1
|
Tang H, Li Z, He X, Wang H, Yue M, Yuan Y, Dai Q, Tang X, Sun S, Zheng D, Luo Y, Hamdy MS, Ibrahim FA, Li T, Sun X, Tang B. Ultra-stable seawater oxidation at 1.5 A cm -2 enabled by heptafluorotantalate intercalated NiFe layered double hydroxide. J Colloid Interface Sci 2025; 694:137671. [PMID: 40306122 DOI: 10.1016/j.jcis.2025.137671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Seawater electrolysis is a facile, economical, and ecologically friendly approach for large-scale hydrogen production. However, the presence of chloride ions (Cl-) in seawater can cause severe anode corrosion, which hinders its further application. Herein, a heptafluorotantalate (TaF72-) intercalated NiFe layered double hydroxide on Ni foam (TF-NiFe LDH/NF) is proposed for efficient and durable alkaline seawater oxidation (ASO). Such TF-NiFe LDH/NF requires an overpotential of only 375 mV to achieve a current density (j) of 1 A cm-2 and maintains stable operation for 1000 h at a j of 1.5 A cm-2. In situ Raman characterization and stability tests indicate that TaF72- can not only facilitate the dynamic reconstruction process of the catalyst but also effectively repel Cl- at ampere-level j. This study highlights a novel anion (TaF72-) intercalation strategy, providing new insights into the design of efficient and stable electrocatalysts, thus offering a new approach to enhance corrosion resistance for ASO.
Collapse
Affiliation(s)
- Hong Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731 Sichuan, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 Sichuan, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054 Sichuan, China
| | - Hefeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China
| | - Meng Yue
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China
| | - Yujie Yuan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731 Sichuan, China
| | - Qiuying Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731 Sichuan, China
| | - Xiaolan Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731 Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China
| | - Yongsong Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Mohamed S Hamdy
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Fatma A Ibrahim
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731 Sichuan, China.
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014 Shandong, China; Laoshan Laboratory, Qingdao 266237 Shandong, China.
| |
Collapse
|
2
|
Yu J, Zhang N, Li J, Sun H, Gu X, Wu Z, Liu T, Du Y. Self-Supported NiCo 2S 4@Ce-NiFe LDH/CeO 2 Nanoarrays for Electrochemical Water Splitting. Inorg Chem 2025; 64:8971-8980. [PMID: 40272254 DOI: 10.1021/acs.inorgchem.5c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
The design of high-performance OER catalysts is crucial for efficient electrochemical water splitting (EWS). Herein, a NiCo2S4@Ce-NiFe LDH/CeO2 heterostructure nanoarray electrocatalyst with abundant oxygen defect sites is reported. The introduction of Ce species activates the lattice oxygen in the oxyhydroxides, inducing the transformation of the catalytic mechanism toward the lattice oxygen oxidation mechanism (LOM) pathway, bypassing the thermodynamic limitation of the adsorbate evolution mechanism (AEM), and strengthening the intrinsic activity of the material. Moreover, the reversible transitions between different oxidation states of Ce species and the high oxygen storage capacity of CeO2 regulate the adsorption behavior of the reaction intermediates, allowing it to be easier for the material to enrich the oxygen-containing intermediates, thereby improving the adsorption kinetics. Accordingly, NiCo2S4@Ce-NiFe LDH/CeO2 exhibits remarkable OER performance (η50 = 226 mV, η100 = 244 mV) and brilliant stability. Additionally, the presence of the CeO2 protective layer inhibits the impact of Cl- and other pollutants in seawater, which enables NiCo2S4@Ce-NiFe LDH/CeO2 to perform satisfactorily in seawater electrolysis, as well. This study offers a fresh perspective on the design of defect-rich OER catalysts.
