1
|
Gao H, Li X, Ma Y. Nickel cobaltate/nickel cobalt layered double hydroxide composites as electrodes for asymmetric flexible supercapacitors. J Colloid Interface Sci 2025; 695:137802. [PMID: 40339295 DOI: 10.1016/j.jcis.2025.137802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/07/2025] [Accepted: 05/03/2025] [Indexed: 05/10/2025]
Abstract
The electrochemical performance of electrode materials plays a pivotal role in determining the practical applicability of flexible supercapacitors, and optimization of material morphology has emerged as an effective strategy to augment these properties. This study presents the preparation of nickel cobalt cobaltite (NiCo2O4) nano-arrays exhibiting various morphologies, which serve as a support matrix. This is achieved through hydrothermal and annealing treatments applied to the surface of activated carbon cloth (CC). Subsequently, cobalt-nickel layered double hydroxide (CoNi-LDH) is synthesized onto these nano-arrays via electrochemical deposition, resulting in the formation of CC/NiCo2O4/CoNi-LDH (CC/NCCN) electrode. The constructed asymmetric supercapacitor based on CC/NCCN as the positive electrode demonstrates a 1.7 V voltage window. It achieves 137.88 F g-1 specific capacitance at a 1 A g-1, and 55.35 W h kg-1 energy density at 850.12 W kg-1 power density. In addition, it demonstrates remarkable flexural resistance, exhibiting a capacitance retention of 96.29 % following 500 flexural cycles. Furthermore, the device retains 90.55 % of capacitance while achieving nearly 100 % coulombic efficiency after undergoing 10,000 cycles. This device demonstrates substantial promise for a wide range of future applications, and the findings provide innovative insights for advancing the development of flexible devices.
Collapse
Affiliation(s)
- Hong Gao
- Sino-german School of Engineering, Qingdao University of Science and Technology, Qingdao 266590, PR China
| | - Xue Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
2
|
Yao L, Yang J, Li Z, Cai Z, Yang C, Sun S, Yue M, Zhang M, Wang X, Wang H, Luo Y, Sun F, Lu W, Sun X, Tang B. Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide. Inorg Chem 2025; 64:2458-2467. [PMID: 39874187 DOI: 10.1021/acs.inorgchem.4c04953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode. Transition metal-coordinated polymers have garnered attention as promising electrocatalysts for alkaline seawater oxidation (ASO), attributed to their remarkable chlorine corrosion resistance, high conductivity, and facile synthesis. In this study, we employ an anodic oxidation-electrodeposition strategy to grow NiFe-polyaniline on NiFe layered double hydroxide supported on Ni foam (NiFe LDH@NiFe-PANI/NF) as a highly efficient catalyst for ASO. We demonstrate stable ASO at industrial-level current densities (j) by employing a synergistic strategy that integrates NiFe-PANI, which offers resistance to chlorine-induced corrosion, and molybdate, which effectively repels chloride anions. In alkaline seawater, NiFe LDH@NiFe-PANI/NF requires 380 mV to sustain a j of 1000 mA cm-2, and it exhibits continuous operation for 500 h at a j of 1000 mA cm-2. Besides, the anion-exchange membrane electrolyzer consisting of NiFe LDH@NiFe-PANI/NF requires a voltage of 2.16 V to drive 300 mA cm-2. Notably, it can operate stably for 120 h, highlighting its potential for sustainable energy applications.
