1
|
Javed J, Zhou Y, Ullah S, Gao T, Yang C, Han Y, Wu H. Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater. Molecules 2025; 30:2194. [PMID: 40430366 DOI: 10.3390/molecules30102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Emerging contaminants (ECs) in wastewater threaten environmental and human health, while conventional methods often prove inadequate. This has driven increased concern among decision makers, justifying the need for innovative and effective treatment approaches. Pyrite-derived materials have attracted great interest in advanced oxidation processes (AOPs) as catalysts because of their unique Fe-S structure, ability to undergo redox cycling, and environmental friendliness. This review explores recent advances in pyrite-derived materials for AOP applications, focusing on their synthesis, catalytic mechanisms, and pollutant degradation. It examines how pyrite activates oxidants such as hydrogen peroxide (H2O2), peracetic acid (PAA), and peroxymonosulfate (PMS) can be used to generate reactive oxygen species (ROS). The role of multi-dimensional pyrite architectures (0D-3D) in enhancing charge transfer, catalytic activity, and recyclability is also discussed. Key challenges, including catalyst stability, industrial scalability, and Fe/S leaching, are addressed alongside potential solutions. Future directions include the integration of pyrite-based catalysts with hybrid materials, as well as green synthesis to improve practical applications. This review provides researchers and engineers with valuable insights into developing sustainable wastewater treatment technologies.
Collapse
Affiliation(s)
- Jannat Javed
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- School of International Education, Yanshan University, Qinhuangdao 066004, China
| | - Yuting Zhou
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Saad Ullah
- School of International Education, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Tianjiu Gao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Caiyun Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Ying Han
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- Shenzhen Research Institute of Yanshan University, Shenzhen 518000, China
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- Shenzhen Research Institute of Yanshan University, Shenzhen 518000, China
| |
Collapse
|
2
|
Gu Q, Feng C, Rong J, Zhang Y, Zheng X, Mei J, Li Z, Xu S. NiCoP cocatalyst modified g-C 3N 4 as ohmic junction photocatalyst for efficient degradation of tetracycline under visible light. ENVIRONMENTAL RESEARCH 2024; 249:118358. [PMID: 38325777 DOI: 10.1016/j.envres.2024.118358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024]
Abstract
Increasing the electron-hole recombination rate in g-C3N4 can effectively improve its photocatalytic performance. In this work, NiCoP/g-C3N4 (NCP/PCN) composites with ohmic junction were formed by embedding granular NiCoP in irregularly porous g-C3N4. There was almost no barrier between the metal and the semiconductor in ohmic junction, which made it easier for electrons to slip from PCN to NCP along the curved energy band, and NCP acted as an electron collector to rapidly capture the slipping electrons. In addition, porous g-C3N4 prepared by supramolecular self-assembly could provide a shorter diffusion path for electrons. Thus, the electron-hole was effectively separated and the photocatalytic performance was improved. The band electronic structure and existence of ohmic junction in 7-NCP/PCN composite were demonstrated by XPS, ESR and DFT calculation. Finally, a reasonable photocatalytic degradation mechanism and possible tetracycline degradation path were proposed. This work has significant potential for providing an effective method for the design of non-precious metal photocatalysts.
Collapse
Affiliation(s)
- Qinyi Gu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Chujun Feng
- School of Safety Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jian Rong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China; School of Safety Science and Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Song Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
3
|
Wan L, Chen J, Zhang Y, Du C, Xie M, Hu S. High-mass-loading cobalt iron phosphide@nickel vanadium layered double hydroxide heterogeneous nanosheet arrays for hybrid supercapacitors. J Colloid Interface Sci 2024; 654:539-549. [PMID: 37862803 DOI: 10.1016/j.jcis.2023.10.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Designing multidimensional heterostructures on flexible substrates is an efficient approach to resolve the low energy density of supercapacitors. Herein, a three-dimensional (3D) porous cobalt iron phosphide (CoFeP)@nickel vanadium-layered double hydroxide (NiV-LDH) heterostructure has been prepared anchored on carbon cloth (CC) substrate. In this nanoarchitecture, NiV-LDH nanosheets are densely wrapped on the surface of CoFeP nanosheets, which forms a hierarchically porous framework with an enlarged surface area and accessible pore channels. Benefiting from the strong interaction and synergistic effect between CoFeP and NiV-LDH, the well-defined heterostructure can realize simultaneously rich redox active sites, rapid reaction dynamics, and good structural stability. Thus, the binder-free CoFeP@NiV-LDH electrode with a high mass loading of 6.47 mg cm-2 displays a significantly increased specific capacity of 903.1C g-1 (2.35C cm-2) at 1 A g-1 and enhanced rate capability when compared to pristine CoFeP and NiV-LDH. Additionally, the assembled hybrid supercapacitor (HSC) yields an energy density of 77.9 Wh kg-1/0.98 Wh cm-2 and excellent long-term stability. This research proposes a rational route for designing heterogeneous micro-/nanoarchitectures with commercial-level mass loading for the practical application of high-energy-density supercapacitors.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Shunxuan Hu
