1
|
Colleran R, Fitzgerald S, Rai H, McGovern L, Byrne RJ, Mansur A, Cradock A, Lavery R, Bisset J, McKeogh S, Cantwell G, O'Ciardha D, Wilson H, Begossi N, Blake N, Fitzgibbon M, McNulty J, Széplaki G, Heffernan E, Hannan M, O'Donnell JS, Byrne RA. Symptom burden, coagulopathy and heart disease after acute SARS-CoV-2 infection in primary practice. Sci Rep 2024; 14:21229. [PMID: 39261512 PMCID: PMC11390729 DOI: 10.1038/s41598-024-71535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
SETANTA (Study of HEarT DiseAse and ImmuNiTy After COVID-19 in Ireland) study aimed to investigate symptom burden and incidence of cardiac abnormalities after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 and to correlate these results with biomarkers of immunological response and coagulation. SETANTA was a prospective, single-arm observational cross-sectional study condcuted in a primary practice setting, and prospectively registered with ClinicalTrials.gov (identifier: NCT04823182). Patients with recent COVID-19 infection (≥ 6 weeks and ≤ 12 months) were prospectively enrolled. Primary outcomes of interest were markers of cardiac injury detected by cardiac magnetic resonance imaging (CMR), which included left ventricular ejection fraction, late gadolinium enhancement and pericardial abnormalities, as well as relevant biomarkers testing immunological response and coagulopathy. 100 patients (n = 129 approached) were included, amongst which 64% were female. Mean age of the total cohort was 45.2 years. The median (interquartile range) time interval between COVID-19 infection and enrolment was 189 [125, 246] days. 83% of participants had at least one persistent symptom, while 96% had positive serology for prior SARS-CoV-2 infection. Late gadolinium enhancement, pericardial effusion, was present in 2.2% and 8.3% respectively, while left ventricular ejection fraction was below the normal reference limit in 17.4% of patients. Von Willebrand factor antigen was elevated in 32.7% of patients and Fibrinogen and D-Dimer levels were found to be elevated in 10.2% and 11.1% of patients, respectively. In a cohort of primary practice patients recently recovered from SARS-CoV-2 infection, prevalence of persistent symptoms and markers of abnormal coagulation were high, despite a lower frequency of abnormalities on CMR compared with prior reports of patients assessed in a hospital setting.Trial Registration: Clinicaltrials.gov, NCT04823182 (prospectively registered on 30th March 2021).
Collapse
Affiliation(s)
- Roisin Colleran
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Sean Fitzgerald
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Himanshu Rai
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Laurna McGovern
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Andrea Cradock
- School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | - Gordon Cantwell
- Drs Cantwell and Spillane Practice, Family and General Medicine, Dublin, Ireland
| | - Darach O'Ciardha
- Institute of Population Health, Trinity College Dublin, Dublin, Ireland
| | - Hannah Wilson
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nicoletta Begossi
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Nial Blake
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | | | | | - Gábor Széplaki
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland
| | - Emma Heffernan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - Margaret Hannan
- Department of Pathology, Mater Private Network, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Robert A Byrne
- Cardiovascular Research Institute (CVRI) Dublin, Mater Private Network, Dublin, Ireland.
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
2
|
Zhang J, Luo S, Cai J, Kong X, Zhang L, Qi L, Zhang LJ. Multiparametric Cardiovascular Magnetic Resonance in Nonhospitalized COVID-19 Infection Subjects: An Intraindividual Comparison Study. J Thorac Imaging 2024; 39:86-92. [PMID: 38270475 DOI: 10.1097/rti.0000000000000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
PURPOSE To investigate intraindividual cardiac structural and functional changes before and after COVID-19 infection in a previously healthy population with a 3T cardiac magnetic resonance (CMR). MATERIALS AND METHODS A total of 39 unhospitalized patients with COVID-19 were recruited. They participated in our previous study as non-COVID-19 healthy volunteers undergoing baseline CMR examination and were recruited to perform a repeated CMR examination after confirmed COVID-19 infection in December 2022. The CMR parameters were measured and compared between before and after COVID-19 infection with paired t tests. The laboratory measures including myocardial enzymes and inflammatory indicators were also collected when performing repeated CMR. RESULTS The median duration was 393 days from the first to second CMR and 26 days from clinical symptoms onset to the second CMR. Four patients (10.3%, 4/39) had the same late gadolinium enhancement pattern at baseline and repeated CMR and 5 female patients (12.8%, 5/39) had myocardial T2 ratio >2 (2.07 to 2.27) but with normal T2 value in post-COVID-19 CMR. All other CMR parameters were in normal ranges before and after COVID-19 infection. Between before and after the COVID-19 infection, there were no significant differences in cardiac structure, function, and tissue characterization, no matter with or without symptoms (fatigue, chest discomfort, palpitations, shortness of breath, and insomnia/sleep disorders) (all P >0.05). The laboratory measures at repeated CMR were in normal ranges in all participants. CONCLUSIONS These intraindividual CMR studies showed unhospitalized patients with COVID-19 with normal myocardial enzymes had no measurable CMR abnormalities, which can help alleviate wide social concerns about COVID-19-related myocarditis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Song Luo