Collapse
Affiliation(s)
- Li Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Jianying Yang
- Department of Outpatient, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Zixiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhengwei Cai
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Chaoxin Yang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Meng Yue
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Min Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiaoyan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Hefeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ying Luo
- State Key Laboratory of Space Power Sources, Shanghai Institute of Space Power Sources, Shanghai 200245, China
| | - Feng Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi 030031, China
| | - Xuping Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
- Laoshan Laboratory, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Jin H, Liu M, Wang L, You W, Pei K, Cheng HW, Che R. Design and fabrication of 1D nanomaterials for electromagnetic wave absorption. Natl Sci Rev 2025; 12:nwae420. [PMID: 39830391 PMCID: PMC11737396 DOI: 10.1093/nsr/nwae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025] Open
Abstract
The design and fabrication of high-performance electromagnetic wave (EMW) absorbing materials are essential in developing electronic communication technology for defense and civilian applications. These materials function by interacting with EMWs, creating various effects such as polarization relaxation, magnetic resonance, and magnetic hysteresis in order to absorb EMWs. Significant progress has been made to improve the dimensional performance of such materials, emphasizing the 'thin, light, broad, and strong' functional specifications. One-dimensional (1D) nanostructures are characterized by high surface area, low density, and unique electromagnetic properties, providing promising solutions to address some of the challenges in facilitating multiple reflections and wideband resonances, which are crucial for effective EMW attenuation. This paper provides an overview of recent advances in exploring 1D structures for enhancing EMW absorption and their controllability. The design and fabrication of nanofibers, nanowires, and other 1D nanostructures are highlighted. The advantages of 1D nanomaterials in EMW absorption are also described. Challenges and future directions are discussed, focusing on developing new design concepts and fabrication methods for achieving high-performance and lightweight EMW absorbers and enhancing fundamental understanding of EMW absorption mechanisms.
Collapse
Affiliation(s)
- Hongdu Jin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Lei Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Han-Wen Cheng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
- College of Physics, Donghua University, Shanghai 201620, China
- School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
4
|
Zhu L, Liu Q, Zhang Y, Sun H, Chen S, Liang L, An S, Yang X, Zang L. Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs. Molecules 2025; 30:179. [PMID: 39795235 PMCID: PMC11721937 DOI: 10.3390/molecules30010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships. In optics, PEDOTs are renowned for their high transparency and unique photoelectric responses. From an electrical perspective, they display exceptional conductivity, thermoelectric, and piezoelectric performance, along with notable electrochemical activity and stability, enabling a wide array of electronic applications. In terms of magnetic properties, PEDOTs demonstrate outstanding electromagnetic shielding efficiency and microwave absorption capabilities. Moreover, these properties can be precisely tailored through molecular structure modifications, chemical doping, and composite formation to suit various application requirements. This review systematically examines the mechanisms underlying the optoelectromagnetic properties of PEDOTs, highlights their tunability, and outlines prospective research directions. By providing critical theoretical insights and technical references, this review aims to advance the application landscape of PEDOTs.
Collapse
Affiliation(s)
- Ling Zhu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Qi Liu
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Yuqian Zhang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Hui Sun
- Binzhou Testing Center, Binzhou 256600, China;
| | - Shuai Chen
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Lishan Liang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Siying An
- School of Pharmacy and Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (L.Z.); (Q.L.); (S.A.)
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Nanchang 330013, China; (Y.Z.); (L.L.)
| | - Xiaomei Yang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
5
|
Liu Q, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes. Chemistry 2024; 30:e202400157. [PMID: 38520385 DOI: 10.1002/chem.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| |
Collapse
|
6
|
Lin Z, Li L, Xi C, Li X, Feng S, Wang C, Wang H, Li T, Ma Y. Fabrication of the hollow dodecahedral NiCoZn layered double hydroxide for high-performance flexible asymmetric supercapacitor. J Colloid Interface Sci 2024; 657:91-101. [PMID: 38035423 DOI: 10.1016/j.jcis.2023.11.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Layered double hydroxides (LDHs) with unique layered structure have excellent theoretical capacitance. Nevertheless, the constrained availability of electrically active sites and cationic species curtails their feasibility for practical implementation within supercapacitors. Most of the reported materials are bimetallic hydroxides, and fewer studies are on trimetallic hydroxides. In here, the hollow dodecahedron NiCoZn-LDH is synthesized using CoZn metal-organic frameworks (CoZn-MOFs) as template. Its morphology and composition are studied in detail. Concurrently, the effect of the amount of third component on the resulting structure of NiCoZn-LDH is also researched. Benefiting from its favorable structural and compositional attributes to efficient transfer of ions and electrons, NiCoZn-LDH-200 demonstrates outstanding specific capacitance of 1003.3F g-1 at 0.5 A/g. Furthermore, flexible asymmetric supercapacitor utilizing NiCoZn-LDH-200 as the positive electrode and activated carbon (AC) as the negative electrode reveals favorable electrochemical performances, including a notable specific capacitance of 184.7F g-1 at 0.5 A/g, a power density of 368.21 W kg-1 at a high energy density of 65.66 Wh kg-1, an energy density of 31.78 Wh kg-1 at a high power density of 3985.97 W kg-1, a capacitance retention of 92 % after 8000 cycles at 5 A/g, and a good capacitance retention of 90 % after 500 cycles of bending. The template method presented herein can effectively solve the problem of easy accumulation and improve the electrochemical properties of the materials, which exhibits a broad research prospect.