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Fu Q, Wang H, Nie K, Wang X, Ren J, Wang R. Phosphorus/sulfur co-doped heterogeneous NiCoP xS y nanoarrays boosting overall water splitting. J Colloid Interface Sci 2024; 653:443-453. [PMID: 37725874 DOI: 10.1016/j.jcis.2023.09.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
In the large-scale implementation of renewable energy devices, the availability of stable and highly catalytic non-precious metal catalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial. Meanwhile, integrating bifunctional electrocatalysts simultaneously on both the anode and cathode still faces challenges. To address this, a stepped preparation strategy was adopted on a nickel foam (NF) substrate to synthesize P, S co-doped NiCoPxSy nanowire array catalysts. The prepared NiCoPxSy catalysts demonstrated a small Tafel slope of 72.5 mV dec-1 for HER and 72.3 mV dec-1 for OER by requiring only 37 mV (326 mV) overpotential to achieve a current density of 10 mA cm-2 (50 mA cm-2). Moreover, when assembled into an electrolytic cell in 1 M KOH, the NiCoPxSy catalysts achieved a low voltage of 1.55 V at 10 mA cm-2 current density and exhibited long-term stability. The outstanding electrocatalytic performance can be attributed to the influence of doped anions on the electronic states and distribution among different atoms, which thereby positively affected the electrocatalytic activity. This research provides an effective method for designing innovative catalysts and paving the way to produce clean energy.
Collapse
Affiliation(s)
- Qianqian Fu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Kunlun Nie
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuyun Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park 2092, Johannesburg, South Africa.
| | - Rongfang Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Changshu Institute for Hydrogen Energy, Changshu 215505, China
| |
Collapse
|
5
|
Wan L, Jiang D, Wang Y, Zhang Y, Du C, Xie M, Chen J. In-situ electrodeposited Co 0.85Se@Ni 3S 2 heterojunction with enhanced performance for supercapacitors. J Colloid Interface Sci 2023; 651:243-253. [PMID: 37542899 DOI: 10.1016/j.jcis.2023.07.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Rational design of porous heterostructured electrode materials for high-performance supercapacitors remains a big challenge. Herein, we report the in situ synthesis of Co0.85Se@Ni3S2 hybrid nanosheet arrays supported on carbon cloth (CC) substrate though an efficient two-step electrodeposition method. Compared with pure Co0.85Se and Ni3S2, the well-defined Co0.85Se@Ni3S2 heterojunction possesses enriched active sites, improved electrical conductivity, and reduced ion diffusion resistance. Benefiting from its hierarchically porous nanostructure and the synergistic effect of Co0.85Se and Ni3S2, the as-synthesized Co0.85Se@Ni3S2 electrode delivers a gravimetric capacitance (Cg)/volumetric capacitance (Cv) of 1644.1F g-1/3161.7F cm-3 at 1 A g-1, outstanding rate capability of 60.7% capacitance retention at 20 A g-1, as well as good cycling performance of 87.8% capacitance retention after 5000 cycles. Additionally, a hybrid supercapacitor (HSC) device presents a maximum energy density (E) of 65.7 Wh kg-1 at 696.2 W kg-1 with 93.3% cyclic durability after 15,000 cycles. Thus, this work proposes a simple and effective strategy to fabricate porous heterojunctions as high-performance electrode materials for energy storage devices.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Dianyu Jiang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yuqi Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
6
|
Lv S, Cheng Z, Chi Y, Wang H, Chu X, Zhao Y, Wu B, Wang R, Zhang Z, Wang C, Yang J, Yang X. Facile Route to Achieve a Hierarchical CuO/Nickel-Cobalt-Sulfide Electrode for Energy Storage. MICROMACHINES 2023; 14:2095. [PMID: 38004952 PMCID: PMC10672988 DOI: 10.3390/mi14112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Herein, a novel self-supporting CuO/nickel-cobalt-sulfide (NCS) electrode was designed in a two-step electrodeposition technique followed by a calcination process. Three-dimensional copper foam (CF) was exploited as the current collector and spontaneous source for the in situ preparation of the CuO nanostructures, which ensured sufficient deposition space for the subsequent NCS layer, thus forming abundant electrochemical active sites. Such a hierarchical structure is conducive to providing a smooth path for promoting electronic transmission. Therefore, the optimized CuO/NCS electrode exhibits outstanding energy storage capability with extremely superior specific capacitance (Cs) of 7.08 F cm-2 at 4 mA cm-2 and coulombic efficiency of up to 94.83%, as well as excellent cycling stability with capacitance retention of 83.33% after 5000 cycles. The results presented in this work extend our horizons to fabricate novel hierarchical structured electrodes applied to energy storage devices.
