School of Electrical and Computer Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|