1
|
Kuang S, Pi Z, Li X, Wang J, Lin H, Nie M, Sun J, Zhang H, Li Q. Defects trigger redox reactivities between metal and lattice oxygen in high-entropy layered double hydroxide for boosting oxygen evolution in alkaline. J Colloid Interface Sci 2025; 679:296-306. [PMID: 39366259 DOI: 10.1016/j.jcis.2024.09.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
The oxygen evolution reaction (OER) at the anode undergoes a sluggish multi-step process, thereby impeding overall water splitting. As the classical adsorbate evolution mechanism (AEM) involves multiple oxygen-containing intermediates, such as *OH, *O and *OOH, breaking the linear relationship of the adsorption energies between *OH and *OOH is the key to efficient oxygen evolution. Herein, we report a high-entropy FeCoNiAlZn layered double hydroxide decorated with defects (E-FeCoNiAlZn LDH) for boosting oxygen evolution in alkaline. The product exhibits high OER activity with a low overpotential of 220 at 10 mA cm-2 and outstanding stability with negligible decline after 100 h operation. The defects in E-FeCoNiAlZn LDH not only enhance the adsorption of *OH by metal sites but also foster the release of oxygen from lattice, which triggers the coupled oxygen evolution mechanism (COM). This mechanism has only *OH and *OO intermediates, perfectly avoiding the obstacles of linear relationship between *OH and *OOH. Theoretical calculations demonstrate that the introduction of defects enhances the adsorption of *OH due to the presence of unsaturated bonds. Additionally, it is evidence that the O 2p band is elevated, leading to a weakening of the metal-O bond and a reduction of the energy barrier for OO coupling.
Collapse
Affiliation(s)
- Shaofu Kuang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zugao Pi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Xinwei Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jianxing Wang
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Hua Lin
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Ming Nie
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Junhui Sun
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Honglin Zhang
- Tribology Research Institute, State Key Laboratory of Traction Power, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Qing Li
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Vezzù K, Triolo C, Moulaee K, Pagot G, Ponti A, Pinna N, Neri G, Santangelo S, Di Noto V. Interplay Between Calcination Temperature and Alkaline Oxygen Evolution of Electrospun High-Entropy (Cr 1/5Mn 1/5Fe 1/5Co 1/5Ni 1/5) 3O 4 Nanofibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408319. [PMID: 39580689 PMCID: PMC11753503 DOI: 10.1002/smll.202408319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Spinel-structured transition metal (TM) oxides have shown great potential as a sustainable alternative to platinum group metal-based electrocatalysts. Among them, high-entropy oxides (HEOs) with multiple TM-cation sites are suitable for engineering octahedral redox-active centers to enhance the catalyst reactivity. This paper reports on the preparation of electrospun (Cr1/5Mn1/5Fe1/5Co1/5Ni1/5)3O4 nanofibers (NFs) and their evaluation as electrocatalysts. Its main aim is to unveil the nanostructural features that play a key role in the alkaline oxygen evolution reaction. Differing calcination temperature (300-800 °C) and duration (2 or 4 h) leads to different morphology of the NFs, crystallinity of the oxide, density of defects, and cation distribution in the lattice, which reflect in different electrocatalytic behaviors. The best performance (overpotential and Tafel slope at 10 mA cm-2: 325 mV and 40 mV dec-1, respectively) pertains to the NFs calcined at 400 °C for 2 h. To gain a deeper understanding of their electrocatalytic properties, the pristine NFs are investigated by a combination of analytical techniques. In particular, broadband electric spectroscopy reveals that the mobility of oxygen vacancies in the best electrocatalyst is associated to very fast local dielectric relaxations of metal coordination octahedral geometries and experimentally demonstrates the key role of O-deficient octahedra.