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University
| | - Jun Cai
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University
| | - Xiang Kong
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University
| | - Lingyan Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University
| | - Li Qi
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Long Jiang Zhang
- Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Johnson JN, Pouraliakbar H, Mahdavi M, Ranjbar A, Pfirman K, Mehra V, Ahmed S, Ba-Atiyah W, Galal MO, Zahr RA, Hussain N, Tadikamalla RR, Farah V, Dzelebdzic S, Muniz JC, Lee M, Williams J, Lee S, Aggarwal SK, Clark DE, Hughes SG, Ganigara M, Nagiub M, Hussain T, Kwok C, Lim HS, Nolan M, Kikuchi DS, Goulbourne CA, Sahu A, Sievers B, Sievers B, Sievers B, Garg R, Armas CR, Paleru V, Agarwal R, Rajagopal R, Bhagirath P, Kozor R, Aneja A, Tunks R, Chen SSM. Society for Cardiovascular Magnetic Resonance 2022 Cases of SCMR case series. J Cardiovasc Magn Reson 2023; 26:100007. [PMID: 38211509 PMCID: PMC11211240 DOI: 10.1016/j.jocmr.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024] Open
Abstract
"Cases of SCMR" is a case series on the SCMR website (https://www.scmr.org) for the purpose of education. The cases reflect the clinical presentation, and the use of cardiovascular magnetic resonance (CMR) in the diagnosis and management of cardiovascular disease. The 2022 digital collection of cases are presented in this manuscript.
Collapse
Affiliation(s)
- Jason N Johnson
- Division of Pediatric Cardiology and Pediatric Radiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hamidreza Pouraliakbar
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolmohammad Ranjbar
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kristopher Pfirman
- Department of Cardiovascular Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Vishal Mehra
- Department of Cardiovascular Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Shahzad Ahmed
- Department of Cardiovascular Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Wejdan Ba-Atiyah
- Pediatric Cardiology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed Omar Galal
- Pediatric Cardiology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Riad Abou Zahr
- Pediatric Cardiology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nasir Hussain
- Department of Advanced Cardiac Imaging, Allegheny General Hospital, Pittsburgh, PA, USA
| | | | - Victor Farah
- Department of Advanced Cardiac Imaging, Allegheny General Hospital, Pittsburgh, PA, USA
| | | | | | - Marc Lee
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jason Williams
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Simon Lee
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Daniel E Clark
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean G Hughes
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madhusudan Ganigara
- Division of Pediatric Cardiology, The University of Chicago & Biological Sciences, Chicago, IL, USA
| | - Mohamed Nagiub
- Division of Pediatric Cardiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA
| | - Cecilia Kwok
- Cardiology Department, Western Health, St Albans, Victoria, Australia
| | - Han S Lim
- Cardiology Department, Austin and Northern Health, University of Melbourne, Victoria, Australia
| | - Mark Nolan
- Cardiology Department, Western Health, St Albans, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Daniel S Kikuchi
- Osler Medical Residency, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Clive A Goulbourne
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Anurag Sahu
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Berge Sievers
- International School Düsseldorf, Düsseldorf, Germany
| | - Berk Sievers
- International School Düsseldorf, Düsseldorf, Germany
| | - Burkhard Sievers
- Department of Internal Medicine, Divisions of Cardiology, Pulmonology, Vascular Medicine, Nephrology and Intensive Care Medicine, Sana Klinikum Remscheid, Germany
| | - Rimmy Garg
- University of Illinois College of Medicine Peoria, OSF St. Francis Medical Center, Peoria, IL, USA
| | - Carlos Requena Armas
- University of Illinois College of Medicine Peoria, OSF St. Francis Medical Center, Peoria, IL, USA
| | - Vijayasree Paleru
- University of Illinois College of Medicine Peoria, OSF St. Francis Medical Center, Peoria, IL, USA
| | - Ritu Agarwal
- Department of Radiology, Eternal Hospital, Jaipur, India
| | - Rengarajan Rajagopal
- Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pranav Bhagirath
- Department of Cardiology, St. Thomas Hospital, London, England, UK
| | - Rebecca Kozor
- Department of Cardiology, Royal North Shore Hospital, The University of Sydney, St Leonards, Australia
| | - Ashish Aneja
- Department of Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert Tunks
- Division of Pediatric Cardiology, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sylvia S M Chen
- Adult Congenital Heart Disease, The Prince Charles Hospital, Australia.
