1
|
Liu Z, Hu Y, Li C, Zhang Z, Shen T, Zeng D, Guan R, Zhou C, Dong P. Fabrication of S-scheme heterojunction consisting of W-doped BiVO 4 and biperovskite Cs 2AgBiBr 6 for photocatalytic degradation of antibiotics. J Colloid Interface Sci 2025; 696:137892. [PMID: 40398118 DOI: 10.1016/j.jcis.2025.137892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025]
Abstract
Photocatalysis technology can degrade organic pollutants in wastewater, improving the ecological environment and protecting biodiversity. The BiVO4 stable chemical properties of BiVO4 make it a robust candidate for photochemical applications. Moreover, its broad light absorption spectrum and optimal band structure further enhance its potential, driving widespread research interest. The introduction of the eco-friendly biperovskite Cs2AgBiBr6 enhanced BiVO4's surface area and visible light absorbance. Simultaneously, the doping process introduces impurities that modify charge transfer pathways, thereby enhancing the separation efficiency of photogenerated electron-hole pairs. When contrasted with pure BiVO4, the W-BiVO4/Cs2AgBiBr6 composite demonstrates superior surface area characteristics and exhibits stronger absorption within the visible light spectrum. Within 40 min after exposure to visible light, the efficiency of W-BiVO4/Cs2AgBiBr6 photocatalyst to degrade ofloxacin (OFX) and meloxicam (MEL) was 93.15 % and 92.70 %, respectively. Based on the toxicity analyses and antimicrobial assays simulated by the software, no highly toxic substances were found in the degradation intermediate products of OFX and MEL. The catalysts' energy band structure and photoelectrochemical properties showed that W-BiVO4/Cs2AgBiBr6 followed the S-scheme heterojunction charge transfer mechanism. By integrating BiVO4 with other semiconductors in the form of S-scheme heterojunctions, this study explores a strategy that may effectively improve photocatalytic efficiency, particularly in pollutant degradation applications.
Collapse
Affiliation(s)
- Ze Liu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, China
| | - Yadong Hu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Chengkai Li
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Zhenyu Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Tingzhe Shen
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Danni Zeng
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China
| | - Rongfeng Guan
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China.
| | - Changjian Zhou
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Jiangsu, China.
| | - Pengyu Dong
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, China.
| |
Collapse
|
2
|
Tong H, Li FF, Du M, Song H, Han B, Jia G, Xu XQ, Zou X, Ji L, Kai JJ, Hu Z, Hsu HY. Interface Engineering, Charge Carrier Dynamics, and Solar-Driven Applications of Halide Perovskite/2D Material Heterostructured Photocatalysts. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23431-23465. [PMID: 40211476 PMCID: PMC12022953 DOI: 10.1021/acsami.4c20972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Halide perovskites (HPs), renowned for their intriguing optoelectronic properties, such as robust light absorption coefficient, long charge transfer distance, and tunable band structure, have emerged as a focal point in the field of photocatalysis. However, the photocatalytic performance of HPs is still inhibited by rapid charge recombination, insufficient band potential energy, and limited number of surface active sites. To overcome these limitations, the integration of two-dimensional (2D) materials, characterized by shortened charge transfer pathways and expansive surface areas, into HP/2D heterostructures presents a promising avenue to achieve exceptional interfacial properties, including extensive light absorption, efficient charge separation and transfer, energetic redox capacity, and adjustable surface characteristics. Herein, a comprehensive review delving into fundamentals, interfacial engineering, and charge carrier dynamics of HP/2D material heterostructures is presented. Numerous HP/2D material photocatalysts fabricated through diverse strategies and interfacial architectures are systematically described and categorized. More importantly, the enhanced charge carrier dynamics and surface properties of the HP/2D material heterostructures are thoroughly investigated and discussed. Finally, an analysis of the challenges faced in the development of HP/2D photocatalysts, alongside insightful recommendations for potential strategies to overcome these barriers, is provided.
