1
|
Yang L, Liu H, Zhong S, Weng W, Tan W, Chi X. Preparing Carbon-Coated Copper Foil with a Low-Cost and Environmentally Friendly Carbon Slurry to Stabilize Silicon Anode for Lithium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19648-19656. [PMID: 40101242 DOI: 10.1021/acsami.4c22835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Introducing a conductive carbon layer between the copper foil current collector and silicon active material effectively mitigates electrode damage and battery capacity loss caused by uneven silicon expansion. In this study, a low-cost, environmentally friendly carbon-coated copper foil (CCF) is designed using zeolitic imidazolate framework 8-derived carbon (ZPC) as the carbon source, polyethylenepyrrolidone (PVP) as the binder, and deionized water as the solvent. The large surface area and porosity of ZPC effectively accommodate the volume expansion of silicon, thereby enhancing the overall performance of the battery. The bare copper foil electrode experiences rapid decay, with a failure occurring after just 75 cycles at 0.5 C. In contrast, the CCF electrode maintains a reversible capacity of 576.8 mAh/g even after 200 cycles. The CCF electrode demonstrates superior specific capacity and cycle stability in both the rate and cycling test. According to the relaxation time distribution (DRT) analysis, the porous carbon layer on the CCF surface ensures excellent electrical contact between silicon and the Cu foil during cycling, facilitates uniform lithium insertion into silicon, prevents uncontrolled growth of the SEI layer, and guarantees stable battery operation. This CCF preparation process provides a promising solution to mitigate the degradation of battery performance caused by silicon expansion.
Collapse
Affiliation(s)
- Lei Yang
- School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hongyu Liu
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
| | - Shuiping Zhong
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
- Zijin Mining Group Co., Ltd., State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Shanghang, Fujian 364200, China
| | - Wei Weng
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
| | - Wen Tan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
| | - Xiaopeng Chi
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of New Energy Metals, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
2
|
Shen Y, Zheng Y, Jiang J, Guo J, Huang Y, Liu Y, Zhang H, Zhang Q, Xu J, Shao H. Li-Si alloy pre-lithiated silicon suboxide anode constructing a stable multiphase lithium silicate layer promoting Ion-transfer kinetics. J Colloid Interface Sci 2025; 679:855-867. [PMID: 39406034 DOI: 10.1016/j.jcis.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Enhancing the initial Coulombic efficiency (ICE) and cycling stability of silicon suboxide (SiOx) anode is crucial for promoting its commercialization and practical implementation. Herein, we propose an economical and effective method for constructing pre-lithiated core-shell SiOx anodes with high ICE and stable interface during cycling. The lithium silicon alloy (Li13Si4) is used to react with SiOx in advance, allowing for improved ICE of SiOx without compromising its reversible specific capacity. The pre-lithiated surface layer contains uniform multiphase lithium silicates (L2SiO3, Li4SiO4, and Li2Si2O5) in the nanoscale. This multiphase lithium silicate layer exhibits mechanical robustness against variation of micro-stress, which can act as a buffer layer to relieve volume variation. In addition, analysis of dynamic electrochemical impedance spectroscopy (dEIS) and distribution of relaxation time (DRT) confirm that the multiphase lithium silicate layer enhances Li-ion diffusion kinetics and contributed to constructing stable SEI. As a result, the optimal L10-850 anode shows a high ICE of 85.3 %, together with a high specific capacity of 1771.5mAh mg-1. This work gives a perspective strategy to modify SiOx anodes by constructing a pre-lithiated surface layer with practical application potentials.
Collapse
Affiliation(s)
- Yingying Shen
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Yun Zheng
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Jiangmin Jiang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Junpo Guo
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yike Huang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Yinan Liu
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Hebin Zhang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China; Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jincheng Xu
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China
| | - Huaiyu Shao
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Macao, SAR, 999078, China.
| |
Collapse
|
3
|
He S, Huang S, Liu X, Zeng X, Chen H, Zhao L, Noor H, Hou X. Interfacial self-healing polymer electrolytes for Long-Cycle silicon anodes in High-Performance solid-state lithium batteries. J Colloid Interface Sci 2024; 665:299-312. [PMID: 38531275 DOI: 10.1016/j.jcis.2024.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
For all-solid-state lithium-ion batteries (ASSLIBs), silicon (Si) stands out as an appealing anodes material due to its high energy density and improved safety compared to lithium metal. However, the substantial volume changes during cycling result in poor solid-state physical contact and electrolyte-electrode interface issues, leading to unsatisfactory electrochemical performance. In this study, we employed in-situ polymerization to construct an integrated Si anodes/self-healing polymer electrolyte for ASSLIBs. The polymer chain reorganization stems from numerous dynamic bonds in the constructed self-healing dynamic supermolecular elastomer electrolyte (SHDSE) molecular structure. Notably, SHDSE also serves as a Si anodes binder with enhanced adhesive capability. As a result, the well-structured Li|SHDSE|Si-SHDSE cell generates subtle electrolyte-electrode interface contacts at the molecular level, which can offer a continuous and stable Li+ transport pathway, reduce Si particle displacement, and mitigate electrode volume expansion. This further enhances cyclic stability (>500 cycles with 68.1 % capacity retention and >99.8 % Coulombic efficiency). More practically, the 2.0 Ah wave-shaped Si||LiCoO2 soft-pack battery with in-situ cured SHDSE exhibits strongly stabilized electrochemical performance (1.68 Ah after 700 cycles, 86.2 % capacity retention) in spite of a high operating temperatures up to 100 °C and in various bending tests. This represents a groundbreaking report in flexible solid-state soft-pack batteries containing Si anodes.