Collapse
Affiliation(s)
- Keti Vezzù
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Claudia Triolo
- Dipartimento di Ingegneria Civiledell'Energiadell'Ambiente e dei Materiali (DICEAM)Università “Mediterranea”Via Zehender, Loc. Feo di VitoReggio Calabria89122Italy
- National Reference Center for Electrochemical Energy Storage (GISEL)Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)Firenze50121Italy
| | - Kaveh Moulaee
- Dipartimento di IngegneriaUniversità di MessinaContrada di Dio, Vill. Sant'AgataMessina98166Italy
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| | - Alessandro Ponti
- Laboratorio di NanotecnologieIstituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)Consiglio Nazionale delle RicercheVia Fantoli 16/15Milano20138Italy
| | - Nicola Pinna
- Department of Chemistry & The Center for the Science of Materials BerlinHumboldt‐Universität zu BerlinBrook‐Taylor‐Str. 212489BerlinGermany
| | - Giovanni Neri
- Dipartimento di IngegneriaUniversità di MessinaContrada di Dio, Vill. Sant'AgataMessina98166Italy
| | - Saveria Santangelo
- Dipartimento di Ingegneria Civiledell'Energiadell'Ambiente e dei Materiali (DICEAM)Università “Mediterranea”Via Zehender, Loc. Feo di VitoReggio Calabria89122Italy
- National Reference Center for Electrochemical Energy Storage (GISEL)Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM)Firenze50121Italy
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech)Department of Industrial EngineeringUniversity of PadovaVia Marzolo 9Padova35131Italy
| |
Collapse
|
3
|
Jia L, Du G, Han D, Wang Y, Wang Y, Li H, Zhao W, Chen S, Zhang M, Su Q, Xu B. P-NiFe 2O 4/N-Doped Carbon Nanotubes/NiFe Multi-Phase Heterojunctions for Overall Water Splitting and Urea Electrolysis. CHEMSUSCHEM 2024; 17:e202400997. [PMID: 38923349 DOI: 10.1002/cssc.202400997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The design and construction of highly efficient electrocatalysts for overall water splitting and urea electrolysis are significantly important for promoting energy conversion and realizing green hydrogen production. In this work, we constructed a multi-phase heterojunction through a simple hydrothermal and phosphorization process. The P-doped NiFe2O4 (P-NiFe2O4) nanoparticles were uniformly anchored on the bamboo-like N-doped carbon nanotubes (NCNTs) grown via a NiFe-alloy autocatalysis. The electronic structure and coordination environment of active species were optimized by the synergistic action of P doping, well-dispersed ultrafine NiFe2O4, and NCNTs matrix with good conductivity, enhancing their quantity and activity for electrocatalysis. Consequently, the P-NiFe2O4/NCNTs/NiFe exhibits excellent HER and OER activities with an overpotential of 111 and 266 mV at 10 mA cm-2 in 1 M KOH, respectively. The symmetrical overall water-splitting cell using P-NiFe2O4/NCNTs/NiFe as both anode and cathode delivers 10 mA cm-2 at a voltage of 1.604 V in 1 M KOH. Notably, the two-electrode cell requires a low voltage of 1.467 V to achieve a current density of 10 mA cm-2 in 1 M KOH solution with 0.6 M urea. This designed catalysts display outstanding reaction kinetics and catalytic stability. This work provides useful guidance for applying transition metal-based catalysts for hydrogen production.
Collapse
Affiliation(s)
- Lina Jia
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Institute of Physics, Henan Academy of Sciences, Zhengzhou, 450046, China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Di Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Youqing Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Huayu Li
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenqi Zhao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shixian Chen
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
4
|
Karthikeyan SC, Ramakrishnan S, Prabhakaran S, Subramaniam MR, Mamlouk M, Kim DH, Yoo DJ. Low-Cost Self-Reconstructed High Entropy Oxide as an Ultra-Durable OER Electrocatalyst for Anion Exchange Membrane Water Electrolyzer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402241. [PMID: 39082423 DOI: 10.1002/smll.202402241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Indexed: 11/08/2024]
Abstract
Future energy loss can be minimized to a greater extent via developing highly active electrocatalysts for alkaline water electrolyzers. Incorporating an innovative design like high entropy oxides, dealloying, structural reconstruction, in situ activation can potentially reduce the energy barriers between practical and theoretical potentials. Here, a Fd-3m spinel group high entropy oxide is developed via a simple solvothermal and calcination approach. The developed (FeCoMnZnMg)3O4 electrocatalyst shows a near equimolar distribution of all the metal elements resulting in higher entropy (ΔS ≈1.61R) and higher surface area. The self-reconstructed spinel high entropy oxide (S-HEO) catalyst exhibited a lower overpotential of 240 mV to reach 10 mA cm-2 and enhanced reaction kinetics (59 mV dec-1). Noticeably, the S-HEO displayed an outstanding durability of 1000 h without any potential loss, significantly outperforming most of the reported OER electrocatalysts. Further, S-HEO is evaluated as the anode catalyst for an anion exchange membrane water electrolyzer (AEMWE) in 1 m, 0.1 m KOH, and DI water at 20 and 60 °C. These results demonstrate that S-HEO is a highly attractive, non-noble class of materials for high active oxygen evolution reaction (OER) electrocatalysts allowing fine-tuning beyond the limits of bi- or trimetallic oxides.