Collapse
Affiliation(s)
- Haihang Tong
- School
of Energy and Environment, Department of Materials Science and Engineering,
Centre for Functional Photonics (CFP), City
University of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
- Shenzhen
Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| | - Fang-Fang Li
- School
of Materials Science and Engineering, Huazhong
University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Minshu Du
- School
of Materials Science and Engineering, Northwestern
Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Haisheng Song
- Wuhan
National Laboratory for Optoelectronics (WNLO) and School of Optical
and Electronic Information, Huazhong University
of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China
| | - Bin Han
- Materials
Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Guohua Jia
- Curtin Institute
of Functional Molecules and Interfaces, School of Molecular and Life
Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Xue-Qing Xu
- Key
Laboratory
of Renewable Energy, Guangdong Provincial Key Laboratory of New and
Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Xingli Zou
- State Key
Laboratory of Advanced Special Steel & Shanghai Key Laboratory
of Advanced Ferrometallurgy & School of Materials Science and
Engineering, Shanghai University, Shanghai 200444, China
| | - Li Ji
- State Key
Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Ji-Jung Kai
- Department
of Mechanical Engineering, City University
of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
| | - Zheng Hu
- Key Laboratory
of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for
Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hsien-Yi Hsu
- School
of Energy and Environment, Department of Materials Science and Engineering,
Centre for Functional Photonics (CFP), City
University of Hong Kong, Kowloon
Tong, Hong Kong 999077, China
- Shenzhen
Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
3
|
Yuan S, Liang X, Zheng Y, Chu Y, Ren X, Zeng Z, Nan G, Wu Y, He Y. Enhanced piezocatalytic and piezo-photocatalytic dye degradation via S-scheme mechanism with photodeposited nickel oxide nanoparticles on PbBiO 2Br nanosheets. J Colloid Interface Sci 2024; 670:373-384. [PMID: 38768550 DOI: 10.1016/j.jcis.2024.05.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
The fabrication of an S-scheme heterojunction demonstrates as an efficient strategy for achieving efficient charge separation and enhancing catalytic activity of piezocatalysts. In this study, a new S-scheme heterojunction was fabricated on the PbBiO2Br surface through the photo-deposition of NiO nanoparticles. It was then employed in the piezoelectric catalytic degradation of Rhodamine B (RhB). The results demonstrate that the NiO/PbBiO2Br composite exhibits efficient performance in piezocatalytic RhB degradation. The optimal sample is the NiO/PbBiO2Br synthesized after 2 h of irradiation, achieving a RhB degradation rate of 3.11 h-1, which is 12.4 times higher than that of pure PbBiO2Br. Simultaneous exposure to visible light and ultrasound further increases in the RhB degradation rate, reaching 4.60 h-1, highlighting the synergistic effect of light and piezoelectricity in the NiO/PbBiO2Br composite. A comprehensive exploration of the charge migration mechanism at the NiO/PbBiO2Br heterojunction was undertaken through electrochemical analyses, theoretical calculations, and in-situ X-ray photoelectron spectroscopy analysis. The outcomes reveal that p-type semiconductor NiO and n-type semiconductor PbBiO2Br possess matching band structures, establishing an S-scheme heterojunction structure at their interface. Under the combined effects of band bending, interface electric fields, and Coulomb attraction, electrons and holes migrate and accumulate on the conduction band of PbBiO2Br and valence band of NiO, respectively, thereby achieving effective spatial separation of charge carriers. The catalyst's synergistic photo-piezoelectric catalysis effect can be ascribed to its role in promoting the generation and separation of charge carriers under both light irradiation and the piezoelectric field. The results of this investigation offer valuable insights into the development and production of catalytic materials that exhibit outstanding performance through the synergy of piezocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Shude Yuan
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Xiaoya Liang
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Yekang Zheng
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Yuxin Chu
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Xujie Ren
- Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Zhihao Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China
| | - Guangjun Nan
- Department of Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China.