Collapse
Affiliation(s)
- Jun Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, P.R. China
| | - Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, P.R. China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, P.R. China
| | - Huiyu Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, P.R. China
| | - Xinyu Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, P.R. China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Tianpeng Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, P.R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Industrial Park, Renai Road, Suzhou 215123, P.R. China
| |
Collapse
|
3
|
Yang X, Qiu L, Zhang Y, Dong A, Guo C, Zhang S, Song Y, Gao H, Zhan T. Boosting P-CoMoO 3/MoO 2 hydrogen evolution via water molecule dissociation by MoO 2 and H 2 desorption by CoMoO 3. Chem Commun (Camb) 2025; 61:6490-6493. [PMID: 40178156 DOI: 10.1039/d5cc01060h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The P-CoMoO3/MoO2 heterostructure catalyst exhibits excellent HER performance. Both experimental and DFT results show that MoO2 acts as the water-dissociation promoter, while CoMoO3 favors hydrogen desorption. This work provides a new idea for the design of heterojunction HER catalysts.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
- Hebei Minzu Normal University, Chengde 067000, China
| | - Liangkun Qiu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
- Shandong Environmental Protection Development Group Science and Technology Innovation Co., Ltd, Jinan 250000, China
| | - Yan Zhang
- SINOPEC Qingdao Safety Engineering Institute, Qingdao 266042, China
| | - Ao Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chenyang Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuo Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yunjin Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Hongtao Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
4
|
Liu X, Bai L, Guo X, Li H, Liu X, Cao J, Yang L, Wei M, Chen Y, Liu H, Tao Q. Enhanced the Overall Water Splitting Performance of Quaternary NiFeCrCo LDH: Via Increasing Entropy. Molecules 2025; 30:1461. [PMID: 40286069 PMCID: PMC11990446 DOI: 10.3390/molecules30071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/15/2025] [Accepted: 03/22/2025] [Indexed: 04/29/2025] Open
Abstract
The construction of high-performance catalysts for overall water splitting (OWS) is crucial. Nickel-iron-layered double hydroxide (NiFe LDH) is a promising catalyst for OWS. However, the slow kinetics of the HER under alkaline conditions seriously hinder the application of NiFe LDH in OWS. This work presents a strategy to optimize OWS performance by adjusting the entropy of multi-metallic LDH. Quaternary NiFeCrCo LDH was constructed, which exhibited remarkable OWS activity. The OER and HER of NiFeCrCo LDH were stable for 100 h and 80 h, respectively. The OWS activity of NiFeCrCo LDH//NiFeCrCo LDH only required 1.42 V to reach 10 mA cm-2, and 100 mA cm-2 required 1.54 V. Under simulated seawater conditions, NiFeCrCo LDH//NiFeCrCo LDH required 1.57 V to reach 10 mA cm-2 and 1.71 V to reach 100 mA cm-2. The introduction of Co into the structure induced Cr to provide more electrons to Fe, which regulated the electronic state of NiFeCrCo LDH. The appropriate electronic state of the structure is essential for the remarkable performance of OWS. This work proposes a new strategy to achieve excellent OWS performance through entropy-increase engineering.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
| | - Li Bai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
| | - Xinrong Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
| | - Haoyu Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
| | - Xiaoyan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Jian Cao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Lili Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Maobin Wei
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Yanli Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (X.L.); (L.B.); (X.G.); (H.L.); (X.L.); (J.C.); (L.Y.); (M.W.)
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Qiang Tao
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
| |
Collapse
|
5
|
Zhang J, Ji X, Han C, Li Z, Jiang S, Yu J, Chen D, Shao Z. Amorphous/crystalline Ni-Fe based electrodes with rich oxygen vacancies enable highly active oxygen evolution in seawater electrolysis. J Colloid Interface Sci 2025; 679:481-489. [PMID: 39490266 DOI: 10.1016/j.jcis.2024.10.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To realize large-scale production of hydrogen through seawater electrolysis, it is highly crucial to engineer high-activity and robustly stable catalytic materials for oxygen evolution reaction (OER). Here, a facile etching growth strategy based on Ni foam (NF) is employed to fabricate an amorphous/crystalline Ni-Fe based electrode with rich oxygen vacancies as a promising OER electrocatalyst (a/c-NiFeOxHy@NF). Of note, the introduction of Fe induces the generation of plentiful Ni(Fe)OOH species, which can contribute to the remarkable OER behavior. Profiting from the favorable geometric microstructure of ultrathin nanosheets coupled with 3D open-pore architecture and regulated electronic state by increased oxygen vacancies and abundant crystalline-amorphous boundaries, the resulting a/c-NiFeOxHy@NF displays prominent electrocatalytic OER activity in pure alkaline solution and seawater, achieving impressive overpotentials of only 219 and 233 mV to reach 100 mA cm-2, respectively. More significantly, the electrode can keep stable operation without obvious attenuation for over 1200 h at 100 mA cm-2, demonstrating its exceptional corrosion resistance. Such robustness of this electrode surpasses those of almost all reported OER electrocatalysts. Furthermore, in a self-assembled seawater electrolyzer with a/c-NiFeOxHy@NF as the anode and l-RuP@NF as the cathode, a large current density of 500 mA cm-2 is easily achieved at the voltage of 1.795 V at 65 °C. The work offers a novel paradigm for constructing low-cost, high-efficiency, and ultra-stable OER catalysts, which shows huge promise for industrial seawater electrolysis applications.
