1
|
Burikov SA, Sarmanova OE, Fedyanina AA, Plastinin IV, Dolenko TA. A step towards versatile temperature luminescent nanosensor: Combination of luminescent and time-resolved spectroscopy of NaYF 4:Yb 3+/Tm 3+ nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 334:125902. [PMID: 39986250 DOI: 10.1016/j.saa.2025.125902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
The paper proposes a novel approach to measuring the local temperature of a medium using nanoparticles NaYF4:Yb3+/Tm3+ with up-conversion luminescence. The developed method combines using temperature dependences of the luminescence intensity ratio of the bands in the region of 450 nm and 475 nm and the mass center position of the luminescence decay curve for the band in the region of 800 nm. The new approach provides not only high precision in determining the local temperature, but also the versatility of the NaYF4:Yb3+/Tm3+ thermosensor: it can be used for measuring temperature in any biological environment with a precision of up to 0.5 °C.
Collapse
Affiliation(s)
- Sergey A Burikov
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia.
| | - Olga E Sarmanova
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| | - Anna A Fedyanina
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| | - Ivan V Plastinin
- Skobeltsyn Institute of Nuclear Physics, Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| | - Tatiana A Dolenko
- Department of Physics, Moscow M.V. Lomonosov State University, Leninsky Gory 1/2, Moscow 119991, Russia
| |
Collapse
|
2
|
Wu X, Cheng S, Cheng D, Su X, Nie G, Wu C, Liu Y, Zhan S. Bright White Upconversion Luminescence under Low Excitation Power Density with Sensitive Temperature Monitoring. Inorg Chem 2025; 64:7325-7336. [PMID: 40202206 DOI: 10.1021/acs.inorgchem.4c05323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Generating white luminescence at the nanoscale is highly desirable for applications in cell imaging and optical sensing, where nanoscale photon sources are essential. However, achieving efficient white upconversion luminescence (UCL) remains a substantial challenge. In this study, we propose a method to achieve ultrastrong white UCL by spatially separating Yb3+/Er3+ and Yb3+/Tm3+ ion pairs into distinct layers within a core/multishell nanoparticle (NaYF4@NaYbF4:1.375%Tm@NaYF4@NaYbF4:20%Er@NaYF4, denoted as C-SSSS). The introduction of an inert NaYF4 interlayer (second shell) is critical, as it controls energy transfer between Er3+ and Tm3+ ions and suppresses nonradiative cross-relaxation. Under 980 nm excitation, the C-SSSS nanoparticles exhibit white emission intensity 37.1 times greater than that of core-only nanoparticles (NaYbF4:0.5%Tm, 0.5%Er). Furthermore, optimizing the inert core size to 85 nm maximizes the effective excitation volume of the Yb-Tm-doped active layer, enabling precise control of luminescence intensity and strong white light emission. The C-SSSS nanoparticles also demonstrate exceptional thermal sensitivity, with a thermometry sensitivity 2.5 times higher than that of core-only nanoparticles, attributed to lattice distortion at the NaYF4@NaYbF4 interface. This work highlights the dual functionality of ultrastrong white UCL and high-performance luminescent thermometry in a single-nanomaterial system.