| | - Yiming He
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China; Department of Materials Science and Engineering, Zhejiang Normal University, Yingbin Road 688, Jinhua, 321004, China.
| |
Collapse
|
4
|
Cui J, Shen Z, Cao G, Zhao X, Li W. Highly efficient and 100 % selectivity of CO generation via CO 2 Photoreduction over a novel CsBr@CuBr 2 Heterojunction. Heliyon 2024; 10:e33653. [PMID: 39040326 PMCID: PMC11260970 DOI: 10.1016/j.heliyon.2024.e33653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
To address the global challenge posed by excessive carbon dioxide emissions, our research pioneers the transformation of CO2 into valuable hydrocarbon fuels. Central to this approach is the innovation of photocatalysts, engineered to exhibit exceptional photoresponse characteristics. In this research, the CsBr@CuBr2 photocatalyst was innovatively synthesized through a straightforward and effective one-pot method. The catalyst displayed remarkable efficacy, achieving a CO2 photoreduction rate of 201.47 μmol g-1 within just 4 h. The incorporation of CsBr into CuBr2 effectively captures excited-state electrons, thereby significantly enhancing charge separation efficiency. Utilizing in situ DRIFTS and DFT theoretical analysis, the experiment reveals the complex process of CO2 photoreduction to CO. The results of this experiment provide breakthrough insights for the systematic design of metal bromide heterostructures, which possess robust CO2 adsorption/activation potential and notable stability.
Collapse
Affiliation(s)
- Jingshan Cui
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhurui Shen
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Gaoqing Cao
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangxu Zhao
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Weizun Li
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
5
|
Zhao H, Sun J, Kumar S, Li P, Thalluri SM, Wang ZM, Thumu U. Recent advances in metal halide perovskite based photocatalysts for artificial photosynthesis and organic transformations. Chem Commun (Camb) 2024; 60:5890-5911. [PMID: 38775203 DOI: 10.1039/d4cc01949k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Metal halide perovskites (MHP) emerged as highly promising materials for photocatalysis, offering significant advancements in the degradation of soluble and airborne pollutants, as well as the transformation of functional organic compounds. This comprehensive review focuses on recent developments in MHP-based photocatalysts, specifically examining two major categories: lead-based (such as CsPbBr3) and lead-free variants (e.g. Cs2AgBiX6, Cs3Bi2Br9 and others). While the review briefly discusses the contributions of MHPs to hydrogen (H2) production and carbon dioxide (CO2) reduction, the main emphasis is on the design principles that determine the effectiveness of perovskites in facilitating organic reactions and degrading hazardous chemicals through oxidative transformations. Furthermore, the review addresses the key factors that influence the catalytic efficiency of perovskites, including charge recombination, reaction mechanisms involving free radicals, hydroxyl ions, and other ions, as well as phase transformation and solvent compatibility. By offering a comprehensive overview, this review aims to serve as a guide for the design of MHP-based photocatalysis and shed light on the common challenges faced by the scientific community in the domain of organic transformations.