Collapse
Affiliation(s)
- Jingcheng Zhang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Xinru Ji
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Chenhui Han
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Shanshan Jiang
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Jie Yu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Daifen Chen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
6
|
Yang X, Bu H, Qi R, Ye L, Song M, Chen Z, Ma F, Wang C, Zong L, Gao H, Zhan T. Boosting urea-assisted water splitting over P-MoO 2@CoNiP through Mo leaching/reabsorption coupling CoNiP reconstruction. J Colloid Interface Sci 2024; 676:445-458. [PMID: 39033679 DOI: 10.1016/j.jcis.2024.07.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Combining the urea oxidation reaction (UOR) with the hydrogen evolution reaction (HER) is an effective technology for energy-saving hydrogen production. Herein, a bifunctional electrocatalyst with CoNiP nanosheet coating on P-doped MoO2 nanorods (P-MoO2@CoNiP) is obtained via a two-step hydrothermal followed a phosphorization process. The catalyst demonstrates exceptional alkaline HER performance due to the formation of MoO2 and the dissolution/absorption of Mo. Meanwhile, the inclusion of Co and P in the P-MoO2@CoNiP catalyst facilitated the formation of NiOOH, enhancing UOR performance. Density functional theory calculations reveal that the hydrogen adsorption Gibbs free energy (ΔGH*) of P-MoO2@CoNiP is closer to 0 eV than CoNiP, favoring the HER. The catalyst only needs -0.08 and 1.38 V to reach 100 mA cm-2 for catalyzing the HER and UOR, respectively. The full urea electrolysis system driven by P-MoO2@CoNiP requires 1.51 V to achieve 100 mA cm-2, 120 mV lower than the traditional water electrolysis.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Hebei Normal University for Nationalities, Chengde 067000, China
| | - Hongkai Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruiwen Qi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Min Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhipeng Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Ma
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongtao Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
7
|
Ye L, Chen Z, Xu X, Ma F, Fan K, Zong L, Wang L, Chen G, Li X, Zhan T. Ultrafast Room-Temperature Synthesis of Phosphate-Intercalated NiFe Layered Double Hydroxides for High-Performance Alkaline Seawater Oxidation. Inorg Chem 2024; 63:20859-20869. [PMID: 39393000 DOI: 10.1021/acs.inorgchem.4c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Quick and easy synthetic methods and highly efficient catalytic performance are equally important to anodic oxygen evolution reaction (OER) electrocatalysts for alkaline seawater electrolysis. Herein, we report a facile one-step route to in situ growing PO43- intercalated NiFe layered double hydroxides (NiFe-LDH) on Ni foam (denoted as NiFe-P/NF) by a room-temperature immersion for several minutes. This ultrafast approach transforms the NF surface into a rough PO43- intercalated NiFe-LDH overlayer, which demonstrates outstanding OER performance in both alkaline simulated and natural seawaters owing to good hydrophilic interface and the electrostatic repulsion of PO43- against Cl- anions. Density functional theory calculations reveal that the intercalated PO43- can not only promote electron transfer but also prevent Cl- from entering the interlayer and simultaneously inhibit the migration of Cl- over the NiFe-LDH surface. In alkaline simulated and natural seawater electrolytes, NiFe-P/NF needs low overpotentials of 248 and 298 mV to achieve a current density of 100 mA cm-2, respectively. NiFe-P/NF can stably run over 42 h in an alkaline high-salty electrolyte (1 M KOH + 2.5 M NaCl) at 250 mA cm-2, more than 70 times that of NiFe/NF (0.6 h), emphasizing the critical role of the intercalated PO43- anions on the excellent durability. This study offers a new strategy to modify commercial NF to prepare efficient and stable OER catalysts for seawater electrolysis.
Collapse
Affiliation(s)
- Lin Ye
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - ZhiPeng Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinyue Xu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fei Ma
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kaicai Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingbo Zong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guanjun Chen
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xingwei Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianrong Zhan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
8
|
Wu Y, Yu Y, Shen W, Jiang Y, He R, Li M. Activating active motifs in Ni-Fe oxide by introducing dual-defect for oxygen evolution reaction in alkaline seawater. J Colloid Interface Sci 2024; 670:132-141. [PMID: 38759268 DOI: 10.1016/j.jcis.2024.05.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Developing simple and energy-saving pathways to prepare high-efficient and robust non-noble metal based electrocatalysts remains a huge challenge to hydrogen production from seawater electrolysis. Here we demonstrate a facile hydrothermal-calcination-etching approach that simultaneously achieves the required surface N doping and Fe vacancies generation to activate the Ni-O-Fe active motifs in N-vFe-NiFe2O4/NF. The unique localized environments (Ni-N-Fe structures and unsaturated O- and N-coordination) due to dual-defect strategy can effectively regulate the electronic structure of the Ni-O-Fe motif to make the motif more reactive. As a result, the N-vFe-NiFe2O4/NF catalyst exhibits overpotentials of 210, 213 and 222 mV to deliver 100 mA cm-2 in 1.0 M KOH, simulated seawater and alkaline seawater environments, respectively. Theoretical calculations prove that the Ni-O-Fe structure is the active motif and that the presence of special localized environments can optimize the adsorption of key intermediates on the activated active motifs.
Collapse
Affiliation(s)
- Yucheng Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Wang Z, Niu X, Ye L, Wang X, Wang C, Wen Y, Zong L, Wang L, Gao H, Li X, Zhan T. Boron modification promoting electrochemical surface reconstruction of NiFe-LDH for efficient and stable freshwater/seawater oxidation catalysis. J Colloid Interface Sci 2024; 668:607-617. [PMID: 38696989 DOI: 10.1016/j.jcis.2024.04.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Transition metal-based electrocatalysts generally take place surface reconstruction in alkaline conditions, but little is known about how to improve the reconstruction to a highly active oxyhydroxide surface for an efficient and stable oxygen evolution reaction (OER). Herein, we develop a strategy to accelerate surface reconstruction by combining boron modification and cyclic voltammetry (CV) activation. Density functional theory calculations and in-situ/ex-situ characterizations indicate that both B-doping and electrochemical activation can reduce the energy barrier and contribute to the surface evolution into highly active oxyhydroxides. The formed oxyhydroxide active phase can tune the electronic configuration and boost the OER process. The reconstructed catalyst of CV-B-NiFe-LDH displays excellent alkaline OER performance in freshwater, simulated seawater, and natural seawater with low overpotentials at 100 mA cm-2 (η100: 219, 236, and 255 mV, respectively) and good durability. This catalyst also presents outstanding Cl- corrosion resistance in alkalized seawater electrolytes. The CV-B-NiFe-LDH||Pt/C electrolyzer reveals prominent performance for alkalized freshwater/seawater splitting. This study provides a guideline for developing advanced OER electrocatalysts by promoting surface reconstruction.