Collapse
Affiliation(s)
- Zhongtai Lin
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Ling Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | | | - Xue Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Chuanjin Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
7
|
Wang H, Zhang H, Feng S, Shi Y, Wang H, Zhao K, Nie A, Li T, Ma M, Ma Y. Fabrication of 1D Ni nanochains@Zn 2+ doping polypyrrole/reduced graphene oxide composites for high-performance electromagnetic wave absorption. J Colloid Interface Sci 2023; 652:258-271. [PMID: 37595443 DOI: 10.1016/j.jcis.2023.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
Nowadays, electromagnetic radiation significantly impacts the normal operation of electronic devices and poses risks to human health. To effectively address this problem, the development of composites that exhibit exceptional electrochemical wave absorption through the combination of different components holds great promise. In this study, we have successfully prepared 1D Ni nanochains@Zn2+ doping polypyrrole/reduced graphene oxide (Ni NCs@Z-P/RGO, denoted as R-x) composites using a combination of hydrothermal, solvothermal, in situ polymerization, and physical blending methods. Notably, the R-2 composite demonstrates a remarkable minimum reflection loss (RLmin) of -63.58 dB at 14.3 GHz, with a thickness of 1.61 mm. Furthermore, the R-2 composite exhibits an impressive effective absorption bandwidth (EAB) of 5.08 GHz (11.92 GHz-17 GHz) at a thickness of 1.67 mm. These outstanding performances can be attributed to the synergistic effect of the different components and a well-thought-out structural design. Moreover, to showcase the practical applicability of the material, we have conducted additional investigations on the reduction of the radar cross-sectional area (RCS). The results strongly demonstrate that the prepared composite material, when used as a coating, effectively reduces the RCS value by up to 26.6 dB m2 for R-2 at θ = 0°. The experimental methods and simulations presented in this study hold significant potential for application in wave absorption research and practical implementations. Additionally, the prepared Ni NCs@Z-P/RGO composites demonstrate feasibility as wave-absorbing materials for future utilization.
Collapse
Affiliation(s)
- Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hao Zhang
- Technical Center, Xi'an Aerospace Sunvalor Chemical Co., Ltd, Xi'an 710086, PR China
| | - Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yuxia Shi
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hankun Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Kangze Zhao
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Aolin Nie
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
8
|
Feng S, Zhang H, Wang H, Zhao R, Ding X, Su H, Zhai F, Li T, Ma M, Ma Y. Fabrication of cobalt-zinc bimetallic oxides@polypyrrole composites for high-performance electromagnetic wave absorption. J Colloid Interface Sci 2023; 652:1631-1644. [PMID: 37666195 DOI: 10.1016/j.jcis.2023.08.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Composite materials that combine magnetic and dielectric losses offer a potential solution to enhance impedance match and significantly improve microwave absorption. In this study, Co3O4/ZnCo2O4 and ZnCo2O4/ZnO with varying metal oxide compositions are successfully synthesized, which are achieved by modifying the ratios of Co2+ and Zn2+ ions in the CoZn bimetallic metal-organic framework (MOF) precursor, followed by a high-temperature oxidative calcination process. Subsequently, a layer of polypyrrole (PPy) is coated onto the composite surfaces, resulting in the formation of core-shell structures known as Co3O4/ZnCo2O4@PPy (CZCP) and ZnCo2O4/ZnO@PPy (ZCZP) composites. The proposed method allows for rapid adjustments to the metal oxide composition within the inner shell, enabling the creation of composites with varying degrees of magnetic losses. The inclusion of PPy in the outer shell serves to enhance the bonding strength of the entire composite structure while contributing to conductive and dielectric losses. In specific experimental conditions, when the loading is set at 50 wt%, the CZCP composite exhibits an effective absorption bandwidth (EAB) of 5.58 GHz (12.42 GHz-18 GHz) at a thickness of 1.53 mm. Meanwhile, the ZCZP composite demonstrates an impressive minimum reflection loss (RLmin) of -71.2 dB at 13.04 GHz, with a thickness of 1.84 mm. This study offers a synthesis strategy for designing absorbent composites that possess light weight and excellent absorptive properties, thereby contributing to the advancement of electromagnetic wave absorbing materials.