Collapse
Affiliation(s)
- Hairong Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jiachen Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Sonu Kumar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Peihang Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | | | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Udayabhaskararao Thumu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
6
|
Althamthami M, Temam HB, Temam EG, Rahmane S, Gasmi B, Hasan GG. Impact of surface topography and hydrophobicity in varied precursor concentrations of tenorite (CuO) films: a study of film properties and photocatalytic efficiency. Sci Rep 2024; 14:7928. [PMID: 38575755 PMCID: PMC10995127 DOI: 10.1038/s41598-024-58744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
Semiconductor films are crucial in photocatalysis applications, yet their controlled production remains challenging. Previous studies have mainly focused on deposition processes, heating rates, and doping of semiconductor oxides. In this paper, we introduce a novel method for fabricating tenorite (CuO) semiconductor films with varying precursor concentrations (0.01, 0.02, 0.04, 0.06, and 0.1 g/ml) using a dip-coating technique. We explore the impact of contact angles, 3D surface topography, and film thickness on photoactivation properties, areas with limited previous research focus. The results demonstrate that higher-concentration tenorite films (0.1 g/ml) exhibit rougher surfaces (77.3 nm), increased hydrophobicity (65.61°), improved light-harvesting ability, enhanced charge separation, and higher active oxygen output. The crystal sizes were within the range of 7.3-44.1 nm. Wettability tests show a 21.47% improvement in the 0.1 g/ml film surface under indirect sunlight compared to darkness. Transmittance rates in the 600 nm range were from 0.02 to 90.94%. The direct optical band gaps were 1.21-2.74 eV, while the indirect band gaps remained unaffected (0.9-1.11 eV). Surface morphology analysis reveals an increased presence of grains with higher concentrations. Regarding photocatalysis's impact on film morphology and copper content, SEM images reveal minimal changes in film structure, while copper content remains stable with slight variations. This suggests strong adhesion of tenorite to the film after photocatalysis. Tenorite thin films display exceptional photocatalytic efficiency, making them suitable for practical applications.
Collapse
Affiliation(s)
- Mohammed Althamthami
- Physics Laboratory of Thin Films and Applications, Biskra University, BP 145 RP, 07000, Biskra, Algeria.
| | - Hachemi Ben Temam
- Physics Laboratory of Thin Films and Applications, Biskra University, BP 145 RP, 07000, Biskra, Algeria
| | - Elhachmi Guettaf Temam
- Physics Laboratory of Thin Films and Applications, Biskra University, BP 145 RP, 07000, Biskra, Algeria
| | - Saâd Rahmane
- Physics Laboratory of Thin Films and Applications, Biskra University, BP 145 RP, 07000, Biskra, Algeria
| | - Brahim Gasmi
- Physics Laboratory of Thin Films and Applications, Biskra University, BP 145 RP, 07000, Biskra, Algeria
| | | |
Collapse
|
7
|
Hu Q, Li Y, Cao H, Ji L, Wu J, Zhong M. Light-driven thermocatalytic CO 2 reduction by CH 4 on alumina-cluster-modified Ni nanoparticles with excellent durability and high light-to-fuel efficiency promoted by the photoactivation effect. J Colloid Interface Sci 2024; 657:942-952. [PMID: 38096777 DOI: 10.1016/j.jcis.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Using inexhaustible solar energy to drive efficient light-driven thermocatalytic CO2 reduction by CH4 (DRM) is an attractive approach that can synchronously reduce the greenhouse effect and convert solar energy into fuels. However, it is often limited by the intense light intensity required to produce high fuel production rates, and the catalyst deactivation due to severe carbon deposition generated from side reactions. Herein, a nanostructure of alumina-cluster-modified Ni nanoparticles supported on Al2O3 nanorods (ACM-Ni/Al2O3) was synthesized, displaying good catalytic performance under focused UV-vis-IR illumination. By light-driven thermocatalytic DRM on ACM-Ni/Al2O3 at a reduced light intensity of 76.9 kW m-2, the high fuel production rates of H2 (rH2, 65.7 mmol g-1 min-1) and CO (rCO, 78.8 mmol g-1 min-1), as well as an efficient light-to-fuel efficiency (η, 26.3 %) are achieved without additional heating. The rH2 and rCO of light-driven thermocatalysis are 2.9 and 1.9 times higher, respectively, compared to conventional thermocatalysis at the same temperature. We have discovered that high light-driven thermocatalytic activity originates from the photoactivation effect, significantly reducing the apparent activation energy and facilitating C* oxidation as a decisive step in DRM. ACM-Ni/Al2O3 possesses excellent durability and exhibits an extremely low coking rate of 4.40 × 10-3 gc gcatalyst-1 h-1, which is 26.8 times lower than that of the reference sample without Al2O3 cluster modification (R-Ni/Al2O3). This is owing to a decrease in activation energies (Ea) of C* oxidation and an increase in Ea of C* polymerization by the surface modification of Ni nanoparticles with Al2O3 clusters, effectively inhibiting carbon deposition.
