1
|
Zhou C, Shi S, Zhang X, Sun Y, Peng G, Yuan W. Mechanism insight into the N-C polar bond and Pd-Co heterojunction for improved hydrogen evolution activity. iScience 2024; 27:109620. [PMID: 38628965 PMCID: PMC11019276 DOI: 10.1016/j.isci.2024.109620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Constructing platinum-like materials with excellent catalytic activity and low cost has great significance for hydrogen evolution reaction (HER) during electrolysis of water. Herein, palladium nanoparticles (NPs) deposition on the surface of Co NPs using nitrogen-doped carbon (NC) as substrate, denoted as N-ZIFC/CoPd-30, are manufactured and served as HER electrocatalysts. Characterization results and density functional theory calculations validate that Pd-Co heterojunctions with NC acting as "electron donators" promote the Pd species transiting to the electron-rich state based on an efficient electron transfer mechanism, namely the N-C polar bonds induced strong metal-support interaction effect. The electron-rich Pd sites are beneficial to HER. Satisfactorily, N-ZIFC/CoPd-30 have only low overpotentials of 16, 162, and 13 mV@-10 mA cm-2 with the small Tafel slopes of 98 mV/decade, 126 mV/decade, and 72 mV/decade in pH of 13, 7, and 0, respectively. The success in fabricating N-ZIFC/CoPd opens a promising path to constructing other platinum-like electrocatalysts with high HER activity.
Collapse
Affiliation(s)
- Chenliang Zhou
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Shaoyuan Shi
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xingyu Zhang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yuting Sun
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Guan Peng
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
| | - Wenjing Yuan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, People’s Republic of China
- School of Rare Earths, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341119, People’s Republic of China
| |
Collapse
|
2
|
Guo Z, Bi M, He H, Liu Z, Duan Y, Cao W. Defect engineering associated with cationic vacancies for promoting electrocatalytic water splitting in iron-doped Ni 2P nanosheet arrays. J Colloid Interface Sci 2024; 654:785-794. [PMID: 37866050 DOI: 10.1016/j.jcis.2023.10.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Transition metal phosphides are highly efficient catalysts that do not rely on noble metals, which have shown great potential in replacing noble metal catalysts and contributing to the advancement of the electrocatalytic hydrogen production industry. To further enhance the catalytic performance of transition metal phosphides, researchers have discovered that cationic vacancy defects can be utilized to regulate their electronic structure, thereby improving their catalytic properties. In this research, we present the successful synthesis of a bifunctional Ni2P electrocatalyst (VFe-Ni2P) with cationic vacancy defects through electrodeposition and acid etching techniques. The introduction of cationic vacancies after acid etching is confirmed by electron paramagnetic resonance (EPR) spectroscopy. The VFe-Ni2P electrocatalyst demonstrates excellent catalytic performance in alkaline environments, achieving a current density of 10 mA∙cm-2 at an overpotential of 52 mV for the hydrogen evolution reaction (HER), and the same current density with an overpotential of 154 mV for the oxygen evolution reaction (OER). Additionally, the VFe-Ni2P/NF electrode exhibits remarkable stability over 1000 cyclic voltammetric cycles for both HER and OER. This study presents a novel approach for the synthesis and performance control of highly-efficient transition metal phosphide electrocatalysts, which holds significant importance in the development and design of new energy materials.
Collapse
Affiliation(s)
- Zhengang Guo
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Manqin Bi
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Hailong He
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Zhixin Liu
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Yulin Duan
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
| | - Wenxin Cao
- School of Materials Science and Engineering & Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
3
|
Feng W, Zhang W, Lin Q, Zhang H, Qiao J, Xia L, Moloto N, He W, Sun Z. Metal–support interactions of 2D carbon-based heterogeneous catalysts for the hydrogen evolution reaction. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:18866-18878. [DOI: 10.1039/d4ta02079k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The synthesis, modulation and effect of MSI on 2D carbon-based heterogeneous catalysts for the HER.