Collapse
Affiliation(s)
- Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hao Zhang
- Technical Center, Xi'an Aerospace Sunvalor Chemical Co., Ltd, Xi'an 710086, PR China
| | - Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Rui Zhao
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xuan Ding
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Huahua Su
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Futian Zhai
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
9
|
Ma M, Hu J, Han X, Liu J, Jiang J, Feng C, Hou Y, Ma Y. Design and synthesis of one-dimensional magnetic composites with Co nanoparticles encapsulated in carbon nanofibers for enhanced microwave absorption. J Colloid Interface Sci 2023; 652:680-691. [PMID: 37573239 DOI: 10.1016/j.jcis.2023.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/28/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
With the increased usage of electromagnetic microwaves (EM) in wireless communication technology, the problem of electromagnetic radiation pollution has grown dramatically. This study successfully prepared novel Co/C magnetic nanocomposite fibers for EM absorption using the electrospinning and carbonization methods. The morphology, composition, magnetic properties, and EM absorption performance were extensively characterized. This material shows exceptional EM absorption performance, achieving -72.01 dB (at 2.08 mm) for minimum reflection loss (RLmin) and 5.4 GHz (at 1.68 mm) for effective absorption bandwidth (EAB). The performance surpasses not only any single precursor but also stands as the best in similar investigations. It can be attributed to the microstructure of magnetic Co nanoparticles encapsulated in carbon nanofibers and the macrostructure of cross-linked three-dimensional (3D) conductive networks. The combination of these structures resulted in excellent dielectric loss, magnetic loss, and impedance matching. This research offers new insights into the production of one-dimensional (1D) carbon-based absorbers, while also establishing a theoretical foundation for exploring the application potential of this material. These findings may contribute to the development of more efficient and practical EM absorption materials in the future.
Collapse
Affiliation(s)
- Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
| | - Jinhu Hu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
| | - Xukang Han
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
| | - Jiao Liu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
| | - Jialin Jiang
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
| | - Chao Feng
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China.
| | - Yongbo Hou
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| |
Collapse
|
10
|
Ge Y, Guo W, Huang Q, Tao S, Ji H, Ren Q, Chen Y, Chen J, Jia X, Ding Y. MnFe2O4/polyaniline/diatomite composite with multiple loss mechanisms towards broadband absorption. J Chem Phys 2023; 159:214708. [PMID: 38047515 DOI: 10.1063/5.0174137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The research and development of absorbing materials with high absorbing capacity, wide effective absorption bandwidth, and lightweight has always been interesting. In this research, a facile hydrothermal method was used to prepare MnFe2O4, and the grain size of MnFe2O4 decreased with increasing hydrothermal temperature. When the size of MnFe2O4 nanoparticles is less than 10 nm, its quantum size effect and surface effect make its electromagnetic microwave absorption performance greatly optimized. When the thickness of MnFe2O4-110 °C is 2.57 mm, the minimum reflection loss (RLmin) is -35.28 dB. Based on this, light porous diatomite and a three-dimensional polyaniline network are introduced. Diatomite is used as the base material to effectively reduce the agglomeration of MnFe2O4 quantum dots. The relatively high surface area introduced by a three-dimensional network of polyaniline promotes the orientation, interfacial polarization, multiple relaxation, and impedance matching, thereby generating further dielectric loss. Additionally, the magnetic properties of manganese ferrite and the strong electrical conductivity of polyaniline play an appropriate complementary role in electromagnetic wave absorption. The RLmin of MnFe2O4/PANI/diatomite is -56.70 dB at 11.12 GHz with an absorber layer thickness of 2.57 mm. The effective frequency bandwidth (RL < -10 dB) ranges from 9.21 to 18.00 GHz. The absorption mechanism indicates that the high absorption intensity is the result of the synergistic effect of impedance matching, conduction losses, polarization losses, and magnetic losses.