Collapse
Affiliation(s)
- Xiaofeng Wu
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, P. R. China
- Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, P. R. China
| | - Shengbin Cheng
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Dong Cheng
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Xin Su
- College of Electrical and Information Engineering, Hunan University, Changsha 411082, P. R. China
| | - Guozheng Nie
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Chuangxin Wu
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Yunxin Liu
- Department of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Shiping Zhan
- School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, P. R. China
- Guangdong Provincial Key Laboratory of Industrial Intelligent Inspection Technology, Foshan University, Foshan 528000, P. R. China
| |
Collapse
|
3
|
Grzyb T, Ryszczyńska S, Jurga N, Przybylska D, Martín IR. Ultrasensitive and Adjustable Nanothermometers Based on Er 3+-Sensitized Core@Shell Nanoparticles for Use in the First Biological Window. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39363858 PMCID: PMC11492177 DOI: 10.1021/acsami.4c10176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
In recent years, intensive research has focused on lanthanide-doped nanoparticles (NPs) used as noncontact temperature sensors, particularly in nanomedicine. These NPs must be capable of excitation and emission within biological windows, where biological materials usually show better transparency for radiation. In this article, we propose that NPs sensitized with Er3+ ions can be applied as temperature sensors in biological materials. We synthesized the NPs through a reaction in high-boiling solvents and confirmed their crystal structure and the formation of core@shell NPs by using X-ray diffraction, high-resolution transmission electron microscopy, and element distribution mapping within the NPs. NaErF4@NaYF4, NaYF4:12.5% Er3+, 2.5% Tm3+@NaYF4, NaYF4:7.5% Er3+@NaYF4, and NaYF4:12.5% Er3+, 2.5% Ho3+@NaYF4 exhibited intense upconversion (UC) emission under 1532 nm laser excitation detectable also in the whole human blood. We propose that this UC results from energy transfer between Er3+ ions and from Er3+ to Tm3+ or Ho3+ codopants. To determine the mechanism of UC, we measured the dependence of the emission band intensities on the laser power densities. Importantly, we also analyzed the temperature-dependent emission of the NPs within the 295-360 K range. Based on the collected emission spectra, we calculated the luminescence intensity ratios (LIRs) of the emission bands to assess their potential for optical temperature sensing. The temperature-sensing properties varied with the concentration of Er3+ ions and the presence of additional Tm3+ or Ho3+ codopants. Depending on the NP composition and the emission bands used for luminescence ratio calculations, the maximum relative temperature sensitivity ranged from 4.55%·K-1 to 1.12%·K-1, with temperature resolution between 0.05 and 2.53 K at room temperature. Finally, as proof of using NPs as temperature sensors in biomedicine, we successfully measured the temperature-dependent emission of NaYF4:7.5% Er3+@NaYF4 NPs dispersed in whole blood under 1532 nm excitation. We demonstrated that the ratio of Er3+ ion emission bands changes with temperature, indicating that these NPs have potential applications in temperature sensing within biological environments. We also confirmed the properties of NPs as temperature sensors by measuring the temperature reading uncertainty and the repeatability of the LIR readings during heating-cooling cycles, thereby confirming the excellent properties of the studied systems as temperature sensors.
Collapse
Affiliation(s)
- Tomasz Grzyb
- Department
of Rare Earths, Faculty of Chemistry, Adam
Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Sylwia Ryszczyńska
- Department
of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, Poznań 60-625, Poland
| | - Natalia Jurga
- Department
of Rare Earths, Faculty of Chemistry, Adam
Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Dominika Przybylska
- Department
of Rare Earths, Faculty of Chemistry, Adam
Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Inocencio R. Martín
- Departamento
de Fisica, Instituto de Materiales y Nanotecnología (IMN), Universidad de La Laguna, San Cristóbal de La Laguna 38200, Santa Cruz de Tenerife, Spain
| |
Collapse
|
4
|
Zhu H, Ding X, Wang C, Cao M, Yu B, Cong H, Shen Y. Preparation of rare earth-doped nano-fluorescent materials in the second near-infrared region and their application in biological imaging. J Mater Chem B 2024; 12:1947-1972. [PMID: 38299679 DOI: 10.1039/d3tb01987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Second near-infrared (NIR-II) fluorescence imaging (FLI) has gained widespread interest in the biomedical field because of its advantages of high sensitivity and high penetration depth. In particular, rare earth-doped nanoprobes (RENPs) have shown completely different physical and chemical properties from macroscopic substances owing to their unique size and structure. This paper reviews the synthesis methods and types of RENPs for NIR-II imaging, focusing on new methods to enhance the luminous intensity of RENPs and multi-band imaging and multi-mode imaging of RENPs in biological applications. This review also presents an overview of the challenges and future development prospects based on RENPs in NIR-II regional bioimaging.