Collapse
Affiliation(s)
- Weihang Feng
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Quanying Lin
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Heshuang Zhang
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Jingyuan Qiao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Linhong Xia
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Zhengming Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| |
Collapse
|
4
|
Zheng Y, Mou Y, Wang Y, Wan J, Yao G, Feng C, Sun Y, Dai L, Zhang H, Wang Y. Aluminum-incorporation activates vanadium carbide with electron-rich carbon sites for efficient pH-universal hydrogen evolution reaction. J Colloid Interface Sci 2023; 656:367-375. [PMID: 37995406 DOI: 10.1016/j.jcis.2023.11.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Vanadium carbide (VC) is the greatest potential hydrogen evolution reaction (HER) catalyst because of its platinum-like property and abundant earth reserves. However, it exhibits insufficient catalytic performance due to the unfavorable interaction of reaction intermediates with catalysts. In this work, using NH4VO3 as the main raw material, the flow ratio of CH4 to Ar was accurately controlled, and a non-transition metal Al-doped into VC (100) nano-flowers with carbon hybrids on nickel foams (Al-VC@C/NF) was prepared for the first time as a high-efficiency HER catalyst by chemical vapor carbonization. The overpotential of Al-VC@C/NF catalysts in 0.5 M H2SO4 and 1 M KOH at a current density of 10 mA cm-2 are only 58 mV and 97 mV, respectively, which are the best HER performance among non-noble metal vanadium carbide based catalysts. Simultaneously, Al-VC@C/NF exhibits small Tafel slope (45 mV dec-1 and 73 mV dec-1) and excellent stability in acidic and alkaline media. Theoretical calculations demonstrate that doped Al atoms can induce electron redistribution on the vanadium carbide surface to form electron-rich carbon sites, which significantly reduces the energy barrier during the HER process. This work provides a new tactic to modulate vanadium-based carbons as efficient HER catalysts through non-transition metal doping.
Collapse
Affiliation(s)
- Yanan Zheng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yiwei Mou
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Yanwei Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China.
| | - Guangxu Yao
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Chuanzhen Feng
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Yue Sun
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Longhua Dai
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China; College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, PR China.
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, PR China; College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, PR China.
| |
Collapse
|
5
|
Wang C, Wang W, Guo W, Guo D, Li J, Yang X, Fu S, Chai DF, Sui G, Li Y. Liquid nitrogen quenching inducing lattice tensile strain to endow nitrogen/fluorine co-doping Fe 3O 4 nanocubes assembled on porous carbon with optimizing hydrogen evolution reaction. J Colloid Interface Sci 2023; 638:813-824. [PMID: 36791479 DOI: 10.1016/j.jcis.2023.02.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
In this work, the lattice tensile strain of nitrogen/fluorine co-doping ferroferric oxide (Fe3O4) nanocubes assembled on chrysanthemum tea-derived porous carbon is induced through a novel liquid nitrogen quenching treatment (named as TS-NF-FO/PCX-Y, TS: Tensile strain, NF: Nitrogen/Fluorine co-doping, FO: Fe3O4, PC: Porous carbon, X: The weight ratio of KOH/carbon, Y: The adding amount of porous carbon). Besides, the electrocatalytic activity influenced by the adding amount of porous carbon, the type of dopant, and the introduction of lattice tensile strain is systematically studied and explored. The interconnected porous carbon could improve electrical conductivity and prevent Fe3O4 nanocubes from aggregating. The induced nitrogen/fluorine could cause extrinsic defects and tailor the intrinsic electron state of the host materials. Lattice tensile strain could tailor the surface electronic structure of Fe3O4 via changing the dispersion of surface atoms and their bond lengths. Impressively, the designed TS-NF-FO/PC5-0.25 delivers a low overpotential of 207.3 ± 0.4 mV at 10 mA/cm2 and demonstrates desirable reaction dynamics. Density functional theory calculations illustrate that the electron structure and hydrogen adsorption free energy (ΔG*H) are optimized by the synergistic effect among porous carbon, nitrogen/fluorine co-doping and lattice tensile strain, thus promoting hydrogen evolution reaction (HER) catalytic activity. Overall, this work paves the way to unravel the enhancement mechanism of HER on transition metal oxide-based materials by electronic structure and phase composition modulation strategy.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wei Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Xue Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Shanshan Fu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
6
|
Qin B, He C, Wei Y, Ji L, Wang T, Chen Z, Wang S. Interfacial engineering of heterostructured Mo2C-Ru nanoparticles dispersed on 3D interconnected carbon nanobelts for highly efficient hydrogen evolution. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Wang Z, Zhang X, Tian W, Yu H, Deng K, Xu Y, Wang X, Wang H, Wang L. Nitrogen-doped Ru film for energy-saving hydrogen production assisted with hydrazine oxidation. Chem Commun (Camb) 2022; 58:10424-10427. [PMID: 36043325 DOI: 10.1039/d2cc03579k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a universal approach is proposed to prepare a nitrogen-doped mesoporous Ru film with uniform pore size on nickel foam (N-mRu/NF) as an active bifunctional catalyst for energy-saving hydrogen production. The N-mRu/NF requires an ultrasmall overpotential of -60 and 62 mV to achieve 100 mA cm-2 for the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), respectively. When used for HER-HzOR electrolysis, N-mRu/NF requires low voltages of 0.023 and 0.184 V at 10 and 100 mA cm-2, respectively.
Collapse
Affiliation(s)
- Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xian Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Wenjing Tian
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xin Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|