Collapse
Affiliation(s)
- Yao Ge
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Wanmi Guo
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Qinglin Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Shanjun Tao
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Haixia Ji
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Qifang Ren
- Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Yue'e Chen
- Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Jing Chen
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Xinyu Jia
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
| | - Yi Ding
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, Anhui, China
- Anhui Province Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, Anhui, China
| |
Collapse
|
11
|
Jiao Z, Hu J, Ma M, Liu Y, Zhao J, Wang X, Luan S, Zhang L. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. J Colloid Interface Sci 2023; 650:2014-2023. [PMID: 37531668 DOI: 10.1016/j.jcis.2023.07.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
In recent years, electromagnetic pollution has become more and more serious, and there is an urgent need for microwave absorbing materials with superior performance. Prussian blue analogue (PBA) is a metal organic framework material with the advantages of diverse morphology and tunable composition. Therefore, PBA has attracted a lot of attention in the field of microwave absorption. In this work, PBA was coated on the surface of carbon composites by hydrothermal method, and then PPy was compounded on its surface after carbonization treatment to construct hierarchical core-shell CoC@CoFe/C@PPy fibers. The fibers have Co-doped C composites as the core and CoFe/C decorated with PPy as the shell. This unique hierarchical structure and various microwave absorption mechanisms are described in detail. The microwave absorption performance is optimized by adjusting the filling of the sample. The best microwave absorption performances are achieved at 25 wt% filling of CoC@CoFe/C@PPy. At a thickness of just 1.69 mm, CoC@CoFe/C@PPy fiebrs have a minimum reflection loss (RLmin) of -64.32 dB. When the thickness is 1.88 mm, CoC@CoFe/C@PPy achieves a maximum effective absorption bandwidth (EABmax) of 5.38 GHz. The results indicate that the CoC@CoFe/C@PPy composite fibers have a great potential in the field of microwave absorption.
Collapse
Affiliation(s)
- Zhengguo Jiao
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Jinhu Hu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China.
| | - Yanyan Liu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Jindi Zhao
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Xingyue Wang
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Sen Luan
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Ling Zhang
- Centre For Engineering Test & Appraise, Qingdao University of Technology, Qingdao 266033, People's Republic of China.
| |
Collapse
|
12
|
Sun J, Tao J, Huang H, Ma R, Sun S. Promotion of bio-oil production from the microwave pyrolysis of cow dung using pretreated red mud as a bifunctional additive: Parameter optimization, energy efficiency evaluation, and mechanism analysis. ENVIRONMENTAL RESEARCH 2023; 236:116806. [PMID: 37536556 DOI: 10.1016/j.envres.2023.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
To address the issues of high oxygen content and energy consumption in the microwave-assisted pyrolysis of biomass for biofuel production, this study used high-temperature pretreated red mud (RM) as an additive. The pretreated RM exhibited dual functionalities, namely microwave absorption and catalytic properties, during the microwave-assisted pyrolysis of cow dung (CD). This study also evaluated the optimization potential of energy recovery efficiency. The results showed that the addition of pretreated RM significantly increased the oil yield during the microwave-assisted pyrolysis of CD. The highest oil yield (59.63%) was obtained via the microwave-assisted pyrolysis of CD over catalysis with RM pretreated at 750 °C (RM750). Through the optimization of the RM750-to-CD mixing ratio, optimal oil quality and energy recovery efficiency were achieved. At a mixing ratio of 1:1, the pyrolysis oil featured the highest aromatic hydrocarbon content and lowest acid content. The high-temperature pretreatment of RM increased the Fe2O3 content, which enhanced the dielectric properties and magnetic loss ability of the reactants. This resulted in localized high temperatures and the formation of "hot spots," which can promote the deoxygenation and hydrogenation reactions of oil. Consequently, the lower heating rate of oil increased from 35.12 to 40.11 MJ kg-1. The released oxygen escaped in the form of CO. In addition, pyrolytic char was used as an in situ microwave absorbing material owing to its increased Fe2O3 content and graphitization degree, leading to an increase in energy recovery efficiency from 4.71% to 9.98%. This study provides valuable guidance for the efficient utilization of diversified solid wastes and demonstrates the potential application of microwave-assisted pyrolysis technology in the resource utilization of solid wastes.