Collapse
Affiliation(s)
- Hetong Zhu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xin Ding
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Chang Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Mengyu Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
5
|
Grzyb T, Martín IR, Popescu R. The use of energy looping between Tm 3+ and Er 3+ ions to obtain an intense upconversion under the 1208 nm radiation and its use in temperature sensing. NANOSCALE 2024; 16:1692-1702. [PMID: 38131190 DOI: 10.1039/d3nr04418a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The upconversion phenomenon allows for the emission of nanoparticles (NPs) under excitation with near-infrared (NIR) light. Such property is demanded in biology and medicine to detect or treat diseases such as tumours. The transparency of biological systems for NIR light is limited to three spectral ranges, called biological windows. However, the most frequently used excitation laser to obtain upconversion is out of these ranges, with a wavelength of around 975 nm. In this article, we show an alternative - Tm3+/Er3+-doped NPs that can convert 1208 nm excitation radiation, which is in the range of the 2nd biological window, to visible light within the 1st biological window. The spectroscopic properties of the core@shell NaYF4:Tm3+@NaYF4 and NaYF4:Er3+,Tm3+@NaYF4 NPs revealed a complex mechanism responsible for the observed upconversion. To explain emission in the studied NPs, we propose an energy looping mechanism: a sequence of ground state absorption, energy transfers and cross-relaxation (CR) processes between Tm3+ ions. Next, the excited Tm3+ ions transfer the absorbed energy to Er3+ ions, which results in green, red and NIR emission at 526, 546, 660, 698, 802 and 982 nm. The ratio between these bands is temperature-dependent and can be used in remote optical thermometers with high relative temperature sensitivity, up to 2.37%/°C at 57 °C. The excitation and emission properties of the studied NPs fall within 1st and 2nd biological windows, making them promising candidates for studies in biological systems.
Collapse
Affiliation(s)
- Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Inocencio R Martín
- Departamento de Fisica, Universidad de La Laguna, Instituto de Materiales y Nanotecnología, 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131 Karlsruhe, Germany
| |
Collapse
|
6
|
Jurga N, Ryszczyńska S, Grzyb T. Designing photon upconversion nanoparticles capable of intense emission in whole human blood. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123220. [PMID: 37542873 DOI: 10.1016/j.saa.2023.123220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
The properties of upconverting nanoparticles (UCNPs) are crucial for their applications in biomedicine. For studies of organisms and biological materials, the penetration depth of excitation light is also essential as the depth from which the luminescence can be detected. Currently, many researchers are trying to obtain UCNPs with intense emission under excitation wavelengths from the biological transparency windows to increase the penetration depth. However, studies comparing the properties of various types of UCNPs in real conditions are rare. This article shows how deep the 808, 975, 1208, and 1532 nm laser radiation penetrates human blood. Moreover, we determined how thick a layer of blood still permits for observation of the luminescence signal. The measured luminescence properties indicated that the near-infrared light could pass through the blood even to a depth of 7.5 mm. The determined properties of core/shell NaErF4/NaYF4 materials are the most advantageous, and their emission is detectable through 3.0 mm of blood layer using a 1532 nm laser. We prove that the NaErF4/NaYF4 UCNPs can be perfect alternatives for the most studied NaYF4:Yb3+,Er3+/NaYF4. Additionally, the setup proposed in this article can potentially decrease reliance on animal testing in initial biomedicine research.
Collapse
Affiliation(s)
- Natalia Jurga
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Sylwia Ryszczyńska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
7
|
da Silva LE, Calado OLDL, de Oliveira Silva SF, da Silva KRM, Henrique Almeida J, de Oliveira Silva M, Viana RDS, de Souza Ferro JN, de Almeida Xavier J, Barbosa CDAES. Lemon-derived carbon dots as antioxidant and light emitter in fluorescent films applied to nanothermometry. J Colloid Interface Sci 2023; 651:678-685. [PMID: 37562309 DOI: 10.1016/j.jcis.2023.07.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023]
Abstract
The design of luminescent nanomaterials for the development of nanothermometers with high sensitivity and free of potentially toxic metals has developed in several fields, such as optoelectronics, sensors, and bioimaging. In addition, luminescent nanothermometers have advantages related to non-invasive measurement, with their wide detection range and high spatial resolution at the nano/microscale. Our study is the first, to our knowledge, to demonstrate a detailed study of a fluorescent film (Film-L) thermal sensor based on carbon dots derived from lemon bagasse extract (CD-L). The CD-L properties were explored as an antioxidant agent; their cytotoxicity was evaluated by using a human non-tumoral skin fibroblast (HFF-1) cell line from an MTT assay. The CD-L were characterized by HRTEM, DLS, FTIR, UV-VIS, and fluorescence spectroscopy. These confirmed their particle size distribution below 10 nm, graphitic structure in the core and surface organic groups, and strong blue emission. The CD-L showed cytocompatibility behavior and scavenging potential reactive species of biological importance: O2•- and HOCl, with IC50 of 276.8 ± 4.0 and 21.6 ± 0.7, respectively. The Film-L emission intensities (I425 nm) are temperature-dependent in the 298 to 333 K range. The Film-L luminescent thermometer shows a maximum relative thermal sensitivity of 2.69 % K-1 at 333 K.