Collapse
Affiliation(s)
- Qianqian Hu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Yuanzhi Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.
| | - Huamin Cao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Lei Ji
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Jichun Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Mengqi Zhong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| |
Collapse
|
8
|
Lian W, Wang L, Xu L, Fu X, He Z, Tao J, Xia Y, Li H, Xu X. One-pot synthesis of interfacially bonded Bi 4O 5Br 2/Bi 2S 3 Z-scheme heterostructures with boosted photocatalysis towards dodecylbenzenesulfonate and real hotel laundry wastewater. CHEMOSPHERE 2024; 352:141297. [PMID: 38296211 DOI: 10.1016/j.chemosphere.2024.141297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
The ubiquitous contamination of surfactants in wastewater has raised global concerns. Photocatalysis is deemed as a promising yet challenging approach for the decomposition of surfactant residues. Herein, a novel Z-scheme heterojunction of Bi4O5Br2/Bi2S3 with covalent S-O bonds was prepared via a facile one-pot hydrothermal and subsequent annealing process. The prepared optimal Bi4O5Br2/Bi2S3 composite exhibited remarkable photo-degradation activity towards the sodium dodecylbenzene sulfonate (SDBS). The Z-scheme reaction mechanism was proposed and validated by meticulous analysis of quenching tests, ESR spectroscopy and DFT calculations. Furthermore, the presence of chemical S-O linkages between Bi4O5Br2 and Bi2S3 was identified via FT-IR and XPS analyses, which served as a distinct bridge to modify the Z-scheme route for carrier transport. The Z-scheme heterostructure, in conjunction with chemical S-O bonds, synergistically enhanced the separation rate of electron-hole pairs and thus greatly boosted the photocatalytic activity. Additionally, the possible degradation pathways of SDBS were proposed by using HR-MS technology. Moreover, real hotel laundry wastewater could be efficiently disposed by the photocatalysis of the Bi4O5Br2/Bi2S3 with a decrease in the COD value from 428 to 74 mg/L, indicating that the fabricated Z-scheme heterojunction hold great promise for effectively removing refractory surfactant contaminants from aquatic environment.
Collapse
Affiliation(s)
- Wenqian Lian
- School of Culture and Tourism, Jiangsu University of Technology, Changzhou, 13001, China
| | - Lei Wang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Lin Xu
- Days Hotel & Suites Fudu, Changzhou, 213003, China
| | - Xiaofei Fu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China.
| | - Zuming He
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, China
| | - Junwu Tao
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yongmei Xia
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Huimin Li
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Xinyue Xu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| |
Collapse
|
9
|
Rana S, Kumar A, Sharma G, Dhiman P, García-Penas A, Stadler FJ. Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO 2 reduction. CHEMOSPHERE 2023; 339:139765. [PMID: 37562504 DOI: 10.1016/j.chemosphere.2023.139765] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The dramatic rise in carbon dioxide levels in the atmosphere caused by the continuous use of carbon fuels continues to have a significant impact on environmental degradation and the disappearance of energy reserves. Past few years have seen a significant increase in the interest in photocatalytic carbon dioxide reduction because of its ability to lower CO2 releases from the burning of fossil fuels while also producing fuels and important chemical products. Because of their excellent catalytic efficiency, great uniformity, lengthy charge diffusion layers and texture flexibility that enable accurate band gap and band line optimization, perovskite-based nanomaterials are perhaps the most advantageous among the numerous semiconductors proficient in accelerating CO2 conversion under visible light. Firstly, a brief insight into photocatalytic CO2 conversion mechanism and structural features of perovskites are discussed. Further the classification and selection of perovskites for Z and S-scheme heterojunctions and their role in photocatalytic CO2 reduction analysed. The efficient modification and engineering of heterojunctions via co-catalyst loading, morphology control and vacancy introduction have been comprehensively reviewed. Third, the state-of-the-art achievements of perovskite-based Z-scheme and S-scheme heterojunctions are systematically summarized and discussed. Finally, the challenges, bottlenecks and future perspectives are discussed to provide a pathway for applying perovskite-based heterojunctions for solar-to-chemical energy conversion.