Collapse
Affiliation(s)
- S C Karthikeyan
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) for Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Shanmugam Ramakrishnan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Mohan Raj Subramaniam
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) for Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Chemistry, Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore, Tamilnadu, 641 407, India
| | - Mohamed Mamlouk
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Do Hwan Kim
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) for Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Science Education, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of Energy Storage/Conversion Engineering (BK21 FOUR) for Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
5
|
Huang L, Ma L, Xu J, Wei B, Xue Y, Zhang N, Zhou X, Yang J, Liu ZH, Jiang R. Strong Electronic Interaction in High-Entropy Oxide Enhances Oxygen Evolution Reaction. Inorg Chem 2024; 63:12433-12444. [PMID: 38907721 DOI: 10.1021/acs.inorgchem.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
High-entropy oxides are a new type of material with significant application potential. However, the lack of a universal HEO preparation method severely limits the property study and application of HEOs. Herein, we report a universal approach of spray pyrolysis for the preparation of various HEOs and study the electrocatalytic performance of HEOs toward the oxygen evolution reaction. FeCoNiMoWOx HEO exhibits an overpotential of 281 mV at 10 mA cm-2 and a Tafel slope of 34.5 mV dec-1, which are far superior to those of the corresponding medium-entropy oxide and low-entropy oxide. It is found that the high entropy of the HEO greatly strengthens the interaction between Fe and Mo/W and produces abundant oxygen vacancies (OVs) around Mo and W. This work not only provides a universal preparation method for HEOs but also deepens our understanding of OER catalytic activity of HEOs.
Collapse
Affiliation(s)
- Luo Huang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lixia Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Xu
- Experimental Teaching Department, Northwest Minzu University, Lanzhou 730030, P. R. China
| | - Baoqiang Wei
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yanzhong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Nan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaojie Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Yang L, Wang M, Shan H, Ma Y, Peng Y, Hu K, Deng C, Yu H, Lv J. Generic heterostructure interfaces bound to Co 9S 8 for efficient overall water splitting supported by photothermal. J Colloid Interface Sci 2024; 662:748-759. [PMID: 38377694 DOI: 10.1016/j.jcis.2024.02.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
The increase of reaction temperature of electrocatalysts and the construction of heterogeneous structures is regarded as an efficient method to improve the electrocatalytic water splitting activity. Here, we report an approach to enhance the local heat and active sites of the catalyst by building a heterostructure with Co9S8 to significantly improve its electrocatalytic performance. The as-fabricated Co9S8@Ce-NiCo LDH/NF electrode possesses a notable photothermal ability, as it effectively converts near-infrared (NIR) light into the local heat, owing to its significant optical absorption. Leveraging these favorable qualities, the prepared Co9S8@Ce-NiCo LDH/NF electrode showed impressive performance in both hydrogen evolution reaction (HER) (η100 = 144 mV) and oxygen evolution reaction (OER) (η100 = 229 mV) under NIR light. Compared to the absence of the NIR light, the presence of NIR irradiation leads to a 24.6 % increase in catalytic efficiency for HER and a 15.8 % increase for OER. Additionally, other dual-functional electrocatalysts like NiCo-P, NiFeMo, and NiFe(OH)x also demonstrated significantly enhanced photothermal effects and improved catalytic performance owing to the augmented photothermal conversion when combined with Co9S8. This work offers novel pathways for the development of photothermal-electrocatalytic systems that facilitate economically efficient and energy-conserving overall water splitting processes.
Collapse
Affiliation(s)
- Lei Yang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China.
| | - Mengxiang Wang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Hai Shan
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Yiming Ma
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yujie Peng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Chonghai Deng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Hai Yu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Jianguo Lv
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
7
|
Hota A, Das JK, Panda PK, Mohammed AA, Biswal A, Rakesh B, Tripathy BC. Low-temperature synthesis of high-entropy amorphous metal oxides (HEOs) for enhanced oxygen evolution performance. Dalton Trans 2024; 53:4544-4550. [PMID: 38348902 DOI: 10.1039/d4dt00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The rational design of multiple metal ions into high-entropy oxide electrode material via a single-step hydrothermal process is applicable to the evolution of oxygen molecules (O2) through simple water electrolysis. Their cost-effectiveness, high performance, and durable nature are the key factors of non-precious high-entropy multiple metal-based electrocatalysts, which can be used as replaceable catalysts instead of precious ones. This article reports a low-temperature synthesis of the cauliflower-type morphology of high-entropy amorphous metal oxides, and their electrochemical performances towards the oxygen evolution reaction (OER) are investigated. The multiple metal ion (Mn2+, Fe3+, Co2+, Ni2+, Cu2+) oxide electrode material shows an acceptable oxygen evolution reaction (OER) with an overpotential of 290 mV at a current density of 10 mA cm-2 and a lower Tafel slope value of 85 mV dec-1, respectively. Moreover, the 20 h durability test with negligible change in overpotential shows the efficacy of the modified electrode material in harsh alkaline media. The observed electrochemical results towards the OER correspond to the amorphous nature of the active material that displayed a cauliflower-type morphology, having a large specific surface area (240 m2 g-1) and providing higher electrochemical active sites as well. Consequently, post-stability characterization studies (such as PXRD, FESEM, TEM, and XPS) provide more information for understanding the post-structural and morphological results of the high-entropy amorphous metal oxide.