| |
Collapse
|
4
|
Ng MY, Tam CH, Lee YP, Fong HTA, Wong CK, Ng WKC, Yeung MHY, Ling WHI, Tsao S, Wan EYF, Ferreira V, Yan AT, Siu CW, Yiu KH, Hung IFN. Post-COVID-19 vaccination myocarditis: a prospective cohort study pre and post vaccination using cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2023; 25:74. [PMID: 38057820 PMCID: PMC10702006 DOI: 10.1186/s12968-023-00985-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Concerns about COVID-19 vaccination induced myocarditis or subclinical myocarditis persists in some populations. Cardiac magnetic resonance imaging (CMR) has been used to detect signs of COVID-19 vaccination induced myocarditis. This study aims to: (i) characterise myocardial tissue, function, size before and after COVID-19 vaccination, (ii) determine if there is imaging evidence of subclinical myocardial inflammation or injury after vaccination using CMR. METHODS Subjects aged ≥ 12yrs old without prior COVID-19 or COVID-19 vaccination underwent two CMR examinations: first, ≤ 14 days before the first COVID-19 vaccination and a second time ≤ 14 days after the second COVID-19 vaccination. Biventricular indices, ejection fraction (EF), global longitudinal strain (GLS), late gadolinium enhancement (LGE), left ventricular (LV) myocardial native T1, T2, extracellular volume (ECV) quantification, lactate dehydrogenase (LDH), white cell count (WCC), C-reactive protein (CRP), NT-proBNP, troponin-T, electrocardiogram (ECG), and 6-min walk test were assessed in a blinded fashion. RESULTS 67 subjects were included. First and second CMR examinations were performed a median of 4 days before the first vaccination (interquartile range 1-8 days) and 5 days (interquartile range 3-6 days) after the second vaccination respectively. No significant change in global native T1, T2, ECV, LV EF, right ventricular EF, LV GLS, LGE, ECG, LDH, troponin-T and 6-min walk test was demonstrated after COVID-19 vaccination. There was a significant WCC decrease (6.51 ± 1.49 vs 5.98 ± 1.65, p = 0.003) and CRP increase (0.40 ± 0.22 vs 0.50 ± 0.29, p = 0.004). CONCLUSION This study found no imaging, biochemical or ECG evidence of myocardial injury or inflammation post COVID-19 vaccination, thus providing some reassurance that COVID-19 vaccinations do not typically cause subclinical myocarditis.
Collapse
Affiliation(s)
- Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China.
- Department of Medical Imaging, HKU-Shenzhen Hospital, Shenzhen, China.
| | - Cheuk Hang Tam
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Yung Pok Lee
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Ho Tung Ambrose Fong
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Chun-Ka Wong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Wing Kei Carol Ng
- Department of Radiology, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Maegan Hon Yan Yeung
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Room 406, Block K, Queen Mary Hospital, Hong Kong SAR, China
| | - Wood-Hay Ian Ling
- Grantham Hospital, 125 Wong Chuk Hang Rd, Aberdeen, Hong Kong SAR, China
| | - Sabrina Tsao
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford BHF Centre of Research Excellence, Oxford Centre for Clinical Magnetic Resonance Research, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Andrew T Yan
- St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Chung Wah Siu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Kai-Hang Yiu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| |
Collapse
|
5
|
Tijmes FS, Marschner C, Thavendiranathan P, Hanneman K. Magnetic Resonance Imaging of Cardiovascular Manifestations Following COVID-19. J Magn Reson Imaging 2023; 58:26-43. [PMID: 36951477 DOI: 10.1002/jmri.28677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
Globally, over 650 million people have had COVID-19 due to infection with the SARS-Cov-2 virus. Cardiac complications in the acute infectious and early recovery phase were recognized early in the pandemic, including myocardial injury and inflammation. With a decrease in the number of acute COVID-19 related deaths, there has been increased interest in postacute sequela of COVID-19 (PASC) and other longer-term cardiovascular complications. A proportion of patients recovered from COVID-19 have persistent cardiac symptoms and are at risk of cardiovascular disease. Cardiovascular imaging, including MRI, plays an important role in the detection of cardiovascular manifestations of COVID-19 in both the acute and longer-term phases after COVID-19. The purpose of this review is to highlight the role of cardiovascular imaging in the diagnosis and risk stratification of patients with acute and chronic cardiovascular manifestations of COVID-19 with a focus on cardiac MRI. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Felipe Sanchez Tijmes
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Constantin Marschner
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Clinica Santa Maria, Universidad de los Andes, Santiago, Chile
| | - Paaladinesh Thavendiranathan