Collapse
Affiliation(s)
- Shenggong He
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Shimin Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Xinzhou Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Xianggang Zeng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Hedong Chen
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China
| | - Lingzhi Zhao
- Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China
| | - Hadia Noor
- Centre of Excellence in Solid State Physics, Faculty of Science, University of the Punjab, Lahore 54590, Pakistan
| | - Xianhua Hou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China; Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Electronics and Information Engineering, South China Normal University, Foshan 528225, China; SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China.
| |
Collapse
|
4
|
Zhao J, Wang B, Zhan Z, Hu M, Cai F, Świerczek K, Yang K, Ren J, Guo Z, Wang Z. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes. J Colloid Interface Sci 2024; 664:790-800. [PMID: 38492380 DOI: 10.1016/j.jcis.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/11/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Deleterious volumetric expansion and poor electrical conductivity seriously hinder the application of Si-based anode materials in lithium-ion batteries (LIBs). Herein, boron-doped three-dimensional (3D) porous carbon framework/carbon shell encapsulated silicon (B-3DCF/Si@C) hybrid composites are successfully prepared by two coating and thermal treatment processes. The presence of 3D porous carbon skeleton and carbon shell effectively improves the mechanical properties of the B-3DCF/Si@C electrode during the cycling process, ensures the stability of the electrical contacts of the silicon particles and stabilizes the solid electrolyte interface (SEI) layer, thus enhancing the electronic conductivity and ion migration efficiency of the anode. The developed B-3DCF/Si@C anode has a high reversible capacity, excellent cycling stability and outstanding rate performance. A reversible capacity of 1288.5 mAh/g is maintained after 600 cycles at a current density of 400 mA g-1. The improved electrochemical performance is demonstrated in a full cell using a LiFePO4-based cathode. This study presents a novel approach that not only mitigates the large volume expansion effects in LIB anode materials, but also provides a reference model for the preparation of porous composites with various functionalities.
Collapse
Affiliation(s)
- Junkai Zhao
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Bo Wang
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ziheng Zhan
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Meiyang Hu
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Feipeng Cai
- Energy Research Institute of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Konrad Świerczek
- Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Krakow, Krakow 30-059, Poland
| | - Kaimeng Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Zhaolong Wang
- Interdisciplinary Research Center of Low-carbon Technology and Equipment, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
5
|
Chen J, Li Y, Wu X, Min H, Wang J, Liu X, Yang H. Dynamic hydrogen bond cross-linking binder with self-healing chemistry enables high-performance silicon anode in lithium-ion batteries. J Colloid Interface Sci 2024; 657:893-902. [PMID: 38091912 DOI: 10.1016/j.jcis.2023.12.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024]
Abstract
The structure instability and cycling decay of silicon (Si) anode triggered by stress buildup hinder its practical application to next-generation high-energy-density lithium-ion batteries (LIBs). Herein, a cross-linking polymeric network as a self-healing binder for Si anode is developed by in situ polymerization of tannic acid (TA) and polyacrylic acid (PAA) binder labelled as TA-c-PAA. The branched TA as a physical cross-linker complexes with PAA main chains through abundant dynamic hydrogen bonds, endowing the cross-linking TA-c-PAA binder with unique self-healing property and strong adhesion for Si anode. Benefiting from the mechanical robust and hard adhesion, the Si@TA-c-PAA electrode exhibits high reversible specific capacities (3250 mAh/g at 0.05C (1C = 4000 mA g-1)), excellent rate capability (1599 mAh/g at 2C), and impressive cycling stability (1742 mAh/g at 0.25C after 450 cycles). After Ex situ morphology characterization, in situ swelling analysis, and finite element simulation, it is found that the TA-c-PAA binder allows the Si anode to dissipate stress and prevent pulverization during lithiation and delithiation, thus the hydrogen bonds among interpenetrating network may be adaptable to the stress intensity. Our work paves a new avenue for the design of efficient and cost-effective binders for next-generation Si anode in LIBs.
Collapse
Affiliation(s)
- Jiahao Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yaxin Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xinyuan Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Huihua Min
- Electron Microscope Lab, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiaomin Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| | - Hui Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China.
| |
Collapse
|