Collapse
Affiliation(s)
- Arpeeta Hota
- CSIR-Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar, 751013, India.
- Academy of Scientific and Innovative, Research (AcSIR), Ghaziabad 201002, India
| | - Jiban K Das
- CSIR-Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar, 751013, India.
- Academy of Scientific and Innovative, Research (AcSIR), Ghaziabad 201002, India
| | - Prasanna K Panda
- CSIR-Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar, 751013, India.
- Academy of Scientific and Innovative, Research (AcSIR), Ghaziabad 201002, India
| | - Asim A Mohammed
- CSIR-Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar, 751013, India.
- Academy of Scientific and Innovative, Research (AcSIR), Ghaziabad 201002, India
| | - Avijit Biswal
- Bhadrak (Autonomous) College, Bhadrak, 756100, India
| | - Benadict Rakesh
- CSIR-Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar, 751013, India.
- Academy of Scientific and Innovative, Research (AcSIR), Ghaziabad 201002, India
| | - B C Tripathy
- CSIR-Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar, 751013, India.
- Academy of Scientific and Innovative, Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Zhao H, Wang T, Li C, Chen M, Niu L, Gong Y. Designing highly efficient oxygen evolution reaction electrocatalyst of high-entropy oxides FeCoNiZrO x: Theory and experiment. iScience 2024; 27:108718. [PMID: 38235334 PMCID: PMC10792234 DOI: 10.1016/j.isci.2023.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The correlations between the experimental methods and catalytic activities are urgent to be defined for the design of highly efficient catalysts. In this work, a new oxygen evolution reaction electrocatalyst of high-entropy oxide (HEO) FeCoNiZrOx was designed and analyzed by experimental and theoretical methods. On account of the shortened coordinate bond along with the increased annealing temperature, the atomic/electronic structures of active site were adjusted quantitatively with the aid of the pre-designed correlator of d electron density, which contributed to adjust the catalytic activity of HEO specimens. The prepared HEO specimen exhibited the low overpotentials of 245 mV at 10 mA cm-2 and 288 mV at 100 mA cm-2 with small Tafel slope of 35.66 mV dec-1, fast charge transfer rate, and stable electrocatalytic activity. This strategy would be adopted to improve the catalytic activity of HEO by adjusting the d electron density of transition metal ions with suitable preparation method.
Collapse
Affiliation(s)
- Haiqing Zhao
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Tao Wang
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou 310027, China
| | - Can Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Miaogen Chen
- Department of Physics, China Jiliang University, Hangzhou 310018, China
| | - Lengyuan Niu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yinyan Gong
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
9
|
He H, Kou P, Zhang Z, Wang D, Zheng R, Sun H, Liu Y, Wang Z. Coupling high entropy oxide with hollow carbon spheres by rapid microwave solvothermal strategy for boosting oxygen evolution reaction. J Colloid Interface Sci 2024; 653:179-188. [PMID: 37713916 DOI: 10.1016/j.jcis.2023.09.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
High entropy oxides (HEOs) are promising oxygen evolution electrocatalysts due to the unique structure, inherent tunability, as well as excellent catalytic activity and stability. Herein, (FeCoNiCrMn)3O4 nanoparticles coupling with the hollow-mesoporous carbon spheres (HCS) has been designed and fabricated by a rapid and efficient microwave solvothermal followed by annealing. The prepared (FeCoNiCrMn)3O4 nanoparticles are highly dispersed on the HCS surface with an average particle size of approximately 3.3 nm. The composite with large surface areas can facilitate mass transfer and gas release, and it allows more active sites to be exposed. The obtained (FeCoNiCrMn)3O4/hollow-mesoporous carbon sphere composite catalyst with the optimal HEO load (HEO/HCS-3) exhibits outstanding oxygen evolution reaction (OER) electrocatalytic performance with a low overpotential of 263 mV at 10 mA cm-2, and a small Tafel slope of 41.24 mV dec-1, better than the pure (FeCoNiCrMn)3O4 and commercial RuO2 catalyst. The long-term durability of HEO/HCS-3 is also achieved by continuous electrolysis in 1 M KOH solution for more than 100 h. The outstanding catalytic performance of the composite can be ascribed to the clever structural design and the well-matched synthetic method. This research can guide the construction of high-efficient OER catalysts.