Collapse
Affiliation(s)
- Jiaman Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinlin Tao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huimin Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shichang Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Chen N, Xiao Y, Wang C, He J, Song N. Dual Resonance Behavior and Enhanced Microwave Absorption Performance of Fe 3O 4@C@MoS 2 Composites with Shape Magnetic Anisotropy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48529-48542. [PMID: 37796934 DOI: 10.1021/acsami.3c10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Ternary hierarchical Fe3O4@C@MoS2 composites and binary hierarchical Fe3O4@C composites were successfully fabricated by a modified mixed solvothermal method, a self-oxidation polymerization method, and a hydrothermal process. Their magnetic properties and microwave absorption performance were investigated. Dual resonance behavior was observed in the Fe3O4@C@MoS2 composites. One of the resonances was attributed to natural resonance with a resonance frequency of 2.58 GHz, which was much higher than that for Fe3O4 bulk (1.5 GHz). The other originated from the superparamagnetic/ferromagnetic relaxation with a resonance frequency of 12.45 GHz. The minimum reflection loss (RLmin) reached -64.30 dB with a matched thickness of 2.24 mm at 11.64 GHz, and the maximum effective absorption bandwidth (EABmax) covered 6.39 GHz with a matched thickness of 1.89 mm. In addition, the maximum Radar cross section (RCS) reduction value reached 31.90 dB m2 at a scattering angle of 0°. Electron holography analysis confirmed a dense magnetic absorption network in the Fe3O4@C@MoS2 composites. The boost in microwave absorption performance was caused by the synergistic effects of magnetic and dielectric properties owing to the ternary hierarchical structure, shape magnetic anisotropy, and incorporation of 1T/2H MoS2. Besides, the binary hierarchical Fe3O4@C composites also exhibited good absorbing performance caused by natural resonance, with an RLmin of -52.90 dB at 5.80 mm, an EABmax of 5.98 GHz at 3.38 mm, and a relatively high RCS reduction value of 13.04 dB m2 at θ = 20°. This work paves the way for designing multicomponent hierarchical absorbers with broadband and intensive microwave absorption.
Collapse
Affiliation(s)
- Nankun Chen
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiyao Xiao
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiahao He
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ningning Song
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Ren J, Wang C, Zhang H, Liu X, Yang T, Zheng W, Li T, Ma Y. Magnetic Core@Shell Fe 3O 4@Polypyrrole@Sodium Dodecyl Sulfate Composite for Enhanced Selective Removal of Dyestuffs and Heavy Metal Ions from Complex Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10098-10111. [PMID: 37432980 DOI: 10.1021/acs.langmuir.3c01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Adsorption materials have demonstrated huge potential in treating sewage; however, it is a great challenge to fabricate an adsorbent effectively adsorbing multiple dyestuffs and heavy metal ions simultaneously. Here, a magnetic core@shell Fe3O4@polypyrrole@sodium dodecyl sulfate (Fe3O4@PPy@SDS) composite is prepared through the combination of a hydrothermal method, an in situ polymerization method, and modification, exhibiting enhanced selective removal of five dyestuffs (methylene blue (MB), malachite green (MG), rhodamine B (RhB), Congo red (CR), acid red 1 (AR1)), and heavy metal ions (Mn(VII)). The effects of adsorbent type, time, initial concentration of the adsorbate, and temperature on adsorption performances are investigated in detail. Kinetics and isotherm studies indicate that all adsorption processes are more in line with the pseudo-second-order kinetic model and the Langmuir model, the diffusion behavior is controlled by intraparticle diffusion and liquid film diffusion, and research of thermodynamics reveals a spontaneous endothermic behavior. The removal efficiency after five desorption-adsorption cycles can still reach more than 90%. The prepared Fe3O4@PPy@SDS composite is an efficient and promising renewable adsorbent for the treatment of dyestuffs and Mn(VII), exhibiting a wide range of applications in the field of adsorption.