Collapse
Affiliation(s)
- Zekun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xueqing Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaoyu Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonghong Wen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongtao Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xingwei Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
10
|
Park JH, Kwon HJ, Lee DY, Suh SJ. Effect of Ni Sulfate Residue on Oxygen Evolution Reaction (OER) in Porous NiFe@NiFe Layered Double Hydroxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400046. [PMID: 38441356 DOI: 10.1002/smll.202400046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Indexed: 08/02/2024]
Abstract
The development of cost-effective and high-performance oxygen evolution reaction (OER) catalysts is a significant challenge. This study presents the synthesis of binder-free NiFe@NiFe layered double hydroxide (NNF) via one-pot electrodeposition on carbon paper and Ni foam at high current densities. The presence of Ni sulfate residues on the prepared NNF is also investigated. The findings indicate that Ni sulfate significantly improves OER performance and durability. The sulfate content can be controlled by varying the method and duration of washing. NNF prepared through dipping (NNF-D) exhibits outstanding OER activity with a low overpotential of 241 mV, which is 25 mV lower than that of NNF washed for 60 s (NNF-W-60 s) at 10 mA cm-2 in 1 m KOH. Furthermore, density functional theory analyses indicate that the Ni sulfate residue helps modify the electronic structure, thereby optimizing the binding strength of *OOH. This synthetic strategy is expected to inspire the development of next-generation catalysts utilizing various adsorbates.
Collapse
Affiliation(s)
- Jong-Hwan Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Republic of South Korea
| | - Hyun Jun Kwon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Republic of South Korea
| | - Da Young Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Republic of South Korea
| | - Su-Jeong Suh
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 440-746, Republic of South Korea
| |
Collapse
|
11
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
12
|
Ye L, Ding Y, Niu X, Xu X, Fan K, Wen Y, Zong L, Li X, Du X, Zhan T. Unraveling the crucial contribution of additive chromate to efficient and stable alkaline seawater oxidation on Ni-based layered double hydroxides. J Colloid Interface Sci 2024; 665:240-251. [PMID: 38531271 DOI: 10.1016/j.jcis.2024.03.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Seawater electrolysis to generate hydrogen offers a clean, green, and sustainable solution for new energy. However, the catalytic activity and durability of anodic catalysts are plagued by the corrosion and competitive oxidation reactions of chloride in high concentrations. In this study, we find that the additive CrO42- anions in the electrolyte can not only promote the formation and stabilization of the metal oxyhydroxide active phase but also greatly mitigate the adverse effect of Cl- on the anode. Linear sweep voltammetry, accelerated corrosion experiments, corrosion polarization curves, and charge transfer resistance results indicate that the addition of CrO42- distinctly improves oxygen evolution reaction (OER) kinetics and corrosion resistance in alkaline seawater electrolytes. Especially, the introduction of CrO42- even in the highly concentrated NaCl (2.5 M) electrolyte prolongs the durability of NiFe-LDH to almost five times the case without CrO42-. Density functional theory calculations also reveal that the adsorption of CrO42- can tune the electronic configuration of active sites of metal oxyhydroxides, enhance conductivity, and optimize the intermediate adsorption energies. This anionic additive strategy can give a better enlightenment for the development of efficient and stable oxygen evolution reactions for seawater electrolysis.
Collapse
Affiliation(s)
- Lin Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yao Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xueqing Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinyue Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kaicai Fan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonghong Wen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xingwei Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xiaofan Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, 266101, China.
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
13
|
Zhang Y, Jeong S, Son E, Choi Y, Lee S, Baik JM, Park H. In Situ Phase Separation-Induced Self-Healing Catalyst for Efficient Direct Seawater Electrolysis. ACS NANO 2024; 18:16312-16323. [PMID: 38864411 DOI: 10.1021/acsnano.4c06220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Direct seawater electrolysis technology for sustainable hydrogen production has garnered significant attention, owing to its abundant resource supply and economic potential. However, the complex composition and high chloride concentration of seawater have hindered its practical implementation. In this study, we report an in situ-synthesized dual-phase electrocatalyst (HPS-NiMo), comprising an amorphous phosphide protective outer phase and a crystalline alloy inner phase with supplementary sulfur active sites, to improve the kinetics of direct seawater electrolysis. The HPS-NiMo exhibits long-term stability, remaining stable for periods exceeding 120 h at 200 mA cm-2; moreover, it lowers the required operating voltage to ∼1.8 V in natural seawater. The chlorine chemistry, corrosion during direct natural seawater electrolysis, and mechanism behind the high-performing catalysts are discussed. We also investigated the possibility of recovering the anode precipitates, which inevitably occurs during seawater electrolysis.