Collapse
Affiliation(s)
- Huan He
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Pengzu Kou
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Zhigui Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Dan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, PR China.
| | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, PR China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, PR China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, PR China.
| |
Collapse
|
10
|
Zhang Q, Lian K, Liu Q, Qi G, Zhang S, Luo J, Liu X. High entropy alloy nanoparticles as efficient catalysts for alkaline overall seawater splitting and Zn-air batteries. J Colloid Interface Sci 2023; 646:844-854. [PMID: 37235930 DOI: 10.1016/j.jcis.2023.05.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
High entropy alloys (HEAs) are those metallic materials that consist of five or more elements. Compared with conventional alloys, they have much more catalytic active sites due to unique structural characteristics such as high entropy effect and lattice distortion, endowing them with promising applications in the region of hydrolysis catalysts. Herein, we successfully loaded high-entropy alloys onto carbon nanotubes (FeNiCoMnRu@CNT) by hydrothermal means. It exhibits excellent HER and OER properties in alkaline seawater. To accomplish two-electrode total water splitting when constructed into Zn air cells, it only needed 1.6 V, and the timing voltage curve showed a steady current density of 10 mA cm-2 during constant electrolysis for more than 30 h in alkaline seawater. The remarkably high HER and OER activity of FeNiCoMnRu@CNT HEAs NPS indicates the potentially broad application prospect of HEAs for Zn air battery.
Collapse
Affiliation(s)
- Quan Zhang
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kang Lian
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Gaocan Qi
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Jun Luo
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Wang D, Duan C, He H, Wang Z, Zheng R, Sun H, Liu Y, Liu C. Microwave solvothermal synthesis of Component-Tunable High-Entropy oxides as High-Efficient and stable electrocatalysts for oxygen evolution reaction. J Colloid Interface Sci 2023; 646:89-97. [PMID: 37182262 DOI: 10.1016/j.jcis.2023.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Transition-metal-based high-entropy oxides (HEOs) are appealing electrocatalysts for oxygen evolution reaction (OER) due to their unique structure, variable composition and electronic structure, outstanding electrocatalytic activity and stability. Herein, we propose a scalable high-efficiency microwave solvothermal strategy to fabricate HEO nano-catalysts with five earth-abundant metal elements (Fe, Co, Ni, Cr, and Mn) and tailor the component ratio to enhance the catalytic performance. (FeCoNi2CrMn)3O4 with a double Ni content exhibits the best electrocatalytic performance for OER, namely low overpotential (260 mV@10 mA cm-2), small Tafel slope and superb long-term durability without obvious potential change after 95 h in 1 M KOH. The extraordinary performance of (FeCoNi2CrMn)3O4 can be attributed to the large active surface area profiting from the nano structure, the optimized surface electronic state with high conductivity and suitable adsorption to intermediate benefitting from ingenious multiple-element synergistic effects, and the inherent structural stability of the high-entropy system. In addition, the obvious pH value dependable character and TMA+ inhibition phenomenon reveal that the lattice oxygen mediated mechanism (LOM) work together with adsorbate evolution mechanism (AEM) in the catalytic process of OER with the HEO catalyst. This strategy provides a new approach for the rapid synthesis of high-entropy oxide and inspires more rational designs of high-efficient electrocatalysts.