Collapse
Affiliation(s)
- Livia E da Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Orlando Lucas de L Calado
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Steffano Felix de Oliveira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Kleyton Ritomar Monteiro da Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - James Henrique Almeida
- Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Messias de Oliveira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Rodrigo da Silva Viana
- Technology Center, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-900, Brazil
| | - Jamylle Nunes de Souza Ferro
- Institute of Biological Sciences and Health, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Jadriane de Almeida Xavier
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil
| | - Cintya D A E S Barbosa
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, Maceió, Alagoas 57072-970, Brazil.
| |
Collapse
|
8
|
Assessing the reproducibility and up-scaling of the synthesis of Er,Yb-doped NaYF 4-based upconverting nanoparticles and control of size, morphology, and optical properties. Sci Rep 2023; 13:2288. [PMID: 36759652 PMCID: PMC9911732 DOI: 10.1038/s41598-023-28875-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Lanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from low-cost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of β-NaYF4:Yb, Er UCNPs via thermal decomposition. Reaction parameters included solvent, precursor chemical compositions, ratio, and concentration. The resulting UCNPs were then examined regarding their application-relevant physicochemical properties such as size, size distribution, morphology, crystal phase, chemical composition, and photoluminescence. Based on these screening studies, we propose a small volume and high-concentration synthesis approach that can provide UCNPs with different, yet controlled size, an excellent phase purity and tunable morphology in batch sizes of up to at least 5 g which are well suited for the fabrication of sensors, printable barcodes or authentication and recycling tags.
Collapse
|
9
|
Multifunctional cellulose fibers: Intense red upconversion under 1532 nm excitation and temperature-sensing properties. Carbohydr Polym 2022; 294:119782. [DOI: 10.1016/j.carbpol.2022.119782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
|
10
|
Upconversion of NaYF4: Yb, Er Nanoparticles Co-doped with Zr 4+ for Magnetic Phase Transition and Biomedical Imaging Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
White up-conversion luminescence and highly-sensitive optical temperature sensing in Na3La(VO4)2:Yb,Er,Tm, Ho phosphors. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Pominova D, Romanishkin I, Proydakova V, Kuznetsov S, Grachev P, Ryabova A, Tabachkova NY, Fedorov P, Loschenov V. Study of synthesis temperature effect on β-NaGdF 4: Yb 3+, Er 3+upconversion luminescence efficiency and decay time using maximum entropy method. Methods Appl Fluoresc 2022; 10. [PMID: 35263723 DOI: 10.1088/2050-6120/ac5bdc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/09/2022] [Indexed: 11/11/2022]
Abstract
Upconversion materials have several advantages for many applications due to their great potential in converting infrared light to visible. For practical use, it is necessary to achieve high intensity of UC luminescence, so the studies of the optimal synthesis parameters for upconversion nanoparticles are still going on. In the present work, we analyzed the synthesis temperature effect on the efficiency and luminescence decay of β-NaGd0.78Yb0.20Er0.02F4 (15-25 nm) upconversion nanoparticles with hexagonal crystal structure synthesized by anhydrous solvothermal technique. The synthesis temperature was varied in the 290-320°C range. The synthesis temperature was shown to have a significant influence on the upconversion luminescence efficiency and decay time. The coherent scattering domain linearly depended on the synthesis temperature and was in the range 13.1-22.3 nm, while the efficiency of the upconversion luminescence increases exponentially from 0.02 to 0.10% under 1 W/cm2 excitation. For a fundamental analysis of the reasons for the upconversion luminescence intensity dependence on the synthesis temperature, it was proposed to use the maximum entropy method for luminescence decay kinetics processing. This method does not require a preliminary setting of the number of exponents and, due to this, makes it possible to estimate additional components in the luminescence decay kinetics, which are attributed to different populations of rare-earth ions in different conditions. Two components in the green luminescence and one component in the red luminescence decay kinetics were revealed for nanoparticles prepared at 290-300°C. An intense short and a weak long component in green luminescence decay kinetics could be associated with two different populations of ions in the surface quenching layer and the crystal core volume. With an increase in the synthesis temperature, the second component disappears, and the decay time increases due to an increase in the number of ions in the crystal core volume and a more uniform distribution of dopants.