Collapse
Affiliation(s)
- Sahil Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China.
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India; College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University , 173229, Solan, India
| | - Alberto García-Penas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911, Legan'es, Spain
| | - Florian J Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen, 518055, PR China
| |
Collapse
|
10
|
Qi F, Pu Y, Wu D, Tang X, Huang Q. Recent Advances and Future Perspectives of Lead-Free Halide Perovskites for Photocatalytic CO 2 Reduction. CHEM REC 2023; 23:e202300078. [PMID: 37229755 DOI: 10.1002/tcr.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/04/2023] [Indexed: 05/27/2023]
Abstract
It is still challenging to design and develop the state-of-the-art photocatalysts toward CO2 photoreduction. Enormous researchers have focused on the halide perovskites in the photocatalytic field for CO2 photoreduction, due to their excellent optical and physical properties. The toxicity of lead-based halide perovskites prevents their large-scale applications in photocatalytic fields. In consequence, lead-free halide perovskites (LFHPs) without the toxicity become the promising alternatives in the photocatalytic application for CO2 photoreduction. In recent years, the rapid advances of LFHPs have offer new chances for the photocatalytic CO2 reduction of LFHPs. In this review, we summarize not only the structures and properties of A2 BX6 , A2 B(I)B(III)X6 , and A3 B2 X9 -type LFHPs but also their recent progresses on the photocatalytic CO2 reduction. Furthermore, we also point out the opportunities and perspectives to research LFHPs photocatalysts for CO2 photoreduction in the future.
Collapse
Affiliation(s)
- Fei Qi
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Yayun Pu
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Daofu Wu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Xiaosheng Tang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Huang
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| |
Collapse
|
11
|
Wang QS, Yuan YC, Li CF, Zhang ZR, Xia C, Pan WG, Guo RT. Research Progress on Photocatalytic CO 2 Reduction Based on Perovskite Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301892. [PMID: 37194985 DOI: 10.1002/smll.202301892] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Photocatalytic CO2 reduction to valuable fuels is a promising way to alleviate anthropogenic CO2 emissions and energy crises. Perovskite oxides have attracted widespread attention as photocatalysts for CO2 reduction by virtue of their high catalytic activity, compositional flexibility, bandgap adjustability, and good stability. In this review, the basic theory of photocatalysis and the mechanism of CO2 reduction over perovskite oxide are first introduced. Then, perovskite oxides' structures, properties, and preparations are presented. In detail, the research progress on perovskite oxides for photocatalytic CO2 reduction is discussed from five aspects: as a photocatalyst in its own right, metal cation doping at A and B sites of perovskite oxides, anion doping at O sites of perovskite oxides and oxygen vacancies, loading cocatalyst on perovskite oxides, and constructing heterojunction with other semiconductors. Finally, the development prospects of perovskite oxides for photocatalytic CO2 reduction are put forward. This article should serve as a useful guide for creating perovskite oxide-based photocatalysts that are more effective and reasonable.