Collapse
Affiliation(s)
- Dan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, China; Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Chanqin Duan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Huan He
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, China.
| | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, China
| | - Chunli Liu
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| |
Collapse
|
12
|
Feng C, Chen M, Zhou Y, Xie Z, Li X, Xiaokaiti P, Kansha Y, Abudula A, Guan G. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis. J Colloid Interface Sci 2023; 645:724-734. [PMID: 37172482 DOI: 10.1016/j.jcis.2023.04.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/15/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Creating electrocatalysts with high activity and stability to meet the needs of highly effective seawater splitting is of great importance to achieve the goal of hydrogen production from abundant seawater source, which however is still challenging owing to sluggish oxygen evolution reaction (OER) dynamics and the existed competitive chloride evolution reaction. Herein, high-entropy (NiFeCoV)S2 porous nanosheets are uniformly fabricated on Ni foam via a hydrothermal reaction process with a sequential sulfurization step for alkaline water/seawater electrolysis. The obtained rough and porous nanosheets provide large active surface area and exposed more active sites, which can facilitate mass transfer and are conducive to the improvement of the catalytic performance. Combined with the strong synergistic electron modulation effect of multi elements in (NiFeCoV)S2, the as-fabricated catalyst exhibits low OER overpotentials of 220 and 299 mV at 100 mA cm-2 in alkaline water and natural seawater, respectively. Besides, the catalyst can withstand a long-term durability test for more than 50 h without hypochlorite evolution, showing excellent corrosion resistance and OER selectivity. By employing the (NiFeCoV)S2 as the electrocatalyst for both anode and cathode to construct an overall water/seawater splitting electrolyzer, the required cell voltages are only 1.69 and 1.77 V to reach 100 mA cm-2 in alkaline water and natural seawater, respectively, showing a promising prospect towards the practical application for efficient water/seawater electrolysis.
Collapse
Affiliation(s)
- Changrui Feng
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Meng Chen
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Yifan Zhou
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Graduate School of Sustainable Community Studies, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, China
| | - Xiumin Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yasuki Kansha
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan.
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Graduate School of Sustainable Community Studies, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan.
| |
Collapse
|
13
|
Liu Q, Zhao P, Zhao F, Zhu J, Yang S, Chen L, Zhang Q. Bulk CrCoNiFe alloy with high conductivity and density of grain boundaries for oxygen evolution reaction and urea oxidation reaction. J Colloid Interface Sci 2023; 644:1-9. [PMID: 37088012 DOI: 10.1016/j.jcis.2023.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/28/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Multiple-principal-element alloys (MPEAs) with maximized configurational entropy show high catalytic activities for oxygen evolution reaction (OER) and urea oxidation reaction (UOR). However, the accurate relationship between their complex components (i.e., elements, phase structure, grain boundary density) and intrinsic catalytic activity is still unclear. Herein, a series of bulk MPEAs with face-centered cubic (FCC) phase structures were fabricated by the arc-melting method under an argon atmosphere. Compared to the CrCoNi and CrCoNiFeMn, the CrCoNiFe affords a higher UOR performance with the lowest overpotential of 331 mV at 10 mA·cm-2 in 1 M KOH with 0.33 M urea, due to excellent conductivity and high density of grain boundaries. The urea electrolyzer using CrCoNiFe as anode and Pt as cathode shows a low voltage of 1.622 V at 10 mA cm-2 and long-term stability of 60 h at 20 mA cm-2 (4.08% decrease). These findings offer a facile strategy for designing bulk MPEAs electrodes for energy conversion.
Collapse
Affiliation(s)
- Qiancheng Liu
- Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China
| | - Peng Zhao
- Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China
| | - Feng Zhao
- Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China
| | - Jie Zhu
- Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Sudong Yang
- Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lin Chen
- Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China; College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China.
| |
Collapse
|
14
|
Li F, Kannari N, Maruyama J, Sato K, Abe H. Defective multi-element hydroxides nanosheets for rapid removal of anionic organic dyes from water and oxygen evolution reaction. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130803. [PMID: 36680901 DOI: 10.1016/j.jhazmat.2023.130803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Water pollution by dyes is one of the biggest environmental problems. Adsorption technology has been widely used in wastewater treatment. In this work, high-entropy concept is used to design surface defective hydroxides realizing the rapid removal of dyes from water. Multi-element hydroxides (MEHs) containing three (CoMnNi, MEH-Ternary), four (CoMnNiZn, MEH-Quaternary), and five (CoMnNiZnFe, MEH-Quinary) metal elements are successfully synthesized through a polyol process. These as-synthesized MEHs are composed of nanosheets with a brucite-like structure. Along with the increase in compositional complexity (i.e., configurational entropy), the thickness of the nanosheets in these MEHs decreases, while the degree of surface defects increase. These surface defects are probably the active sites for anionic dyes adsorption, suggesting rapid adsorption kinetics with shortened diffusion path length. For MEH-Quinary in 0.2 mM Congo red (CR) and MEH-Ternary in 0.4 mM methyl orange (MO) aqueous solutions, respectively, high removal efficiency > 99.0% is achieved in the first 30 s. Their pseudo-second-order rate constants are two orders of magnitude higher than that of activated carbon and hydrotalcite. MEH-Quinary has maximum CR and MO adsorption quantity of 546.4 and 404.9 mg g-1, respectively, by Langmuir model. The MEH-Quinary is also a potential electrocatalyst for oxygen evolution reaction.