Collapse
Affiliation(s)
- Sa Lv
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | | | | | | | | | | | | | | | | | | | | | - Xiaotian Yang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
7
|
Wan L, Wang Y, Jiang D, Zhang Y, Xie M, Chen J, Du C. Constructing nickel sulfide @ nickel boride hybrid nanosheet arrays with crystalline/amorphous interfaces for supercapacitors. J Colloid Interface Sci 2023; 649:815-825. [PMID: 37390529 DOI: 10.1016/j.jcis.2023.06.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Designing a heterostructure with unique morphology and nanoarchitecture is regarded as an efficient strategy to achieve high-energy-density supercapacitors (SCs). Herein, a rational nickel sulfide @ nickel boride (Ni9S8@Ni2B) heterostructure is in situ synthesized on carbon cloth (CC) substrate via a simple electrodepositon strategy followed by a chemical reduction method. The three-dimensional hierarchically porous Ni9S8@Ni2B nanosheet arrays, consisting of crystalline Ni9S8 nanosheets and amorphous Ni2B nanosheets, can expose ample electroactive centers, shorten ion diffusion distance, and buffer volume changes during charging/discharging process. More importantly, the generation of crystalline/amorphous interfaces in the Ni9S8@Ni2B composite modulates its electrical structure and improves electrical conductivity. Owing to the synergy of Ni9S8 and Ni2B, the as-synthesized Ni9S8@Ni2B electrode acquires a specific capacity of 901.2C g-1 at 1 A g-1, a sound rate capability (68.3% at 20 A g-1), along with good cycling performance (79.7% capacity retention over 5000 cycles). Additionally, the assembled Ni9S8@Ni2B//porous carbon asymmetric supercapacitor (ASC) exhibits a cell voltage of 1.6 V and a maximum energy density of 59.7 Wh kg-1 at 805.2 W kg-1. These findings might offer a simple and innovative approach to fabricate advanced electrode materials for high-performance energy storage systems.
Collapse
Affiliation(s)
- Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yuqi Wang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Dianyu Jiang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
8
|
Xiao Y, Ye G, Xie M, Zhang Y, Chen J, Du C, Wan L. Mushroom-like cobalt nickle metaphosphate@nickel diselenide core-shell nanorods for asymmetric supercapacitors. J Colloid Interface Sci 2023; 638:300-312. [PMID: 36739748 DOI: 10.1016/j.jcis.2023.01.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023]
Abstract
Although transition metal metaphosphates (TMPOs) display special physical/chemical features and high theoretical capacities, their applications for supercapacitors (SCs) are still restricted by their low energy densities and inferior cycling stability. Herein, a novel strategy has been proposed to address these issues through in situ construction of cobalt nickle metaphosphate (Co0.2Ni0.8(PO3)2)@nickel diselenide (NiSe2) core-shell heterostructure on carbon paper (CP) as a self-supporting flexible electrode for SCs. Particularly, this unique mushroom-like porous nanoarchitecture assembled by one-dimensional (1D) Co0.2Ni0.8(PO3)2 nanorods and zero-dimensional (0D) NiSe2 nanospheres can expose abundant active sites and afford multi-dimensional channels, which favors rapid electron ions/electron transfer, accelerates the reaction kinetics, and alleviates volume changes during charging/discharging processes. Profiting from its well-aligned 1D/0D nanostructure and strong synergistic effect between Co0.2Ni0.8(PO3)2 and NiSe2, the Co0.2Ni0.8(PO3)2@NiSe2/CP electrode delivers a specific capacity of 219.4 mAh/g/0.414 mAh cm-2 at 1 A/g and good cycling stability with capacity retention of 90.7% after 5000 cycles, outperforming many previously reported TMPO-based electrodes in literature. Impressively, an asymmetric supercapacitor (ASC) device assembled with Co0.2Ni0.8(PO3)2@NiSe2 as cathode and porous carbon as anode achieves an energy density of 69.2 Wh kg-1 at 736.0 W kg-1 and maintains a capacity retention of 97.6% after 20,000 charge-discharge cycles. This work provides an efficient approach to design multi-dimensional hybrid nanomaterials for high-performance SCs.
Collapse
Affiliation(s)
- Ying Xiao
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Ge Ye
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Mingjiang Xie
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Yan Zhang
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Jian Chen
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China
| | - Cheng Du
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| | - Liu Wan
- Hubei Key Lab for Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang 437000, China.
| |
Collapse
|
9
|
Yang YJ, Chen S, Jiang C, Wang N, Liu M, Yang P, Cheng Y. Assembly of Co3S4 nanoporous structure on Ni foam for binder-free high-performance supercapacitor electrode. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|