Collapse
Affiliation(s)
- Qing-Shan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Yi-Chao Yuan
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200090, China
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200093, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
12
|
Khedr TM, El-Sheikh SM, Kowalska E. Bismuth Tungstate Nanoplates-Vis Responsive Photocatalyst for Water Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2438. [PMID: 37686946 PMCID: PMC10490350 DOI: 10.3390/nano13172438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
The development of visible-light-responsive (VLR) semiconductor materials for effective water oxidation is significant for a sustainable and better future. Among various candidates, bismuth tungstate (Bi2WO6; BWO) has attracted extensive attention because of many advantages, including efficient light-absorption ability, appropriate redox properties (for O2 generation), adjustable morphology, low cost, and profitable chemical and optical characteristics. Accordingly, a facile solvothermal method has been proposed in this study to synthesize two-dimensional (2D) BWO nanoplates after considering the optimal preparation conditions (solvothermal reaction time: 10-40 h). To find the key factors of photocatalytic performance, various methods and techniques were used for samples' characterization, including XRD, FE-SEM, STEM, TEM, HRTEM, BET-specific surface area measurements, UV/vis DRS, and PL spectroscopy, and photocatalytic activity was examined for water oxidation under UV and/or visible-light (vis) irradiation. Famous commercial photocatalyst-P25 was used as a reference sample. It was found that BWO crystals grew anisotropically along the {001} basal plane to form nanoplates, and all properties were controlled simultaneously by tuning the synthesis time. Interestingly, the most active sample (under both UV and vis), prepared during the 30 h solvothermal reaction at 433 K (BWO-30), was characterized by the smallest specific surface area and the largest crystals. Accordingly, it is proposed that improved crystallinity (which hindered charge carriers' recombination, as confirmed by PL), efficient photoabsorption (using the smallest bandgap), and 2D mesoporous structure are responsible for the best photocatalytic performance of the BWO-30 sample. This report shows for the first time that 2D mesoporous BWO nanoplates might be successfully prepared through a facile template-free solvothermal approach. All the above-mentioned advantages suggest that nanostructured BWO is a prospective candidate for photocatalytic applications under natural solar irradiation.
Collapse
Affiliation(s)
- Tamer M Khedr
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87 Helwan, Cairo 11421, Egypt
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
13
|
Wang X, He J, Chen X, Ma B, Zhu M. Metal halide perovskites for photocatalytic CO2 reduction: An overview and prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
14
|
Ahmad I, Shukrullah S, Naz MY, Bhatti HN. A Cu medium designed Z-scheme ZnO-Cu-CdS heterojunction photocatalyst for stable and excellent H 2 evolution, methylene blue degradation, and CO 2 reduction. Dalton Trans 2023; 52:6343-6359. [PMID: 37083039 DOI: 10.1039/d3dt00684k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Solar photocatalysis has emerged as a pollution-free and inexhaustible technique that has been extensively researched in the domains of environmental remediation and energy production. Herein, we have integrated ZnO and CdS nanoparticles through Cu as a solid-state electron mediator to design a ZnO-Cu-CdS Z-scheme heterosystem via a sol-gel route and further tested this as a photocatalyst for dye degradation, H2 evolution, and CO2 reduction. Within 60 min of visible light exposure, about 97% of methylene blue (MB) is degraded with a degradation rate constant of 0.042 min-1 for the ZnO0.45Cu0.1CdS0.45 catalyst. The MB degradation with this catalyst is 84, 21, 4.8, and 2 times as high as those of ZnO, CdS, ZnO0.5CdS0.5, and Cu0.1ZnO0.9 catalysts. The ZnO-Cu-CdS catalyst manifests an H2 evolution efficiency of 5579 μmol h-1 g-1, which is 169, 41, 3.9, and 3.5 times as high as those of ZnO, CdS, ZnO0.5CdS0.5, and Cu0.1ZnO0.9 catalysts. Using H2 as a reducing agent, the CO production rate over the ZnO0.45Cu0.1CdS0.45 catalyst reaches 770 μmol h-1 g-1, which is 3 and 1.8 times higher than those of ZnO0.5CdS0.5 and Cu0.1ZnO0.9 catalysts. Besides, the optimal CH4 production rate over ZnO0.45Cu0.1CdS0.45 reaches 890 μmol h-1 g-1. The improved photocatalytic response of the ZnO-Cu-CdS catalyst is assigned to the delayed recombination of photoexcited charge carriers through a Z-scheme charge transport mode, maintaining the photocarriers with strong redox potentials and the dual role of Cu to serve as a conductive bridge to accelerate the charge transfer rate and enhance the light absorption due to its SPR phenomenon. This research offers a promising strategy for developing binary/ternary Z-scheme heterojunction photocatalytic systems for different photocatalytic applications.