Collapse
Affiliation(s)
- Fei Li
- Joining and Welding Research Institute, Osaka University, Osaka 5670047, Japan.
| | - Naokatsu Kannari
- Division of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 3768515, Japan
| | - Jun Maruyama
- Osaka Research Institute of Industrial Science and Technology, Osaka 5368553, Japan
| | - Kazuyoshi Sato
- Division of Environmental Engineering Science, Graduate School of Science and Technology, Gunma University, Gunma 3768515, Japan
| | - Hiroya Abe
- Joining and Welding Research Institute, Osaka University, Osaka 5670047, Japan.
| |
Collapse
|
15
|
Park CE, Senthil RA, Jeong GH, Choi MY. Architecting the High-Entropy Oxides on 2D MXene Nanosheets by Rapid Microwave-Heating Strategy with Robust Photoelectrochemical Oxygen Evolution Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207820. [PMID: 36974611 DOI: 10.1002/smll.202207820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
High-entropy oxides (HEO) have recently concerned interest as the most promising electrocatalytic materials for oxygen evolution reactions (OER). In this work, a new strategy to the synthesis of HEO nanostructures on Ti3 C2 Tx MXene via rapid microwave heating and subsequent calcination at a low temperature is reported. Furthermore, the influence of HEO loading on Ti3 C2 Tx MXene is investigated toward OER performance with and without visible-light illumination in an alkaline medium. The obtained HEO/Ti3 C2 Tx -0.5 hybrid exhibited an outstanding photoelectrochemical OER ability with a low overpotential of 331 mV at 10 mA cm-2 and a small Tafel slope of 71 mV dec-1 , which exceeded that of a commercial IrO2 catalyst (340 mV at 10 mA cm-2 ). In particular, the fabricated water electrolyzer with the HEO/Ti3 C2 Tx -0.5 hybrid as anode required a less potential of 1.62 V at 10 mA cm-2 under visible-light illumination. Owing to the strong synergistic interaction between the HEO and Ti3 C2 Tx MXene, the HEO/Ti3 C2 Tx hybrid has a great electrochemical surface area, many metal active sites, high conductivity, and fast reaction kinetics, resulting in an excellent OER performance. This study offers an efficient strategy for synthesizing HEO-based materials with high OER performance to produce high-value hydrogen fuel.
Collapse
Affiliation(s)
- Chae Eun Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Raja Arumugam Senthil
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gyoung Hwa Jeong
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
16
|
Cechanaviciute IA, Antony RP, Krysiak OA, Quast T, Dieckhöfer S, Saddeler S, Telaar P, Chen YT, Muhler M, Schuhmann W. Scalable Synthesis of Multi-Metal Electrocatalyst Powders and Electrodes and their Application for Oxygen Evolution and Water Splitting. Angew Chem Int Ed Engl 2023; 62:e202218493. [PMID: 36640442 DOI: 10.1002/anie.202218493] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Multi-metal electrocatalysts provide nearly unlimited catalytic possibilities arising from synergistic element interactions. We propose a polymer/metal precursor spraying technique that can easily be adapted to produce a large variety of compositional different multi-metal catalyst materials. To demonstrate this, 11 catalysts were synthesized, characterized, and investigated for the oxygen evolution reaction (OER). Further investigation of the most active OER catalyst, namely CoNiFeMoCr, revealed a polycrystalline structure, and operando Raman measurements indicate that multiple active sites are participating in the reaction. Moreover, Ni foam-supported CoNiFeMoCr electrodes were developed and applied for water splitting in flow-through electrolysis cells with electrolyte gaps and in zero-gap membrane electrode assembly (MEA) configurations. The proposed alkaline MEA-type electrolyzers reached up to 3 A cm-2 , and 24 h measurements demonstrated no loss of current density of 1 A cm-2 .