Collapse
Affiliation(s)
- Jiajia Ren
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Chuanjin Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Hao Zhang
- Technical Center, Xi'an Aerospace Sunvalor Chemical Co., Ltd., Xi'an 710086, P. R. China
| | - Xinlong Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Tianhang Yang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Wenhui Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| |
Collapse
|
15
|
Dong F, Dai B, Zhang H, Shi Y, Zhao R, Ding X, Wang H, Li T, Ma M, Ma Y. Fabrication of hierarchical reduced graphene oxide decorated with core-shell Fe 3O 4@polypyrrole heterostructures for excellent electromagnetic wave absorption. J Colloid Interface Sci 2023; 649:943-954. [PMID: 37392684 DOI: 10.1016/j.jcis.2023.06.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
The design of heterostructures with reasonable chemical composition and spatial structure is one of the effective strategies to achieve high performances electromagnetic wave (EMW) absorption. Herein, reduced graphene oxide (rGO) nanosheets decorated with hollow core-shell Fe3O4@PPy (FP) microspheres have been prepared by the combination of hydrothermal method, in situ polymerization method, directional freeze-drying and hydrazine vapor reduction. FP acting as traps can consume EMW trapped into their interior through the magnetic and dielectric losses. RGO nanosheets forming the conductive network are served as multi-reflected layers. Moreover, the impedance matching is optimized by the synergistic effect between FP and rGO. As expected, the synthetic Fe3O4@PPy/rGO (FPG) composite shows excellent EMW absorption performances with the minimum reflect loss (RLmin) of -61.20 dB at 1.89 mm and the effective absorption bandwidth (EAB) of 5.26 GHz at 1.71 mm. The excellent performances for the heterostructure are attributed to the synergistic effect of conductive loss, dielectric loss, magnetic loss, multiple reflection loss, and optimized impedance matching. This work provides a simple and effective strategy for the fabrication of lightweight, thin and high-performances EMW absorbing materials.
Collapse
Affiliation(s)
- Feng Dong
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Bo Dai
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hao Zhang
- Technical Center, Xi'an Aerospace Sunvalor Chemical Co., Ltd, Xi'an 710086, PR China
| | - Yuxia Shi
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Rui Zhao
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xuan Ding
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hankun Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
16
|
Fabrication of CuS/Fe 3O 4@polypyrrole flower-like composites for excellent electromagnetic wave absorption. J Colloid Interface Sci 2023; 634:481-494. [PMID: 36542977 DOI: 10.1016/j.jcis.2022.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/19/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Recently, electromagnetic radiation is a serious threat to equipment accuracy, military safety and human health. The combination with different materials to fabricate absorber composites with well-designed morphology is expected to ameliorate this issue. In here, CuS/Fe3O4@polypyrrole (CuS/Fe3O4@PPy) flower-like composites are constructed by the combination of hydrothermal method, solvothermal method and in-situ polymerization. CuS with flower-like structure consisting of nanosheets can provide a conductive backbone and large specific surface area. Hollow Fe3O4 microspheres play a key role in deciding magnetic loss, and electromagnetic waves can penetrate their hollow structure, result in multiple reflection and refraction. PPy coating can enhance the combined strength of composite, and effectively consume microwaves by scattering and multiple refraction in the intercalated structure. As expected, the minimum reflection loss (RLmin) of CuS/Fe3O4@PPy composites is -74.12 dB at 8.16 GHz with a thickness of 2.96 mm, and the effective absorption bandwidth (EAB) is 4.6 GHz (13.4-18.0 GHz) at 1.68 mm. The excellent electromagnetic wave absorption performances are attributed to the synergy effect of different components. This work provides a unique strategy for the structural design of flower-like microspheres in the field of electromagnetic wave absorption.
Collapse
|
17
|
Flexible Ti3C2Tx MXene/polypyrrole composite films for high-performance all-solid asymmetric supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|