Collapse
Affiliation(s)
- Irshad Ahmad
- Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
| |
Collapse
|
15
|
Wu Z, Tüysüz H, Besenbacher F, Dai Y, Xiong Y. Recent developments in lead-free bismuth-based halide perovskite nanomaterials for heterogeneous photocatalysis under visible light. NANOSCALE 2023; 15:5598-5622. [PMID: 36891830 DOI: 10.1039/d3nr00124e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite materials, especially lead-based perovskites, have been widely used for optoelectronic and catalytic applications. However, the high toxicity of the lead element is a major concern that directs the research work toward lead-free halide perovskites, which could utilize bismuth as a promising candidate. Until now, the replacement of lead by bismuth in perovskites has been well studied by designing bismuth-based halide perovskite (BHP) nanomaterials with versatile physical-chemical properties, which are emerging in various application fields, especially heterogeneous photocatalysis. In this mini-review, we present a brief overview of recent progress in BHP nanomaterials for photocatalysis under visible light. The synthesis and physical-chemical properties of BHP nanomaterials have been comprehensively summarized, including zero-dimensional, two-dimensional nanostructures and hetero-architectures. Later, we introduce the photocatalytic applications of these novel BHP nanomaterials with visible-light response, improved charge separation/transport and unique catalytic sites. Due to advanced nano-morphologies, a well-designed electronic structure and an engineered surface chemical micro-environment, BHP nanomaterials demonstrate enhanced photocatalytic performance for hydrogen generation, CO2 reduction, organic synthesis and pollutant removal. Finally, the challenges and future research directions of BHP nanomaterials for photocatalysis are discussed.
Collapse
Affiliation(s)
- Zehong Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr 45470, Germany
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yitao Dai
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Feng Y, Chen D, Zhong Y, He Z, Ma S, Ding H, Ao W, Wu X, Niu M. A Lead-Free 0D/2D Cs 3Bi 2Br 9/Bi 2WO 6 S-Scheme Heterojunction for Efficient Photoreduction of CO 2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9221-9230. [PMID: 36757377 DOI: 10.1021/acsami.2c19703] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Photocatalytic reduction of CO2 into valuable hydrocarbon fuels is one of the green ways to solve the energy problem and achieve carbon neutrality. Exploring photocatalyst with low toxicity and high-efficiency is the key to realize it. Here we report a lead-free halide perovskite-based 0D/2D Cs3Bi2Br9/Bi2WO6 (CBB/BWO) S-scheme heterojunction for CO2 photoreduction, prepared by a facile electrostatic self-assembly approach. The CBB/BWO shows superior photoreduction of CO2 under visible light with CO generation rate of 220.1 μmol·g-1·h-1, which is ∼115.8 and ∼18.5 times higher than that of Cs3Bi2Br9 perovskite quantum dots (CBB PQDS) and Bi2WO6 nanosheets (BWO NS), respectively. The improved photocatalytic activity can be attributed to the tight 0D/2D structure and S-scheme charge transfer pathway between the Cs3Bi2Br9 PQDS and atomic layers of the Bi2WO6 NS, which shortens transmission distance of photogenerated carriers and boosts efficient separation and transfer of the carriers. This work provides insight in manufacturing potential lead-free perovskite-based photocatalysts for achieving carbon neutrality.
Collapse
Affiliation(s)
- Yanmei Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Daimei Chen
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yi Zhong
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zetian He
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Shiqing Ma
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Ding
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Weihua Ao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Xiangfeng Wu
- Hebei Key Laboratory of New Materials for Collaborative Development of Traffic Engineering and Environment, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|