Collapse
Affiliation(s)
- Yihan Zhang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seulgi Jeong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunbin Son
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yunseong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sangjin Lee
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong Min Baik
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyesung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Wang X, Li Z, Sun S, Sun H, Yang C, Cai Z, Zhang H, Yue M, Zhang M, Wang H, Yao Y, Liu Q, Li L, Chu W, Hu J, Sun X, Tang B. Oxalate anions-intercalated NiFe layered double hydroxide as a highly active and stable electrocatalyst for alkaline seawater oxidation. J Colloid Interface Sci 2024; 662:596-603. [PMID: 38367577 DOI: 10.1016/j.jcis.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/19/2024]
Abstract
Seawater electrolysis is gaining recognition as a promising method for hydrogen production. However, severe anode corrosion caused by the high concentration of chloride ions (Cl-) poses a challenge for the long-term oxygen evolution reaction. Herein, an anti-corrosion strategy of oxalate anions intercalation in NiFe layered double hydroxide on nickel foam (NiFe-C2O42- LDH/NF) is proposed. The intercalation of these highly negatively charged C2O42- serves to establish electrostatic repulsion and impede Cl- adsorption. In alkaline seawater, NiFe-C2O42- LDH/NF requires an overpotential of 337 mV to gain the large current density of 1000 mA cm-2 and operates continuously for 500 h. The intercalation of C2O42- is demonstrated to significantly boost the activity and stability of NiFe LDH-based materials during alkaline seawater oxidation.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, Chongqing, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Hang Sun
- Department of Science and Environmental Studies, Faculty of Liberal Arts and Social Science, The Education University of Hong Kong, Hong Kong 999077, China
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Meng Yue
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Hefeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Wei Chu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jianming Hu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, Chongqing, China.
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China; Laoshan Laboratory, Qingdao 266237, Shandong, China.
| |
Collapse
|
15
|
Corbin J, Jones M, Lyu C, Loh A, Zhang Z, Zhu Y, Li X. Challenges and progress in oxygen evolution reaction catalyst development for seawater electrolysis for hydrogen production. RSC Adv 2024; 14:6416-6442. [PMID: 38380239 PMCID: PMC10877674 DOI: 10.1039/d3ra08648h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Production of green hydrogen on a large scale can negatively impact freshwater resources. Therefore, using seawater as an electrolyte in electrolysis is a desirable alternative to reduce costs and freshwater reliance. However, there are limitations to this approach, primarily due to the catalyst involved in the oxygen evolution reaction (OER). In seawater, the OER features sluggish kinetics and complicated chemical reactions that compete. This review first introduces the benefits and challenges of direct seawater electrolysis and then summarises recent research into cost-effective and durable OER electrocatalysts. Different modification methods for nickel-based electrocatalysts are thoroughly reviewed, and promising electrocatalysts that the authors believe deserve further exploration have been highlighted.
Collapse
Affiliation(s)
- Jack Corbin
- Renewable Energy Group, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus Cornwall TR10 9FE UK
| | - Mikey Jones
- Renewable Energy Group, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus Cornwall TR10 9FE UK
| | - Cheng Lyu
- Renewable Energy Group, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus Cornwall TR10 9FE UK
| | - Adeline Loh
- Renewable Energy Group, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus Cornwall TR10 9FE UK
| | - Zhenyu Zhang
- Renewable Energy Group, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus Cornwall TR10 9FE UK
| | - Yanqui Zhu
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Streatham Campus Exeter EX4 4PY UK
| | - Xiaohong Li
- Renewable Energy Group, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus Cornwall TR10 9FE UK
| |
Collapse
|
16
|
Ju X, He X, Sun Y, Cai Z, Sun S, Yao Y, Li Z, Li J, Wang Y, Ren Y, Ying B, Luo Y, Zheng D, Liu Q, Xie L, Li T, Sun X, Tang B. Fabrication of a hierarchical NiTe@NiFe-LDH core-shell array for high-efficiency alkaline seawater oxidation. iScience 2024; 27:108736. [PMID: 38269101 PMCID: PMC10805641 DOI: 10.1016/j.isci.2023.108736] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Herein, a hierarchical NiTe@NiFe-LDH core-shell array on Ni foam (NiTe@NiFe-LDH/NF) demonstrates its effectiveness for oxygen evolution reaction (OER) in alkaline seawater electrolyte. This NiTe@NiFe-LDH/NF array showcases remarkably low overpotentials of 277 mV and 359 mV for achieving current densities of 100 and 500 mA cm-2, respectively. Also, it shows a low Tafel slope of 68.66 mV dec-1. Notably, the electrocatalyst maintains robust stability over continuous electrolysis for at least 50 h at 100 mA cm-2. The remarkable performance and hierarchical structure advantages of NiTe@NiFe-LDH/NF offer innovative insights for designing efficient seawater oxidation electrocatalysts.
Collapse
Affiliation(s)
- Xuexuan Ju
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yuntong Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yongchao Yao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yuchun Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Binwu Ying
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Lisi Xie
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
- Laoshan Laboratory, Qingdao, Shandong 266237, China
| |
Collapse
|
17
|
Zhang X, Li Z, Cai Z, Li J, Zhang L, Zheng D, Luo Y, Sun S, Liu Q, Tang B, Yang Y, Wang H, Sun X. Hierarchical CoS 2@NiFe-LDH as an efficient electrocatalyst for alkaline seawater oxidation. Chem Commun (Camb) 2023; 59:11244-11247. [PMID: 37656429 DOI: 10.1039/d3cc03457g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Developing earth-abundant non-noble electrocatalysts with high performance is significant but challenging for the oxygen evolution reaction (OER) in seawater. Herein, a hierarchical electrocatalyst, NiFe-layered double hydroxide (LDH) nanosheet anchored CoS2 nanowires supported on carbon cloth, is developed for efficient OER electrocatalysis in alkaline seawater, demanding a low overpotential of 256 mV to drive a current density of 100 mA cm-2, along with favorable catalytic durability for at least 48 h with negligible decay.