Collapse
Affiliation(s)
- Ieva A Cechanaviciute
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Rajini P Antony
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Olga A Krysiak
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Pascal Telaar
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Yen-Ting Chen
- The Center for Solvation Science ZEMOS, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
17
|
Xu H, Jin Z, Zhang Y, Lin X, Xie G, Liu X, Qiu HJ. Designing strategies and enhancing mechanism for multicomponent high-entropy catalysts. Chem Sci 2023; 14:771-790. [PMID: 36755717 PMCID: PMC9890551 DOI: 10.1039/d2sc06403k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
High-entropy materials (HEMs) are new-fashioned functional materials in the field of catalysis owing to their large designing space, tunable electronic structure, interesting "cocktail effect", and entropy stabilization effect. Many effective strategies have been developed to design advanced catalysts for various important reactions. Herein, we firstly review effective strategies developed so far for optimizing HEM-based catalysts and the underlying mechanism revealed by both theoretical simulations and experimental aspects. In light of this overview, we subsequently present some perspectives about the development of HEM-based catalysts and provide some serviceable guidelines and/or inspiration for further studying multicomponent catalysts.
Collapse
Affiliation(s)
- Haitao Xu
- School of Materials Science and Engineering, Dongguan University of TechnologyDongguan 523808China
| | - Zeyu Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Yinghe Zhang
- School of Science, Harbin Institute of Technology (Shenzhen)Shenzhen 518055China
| | - Xi Lin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Guoqiang Xie
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Xingjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hua-Jun Qiu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
18
|
Li X, Zhang Z, Shen M, Wang Z, Zheng R, Sun H, Liu Y, Wang D, Liu C. Highly efficient oxygen evolution reaction enabled by phosphorus-boron facilitating surface reconstruction of amorphous high-entropy materials. J Colloid Interface Sci 2022; 628:242-251. [PMID: 35998450 DOI: 10.1016/j.jcis.2022.08.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022]
Abstract
Efficient, cost-effective and durable electrocatalysts are highly required to overcome the slow kinetics and high overpotential of oxygen evolution reaction (OER). Here we report a series of novel amorphous high-entropy borophosphate catalysts FeCoNiMBPOx (M = Mg, Al, Cr, Mn) prepared by a low-temperature reduction method. The leaching of boron and phosphorus accelerates the surface self-reconstruction of FeCoNiMnBPOx, and the subsequently formed high-oxidation-state metal-OOH species is beneficial to improve the catalyst performance. Moreover, the unique amorphous structure with abundant defects provides more active sites for OER. As a return, all the samples exhibit excellent OER activity and stability. Among them, FeCoNiMnBPOx with the highest conductivity and the largest electrochemical active surface area (ECSA) exhibits the best electrocatalytic performance, requiring only low overpotentials of 248 mV and 294 mV to reach current densities of 10 mA cm-2 and 100 mA cm-2, respectively. This sample also shows an exceptional durability for 50 h without a significant increase in potential, which is superior to that of the benchmark RuO2 electrocatalyst. The combination of the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM) are responsible for the excellent catalyst performance. This work provides new ideas for designing high-activity multiple-element catalysts.
Collapse
Affiliation(s)
- Xinglong Li
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Ziyun Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Ming Shen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zhiyuan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Runguo Zheng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Yanguo Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Dan Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Chunli Liu
- Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| |
Collapse
|
19
|
Liu Y, Zou D, Gao Y. Performance of high temperature phase-stable high entropy oxide (MgCuMnCoFe)O x in catalytic wet air oxidation of chloroquine phosphate. JOURNAL OF MATERIALS SCIENCE 2022; 57:9104-9117. [PMID: 35620319 PMCID: PMC9116700 DOI: 10.1007/s10853-022-07271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED With the continuous spread of COVID-19, the water pollution problems caused by the abuse of chloroquine phosphate (CQP) as an antiviral drug have attracted wide attention. The cubic Fm-3m spinel high entropy oxide (HEO)-(MgCuMnCoFe)O x was prepared by coprecipitation method as the catalytic wet air oxidation (CWAO) catalyst to treat CQP simulated wastewater. Through electron spin resonance (ESR) analysis, HEO will stimulate the production of superoxide radical (·O2 -) and hydroxyl radical (·OH) in the wet air oxidation (WAO) process, which accelerates the degradation and mineralization of CQP. Through response surface method (RSM) optimization, the optimal degradation conditions of CQP in CWAO were proposed: initial oxygen pressure of 15 bar, catalyst dosage of 1.4 g/L and temperature of 230 °C. The advantages of HEO in CWAO were analyzed by principal component analysis (PCA). The degradation mechanism of CQP in CWAO by (MgCuMnCoFe)O x were explored. This work provides a new idea for the rapid development of HEO in the field of environmental catalysis. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-022-07271-z.
Collapse
Affiliation(s)
- Yuzhi Liu
- Water Research Center, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Donglei Zou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
| | - Yu Gao
- Water Research Center, Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|