Collapse
Affiliation(s)
- Daria Pominova
- Prokhorov General Physics Institute RAS, Vavilova str., 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Igor Romanishkin
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Vera Proydakova
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Sergei Kuznetsov
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Pavel Grachev
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Anastasia Ryabova
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Natalie Yu Tabachkova
- Prokhorov General Physics Institute RAS, Vavilova str. 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Pavel Fedorov
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| | - Victor Loschenov
- Prokhorov General Physics Institute RAS, Vavilova str 38, Moskva, 119991, RUSSIAN FEDERATION
| |
Collapse
|
13
|
Nannuri SH, Singh S, Misra SK, Chidangil S, George SD. Microwave-assisted synthesis and upconversion luminescence of NaYF 4:Yb, Gd, Er and NaYF 4:Yb, Gd, Tm nanorods. Methods Appl Fluoresc 2022; 10. [PMID: 35213848 DOI: 10.1088/2050-6120/ac58e6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/25/2022] [Indexed: 11/12/2022]
Abstract
Anisotropic rare-earth ion (RE3+) doped fluoride upconversion particles are emerging as a potential candidate in diverse areas, ranging from biomedical imaging to photonics. Here, we develop a facile strategy to synthesize NaYF4:Yb, Er, Gd and NaYF4:Yb, Tm, Gd upconversion nanorods via microwave synthesis route by controlling the synthesis time and compared the optical properties of similar nanorods prepared via solvothermal technique. With the increase in synthesis time, the phase of the particle was found to change from mixed-phase to purely hexagonal and the morphology of the particles change the mixed phase of spherical and rod-shaped particles to completely nanorods for a synthesis time of 60 minutes. Further, the intrinsically hydrophobic particles changed to hydrophilic by removal of oleic capping via acid treatment and the amine-functionalized silica coating. The upconversion luminescence, as well as laser power-dependent emission properties of the surface-modified particles, elucidate that the surface modification route influence the upconversion luminescence as well as solvent-dependent emission properties. Moreover, the laser power-dependent studies elucidate that the upconversion process in a multi-photon process.
Collapse
Affiliation(s)
- Shivanand H Nannuri
- Department of Atomic and MOlecular Physics, Manipal Academy of Higher Education, AB-5, LG-1, MIT Campus, MAHE. Manipal, Manipal, Karnataka, 576104, INDIA
| | - Simranjit Singh
- Materials Engineering, Indian Institute of Technology, IIT Gandhinagar, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, INDIA
| | - Superb Kumar Misra
- Materials Science and Engineering, IIT Gandhinagar, Materials Science and Engineering Indian Institute of Technology Gandhinagar, Ahmedabad, 382424, INDIA
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, AB-5, LG-1, MIT campus, Manipal, Karnataka, 576104, INDIA
| | - Sajan D George
- Center for Atomic and Molecular Physics, Manipal Academy of Higher Education, Academic Block -5, LG-01, MIT Campus, Manipal University, Manipal, Karnataka, 576104, INDIA
| |
Collapse
|
14
|
Liu X, He C, Huang Q, Yu M, Qiu Z, Cheng H, Yang Y, Hao X, Wang X. A facile visualized solid-phase detection of virus-specific nucleic acid sequences through an upconversion activated linear luminescence recovery process. Analyst 2022; 147:2378-2387. [DOI: 10.1039/d2an00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the LRET between UCNPs and AuNPs, a solid-phase biosensor was developed for detection of virus-specific nucleic acid sequences by the naked eye, and is expected to become a fast, facile, efficient and reliable POCT platform.
Collapse
Affiliation(s)
- Xiaorong Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Chaonan He
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Qi Huang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Mengmeng Yu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Zhuang Qiu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Haoxin Cheng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Yifei Yang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| |
Collapse
|