Collapse
Affiliation(s)
- Xuefeng Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| | - Zixiao Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Jun Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
- Laoshan Laboratory, Qingdao 266237, Shandong, China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China.
| | - Huiqing Wang
- Medical Simulation Centre, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
18
|
Yang X, He X, He L, Chen J, Zhang L, Liu Q, Cai Z, Yang C, Sun S, Zheng D, Farouk A, Hamdy MS, Ren Z, Sun X. A Hierarchical CuO Nanowire@CoFe-Layered Double Hydroxide Nanosheet Array as a High-Efficiency Seawater Oxidation Electrocatalyst. Molecules 2023; 28:5718. [PMID: 37570688 PMCID: PMC10420605 DOI: 10.3390/molecules28155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Seawater electrolysis has great potential to generate clean hydrogen energy, but it is a formidable challenge. In this study, we report CoFe-LDH nanosheet uniformly decorated on a CuO nanowire array on Cu foam (CuO@CoFe-LDH/CF) for seawater oxidation. Such CuO@CoFe-LDH/CF exhibits high oxygen evolution reaction electrocatalytic activity, demanding only an overpotential of 336 mV to generate a current density of 100 mA cm-2 in alkaline seawater. Moreover, it can operate continuously for at least 50 h without obvious activity attenuation.
Collapse
Affiliation(s)
- Xiya Yang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xun He
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lang He
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Jie Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| | - Asmaa Farouk
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.F.)
| | - Mohamed S. Hamdy
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia; (A.F.)
| | - Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China (C.Y.)
| |
Collapse
|
19
|
Feng C, Chen M, Zhou Y, Xie Z, Li X, Xiaokaiti P, Kansha Y, Abudula A, Guan G. High-entropy NiFeCoV disulfides for enhanced alkaline water/seawater electrolysis. J Colloid Interface Sci 2023; 645:724-734. [PMID: 37172482 DOI: 10.1016/j.jcis.2023.04.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/15/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Creating electrocatalysts with high activity and stability to meet the needs of highly effective seawater splitting is of great importance to achieve the goal of hydrogen production from abundant seawater source, which however is still challenging owing to sluggish oxygen evolution reaction (OER) dynamics and the existed competitive chloride evolution reaction. Herein, high-entropy (NiFeCoV)S2 porous nanosheets are uniformly fabricated on Ni foam via a hydrothermal reaction process with a sequential sulfurization step for alkaline water/seawater electrolysis. The obtained rough and porous nanosheets provide large active surface area and exposed more active sites, which can facilitate mass transfer and are conducive to the improvement of the catalytic performance. Combined with the strong synergistic electron modulation effect of multi elements in (NiFeCoV)S2, the as-fabricated catalyst exhibits low OER overpotentials of 220 and 299 mV at 100 mA cm-2 in alkaline water and natural seawater, respectively. Besides, the catalyst can withstand a long-term durability test for more than 50 h without hypochlorite evolution, showing excellent corrosion resistance and OER selectivity. By employing the (NiFeCoV)S2 as the electrocatalyst for both anode and cathode to construct an overall water/seawater splitting electrolyzer, the required cell voltages are only 1.69 and 1.77 V to reach 100 mA cm-2 in alkaline water and natural seawater, respectively, showing a promising prospect towards the practical application for efficient water/seawater electrolysis.
Collapse
Affiliation(s)
- Changrui Feng
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Meng Chen
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan
| | - Yifan Zhou
- Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Graduate School of Sustainable Community Studies, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, China
| | - Xiumin Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yasuki Kansha
- Organization for Programs on Environmental Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan.
| | - Guoqing Guan
- Graduate School of Science and Technology, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Energy Conversion Engineering Laboratory, Institute of Regional Innovation, Hirosaki University, 3-Bunkyocho, Hirosaki 036-8561, Japan; Graduate School of Sustainable Community Studies, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan.
| |
Collapse
|
20
|
Alkali treatment of layered double hydroxide nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. J Colloid Interface Sci 2023; 636:11-20. [PMID: 36621125 DOI: 10.1016/j.jcis.2022.12.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Efficient and economic bifunctional electrocatalyst for water splitting to produce hydrogen is urgently required. The layered double hydroxides (LDHs) have shown superior activity for oxygen evolution reaction (OER) for water electrolysis, while their hydrogen evolution reaction (HER) activity remains challenging. Herein, we report an alkali hydrothermal-treatment strategy to enhance the HER as well as OER performance of NiCo-LDH. This method can create metal vacancies and newly formed Ni/Co(OH)2 phase over NiCo-LDH, tune the electronic structure, and improve the electrical conductivity, thereby improving the electrochemical activity. The NiCo-LDH-OH catalyst delivers a current density of 10 mA cm-2 at an overpotential of 180 mV for HER and an overpotential of 317 mV for OER, which is greatly reduced compared to the pristine NiCo-LDH (295 mV for HER and 336 mV for OER). When assembled into an electrolyzer both as a cathode and anode, it demonstrates superior activity for overall water splitting with no obvious decay after 20 h. This work paves a new path for fabricating efficient LDHs-based HER/OER bifunctional catalysts.
Collapse
|
21
|
Ai L, Wang X, Luo J, Jiang J. Superwettable and photothermal all-in-one electrocatalyst for boosting water/urea electrolysis. J Colloid Interface Sci 2023; 644:134-145. [PMID: 37105037 DOI: 10.1016/j.jcis.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Developing multifunctional all-in-one electrocatalysts for energy-saving hydrogen generation remains a challenge. In this study, a simple and feasible thermal phosphorization strategy is explored to rationally construct P-doped MoO2-NiMoO4 heterostructure on nickel foam (NF). The heterointerfaced P-MoO2-NiMoO4/NF can simultaneously realize the integrated all-in-one functionalities, innovatively introducing superwettable surfaces, photothermal conversion capabilities and electrocatalytic functions. The superwettability gives P-MoO2-NiMoO4/NF sufficient electrolyte permeation and smooth bubble detachment. The plasmonic MoO2 with photothermal performance greatly elevates the local surface temperature of in P-MoO2-NiMoO4/NF, which is conducive to improve the electrocatalytic efficiency. The favorable in-situ surface reconstruction brings abundant active sites for electrocatalytic reactions. As an advanced multifunctional electrocatalyst, the superwettable and photothermal P-MoO2-NiMoO4/NF exhibits significantly improved performances in oxygen evolution reaction (OER) and urea oxidation reaction (UOR). More importantly, the highly efficient and stable overall water-urea electrolysis assisted by photothermal fields can be simply achieved by exposing P-MoO2-NiMoO4/NF to near-infrared (NIR) light.
Collapse
Affiliation(s)
- Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xinzhi Wang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jingyu Luo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
22
|
Ren JT, Chen L, Tian WW, Song XL, Kong QH, Wang HY, Yuan ZY. Rational Synthesis of Core-Shell-Structured Nickel Sulfide-Based Nanostructures for Efficient Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300194. [PMID: 36965012 DOI: 10.1002/smll.202300194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Versatile electrocatalysis at higher current densities for natural seawater splitting to produce hydrogen demands active and robust catalysts to overcome the severe chloride corrosion, competing chlorine evolution, and catalyst poisoning. Hereto, the core-shell-structured heterostructures composed of amorphous NiFe hydroxide layer capped Ni3 S2 nanopyramids which are directly grown on nickel foam skeleton (NiS@LDH/NF) are rationally prepared to regulate cooperatively electronic structure and mass transport for boosting oxygen evolution reaction (OER) performance at larger current densities. The prepared NiS@LDH/NF delivers the anodic current density of 1000 mA cm-2 at the overpotential of 341 mV in 1.0 m KOH seawater. The feasible surface reconstruction of Ni3 S2 -FeNi LDH interfaces improves the chemical stability and corrosion resistance, ensuring the robust electrocatalytic activity in seawater electrolytes for continuous and stable oxygen evolution without any hypochlorite production. Meanwhile, the designed Ni3 S2 nanopyramids coated with FeNi2 P layer (NiS@FeNiP/NF) still exhibit the improved hydrogen evolution reaction (HER) activity in 1.0 m KOH seawater. Furthermore, the NiS@FeNiP/NF||NiS@LDH/NF pair requires cell voltage of 1.636 V to attain 100 mA cm-2 with a 100% Faradaic efficiency, exhibiting tremendous potential for hydrogen production from seawater.
Collapse
Affiliation(s)
- Jin-Tao Ren
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Lei Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Wen-Wen Tian
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Xin-Lian Song
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Qing-Hui Kong
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Hao-Yu Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| |
Collapse
|
23
|
Zhang S, Cen M, Wang Q, Luo X, Peng W, Li Y, Zhang F, Fan X. Complete reconstruction of NiMoO 4/NiFe LDH for enhanced oxygen evolution reaction. Chem Commun (Camb) 2023; 59:3427-3430. [PMID: 36857619 DOI: 10.1039/d2cc06879f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The oxygen evolution reaction (OER) is a vital half-reaction in several electrochemical energy conversion devices. Herein, we report a hierarchical NiMoO4/NiFe LDH pre-catalyst that enables complete reconstruction and fine structural inheritance, while exhibiting a low overpotential of 188 mV at 10 mA cm-2 in 1.0 M KOH.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Mingjun Cen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Qianqiao Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Xinyu Luo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Wenchao Peng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Yang Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Fengbao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China.
| | - Xiaobin Fan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Institute of Shaoxing, Tianjin University, Zhejiang 312300, China
| |
Collapse
|
24
|
Fu C, Fan J, Zhang Y, Lv H, Ji D, Hao W. Mild construction of an Fe-B-O based flexible electrode toward highly efficient alkaline simulated seawater splitting. J Colloid Interface Sci 2023; 634:804-816. [PMID: 36565622 DOI: 10.1016/j.jcis.2022.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
It is essential to construct self-supporting electrodes based on earth-abundant iron borides in a mild and economical manner for grid-scale hydrogen production. Herein, a series of highly efficient, flexible, robust, and scalable Fe-B-O@FeBx modified on hydrophilic cloth (denoted as Fe-B-O@FeBx/HC, 10 cm × 10 cm) are fabricated by mild electroless plating. The overpotentials and Tafel slope values for the hydrogen and oxygen evolution reactions are 59 mV and 57.62 mV dec-1 and 181 mV and 65.44 mV dec-1, respectively; only 1.462 V is required to achieve 10 mA cm-2 during overall water splitting (OWS). Fe-B-O@FeBx/HC maintains its high catalytic activity for more than 7 days at an industrial current density (400 mA cm-2), owing to the loosened popcorn-like Fe-B-O@FeBx that is firmly loaded on a 2D-layered and mechanically robust substrate along with its fast charge and mass transfer kinetics. The chimney effect of core-shell borides@(oxyhydro)oxides enhances the OWS performance and protects the inner metal borides from further corrosion. Moreover, the flexible Fe-B-O@FeBx/HC electrode has a low cost for grid-scale hydrogen production ($2.97 kg-1). The proposed strategy lays a solid foundation for universal preparation, large-scale hydrogen production and practical applications thereof.
Collapse
Affiliation(s)
- Chengyu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinli Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yiran Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haiyang Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dingkun Ji
- Institute of Molecular Medicine (IMM), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
25
|
In-situ synthesis of NixCo4-xN/N-doped carbon ultrathin nanosheet arrays by supramolecular pyrolysis for boosting electrocatalytic hydrogen evolution in universal pH range water and natural seawater. J Colloid Interface Sci 2023; 629:873-881. [DOI: 10.1016/j.jcis.2022.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
|
26
|
Fang X, Wang X, Ouyang L, Zhang L, Sun S, Liang Y, Luo Y, Zheng D, Kang T, Liu Q, Huo F, Sun X. Amorphous Co-Mo-B Film: A High-Active Electrocatalyst for Hydrogen Generation in Alkaline Seawater. Molecules 2022; 27:7617. [PMID: 36364442 PMCID: PMC9657096 DOI: 10.3390/molecules27217617] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The development of efficient electrochemical seawater splitting catalysts for large-scale hydrogen production is of great importance. In this work, we report an amorphous Co-Mo-B film on Ni foam (Co-Mo-B/NF) via a facile one-step electrodeposition process. Such amorphous Co-Mo-B/NF possesses superior activity with a small overpotential of 199 mV at 100 mA cm-2 for a hydrogen evolution reaction in alkaline seawater. Notably, Co-Mo-B/NF also maintains excellent stability for at least 24 h under alkaline seawater electrolysis.
Collapse
Affiliation(s)
- Xiaodong Fang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Analytical Testing Center, School of Chemistry and Chemical Engineering, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, China
| | - Xiangguo Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Analytical Testing Center, School of Chemistry and Chemical Engineering, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, China
| | - Ling Ouyang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yimei Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongdong Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tairan Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Feng Huo
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Analytical Testing Center, School of Chemistry and Chemical Engineering, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University, Neijiang 641100, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
27
|
Wang Z, Wang C, Ye L, Liu X, Xin L, Yang Y, Wang L, Hou W, Wen Y, Zhan T. MnO x Film-Coated NiFe-LDH Nanosheets on Ni Foam as Selective Oxygen Evolution Electrocatalysts for Alkaline Seawater Oxidation. Inorg Chem 2022; 61:15256-15265. [PMID: 36083871 DOI: 10.1021/acs.inorgchem.2c02579] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compared to freshwater electrolysis, seawater electrolysis to produce hydrogen is preferable and more promising, but this technology is plagued by the electrode's corrosion and oxidative reactions of the competitive Cl- ion on the anode. To develop efficient oxygen evolution reaction (OER) catalysts for seawater electrolysis, the ultrathin MnOx film-covered NiFe-layered double-hydroxide nanosheet array is directly assembled on Ni foam (MnOx/NiFe-LDH/NF) by hydrothermal and electrodeposition in turn. This catalyst demonstrates excellent OER-selective activity in alkaline saline electrolytes. In 1 M KOH/0.5 M NaCl and 1 M KOH/seawater electrolytes, MnOx/NiFe-LDH/NF exhibits lower overpotentials at 100 mA cm-2 (η100 values of 265 and 276 mV, respectively) and Tafel slopes (73 and 77 mV decade-1, respectively) than does the NiFe-LDH/NF electrode (η100 values of 298 and 327 mV and Tafel slopes of 91 and 140 mV decade-1, respectively). In alkaline saline solutions, the stability and durability of the former are also better than those of the latter. The good OER selectivity and catalytic performance are attributed to the MnOx overlayer that selectively blocks Cl- anions from approaching catalytic centers, and the good conductivity, fast kinetics, more oxygen vacancies, and abundant active sites of MnOx/NiFe-LDH/NF. The robust stability is due to the enhanced resistance for Cl- corrosion stemming from the MnOx protective film. Hence, MnOx/NiFe-LDH/NF can act as a promising OER electrocatalyst for alkalized natural seawater electrolysis.
Collapse
Affiliation(s)
- Zekun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xien Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Liantao Xin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuanyuan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wanguo Hou
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| | - Yonghong Wen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tianrong Zhan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (Ministry of Education), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|