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, Peter Munk Cardiac Centre, Toronto General Hospital, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, Toronto General Hospital, Peter Munk Cardiac Center, University Health Network (UHN), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Garg R, Hussain M, Friedrich MG. Phenotyping myocardial injury related to COVID and SARS-CoV-2 vaccination: insights from cardiovascular magnetic resonance. Front Cardiovasc Med 2023; 10:1186556. [PMID: 37396575 PMCID: PMC10308023 DOI: 10.3389/fcvm.2023.1186556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Ria Garg
- Department of Internal Medicine, Geisinger Wyoming Valley Hospital, Wilkes Barre, PA, United States
- Department of CV Imaging, Courtois CMR Research Group at the Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Muzna Hussain
- Department of Internal Medicine, Geisinger Wyoming Valley Hospital, Wilkes Barre, PA, United States
| | - Matthias G. Friedrich
- Department of CV Imaging, Courtois CMR Research Group at the Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Departments of Medicine and Diagnostic Radiology, Universitaire de Santé McGill Site Glen, Montreal, QC, Canada
| |
Collapse
|
7
|
Parhizgar P, Yazdankhah N, Rzepka AM, Chung KYC, Ali I, Lai Fat Fur R, Russell V, Cheung AM. Beyond Acute COVID-19: A Review of Long-term Cardiovascular Outcomes. Can J Cardiol 2023; 39:726-740. [PMID: 36754119 PMCID: PMC9901229 DOI: 10.1016/j.cjca.2023.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
Statistics Canada estimated that approximately 1.4 million Canadians suffer from long COVID. Although cardiovascular changes during acute SARS-CoV-2 infection are well documented, long-term cardiovascular sequelae are less understood. In this review, we sought to characterize adult cardiovascular outcomes in the months after acute COVID-19 illness. In our search we identified reports of outcomes including cardiac dysautonomia, myocarditis, ischemic injuries, and ventricular dysfunction. Even in patients without overt cardiac outcomes, subclinical changes have been observed. Cardiovascular sequelae after SARS-CoV-2 infection can stem from exacerbation of preexisting conditions, ongoing inflammation, or as a result of damage that occurred during acute infection. For example, myocardial fibrosis has been reported months after hospital admission for COVID-19 illness, and might be a consequence of myocarditis and myocardial injury during acute disease. In turn, myocardial fibrosis can contribute to further outcomes including dysrhythmias and heart failure. Severity of acute infection might be a risk factor for long-term cardiovascular consequences, however, cardiovascular changes have also been reported in young, healthy individuals who had asymptomatic or mild acute disease. Although evolving evidence suggests that previous SARS-CoV-2 infection might be a risk factor for cardiovascular disease, there is heterogeneity in existing evidence, and some studies are marred by measured and unmeasured confounders. Many investigations have also been limited by relatively short follow-up. Future studies should focus on longer term outcomes (beyond 1 year) and identifying the prevalence of outcomes in different populations on the basis of acute and long COVID disease severity.
Collapse
Affiliation(s)
- Parinaz Parhizgar
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nima Yazdankhah
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anna M Rzepka
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kit Yan Christie Chung
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Irfan Ali
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Lai Fat Fur
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Russell
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Angela M Cheung
- Department of Medicine and Joint Department of Medical Imaging, Toronto Hospital Research Institute and Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Abstract
Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (D.F.,)
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Nicolas Musigk
- Deutsches Herzzentrum der Charité, Berlin, Germany (N.M., B.H.)
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
9
|
Ferreira VM, Plein S, Wong TC, Tao Q, Raisi-Estabragh Z, Jain SS, Han Y, Ojha V, Bluemke DA, Hanneman K, Weinsaft J, Vidula MK, Ntusi NAB, Schulz-Menger J, Kim J. Cardiovascular magnetic resonance for evaluation of cardiac involvement in COVID-19: recommendations by the Society for Cardiovascular Magnetic Resonance. J Cardiovasc Magn Reson 2023; 25:21. [PMID: 36973744 PMCID: PMC10041524 DOI: 10.1186/s12968-023-00933-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic that has affected nearly 600 million people to date across the world. While COVID-19 is primarily a respiratory illness, cardiac injury is also known to occur. Cardiovascular magnetic resonance (CMR) imaging is uniquely capable of characterizing myocardial tissue properties in-vivo, enabling insights into the pattern and degree of cardiac injury. The reported prevalence of myocardial involvement identified by CMR in the context of COVID-19 infection among previously hospitalized patients ranges from 26 to 60%. Variations in the reported prevalence of myocardial involvement may result from differing patient populations (e.g. differences in severity of illness) and the varying intervals between acute infection and CMR evaluation. Standardized methodologies in image acquisition, analysis, interpretation, and reporting of CMR abnormalities across would likely improve concordance between studies. This consensus document by the Society for Cardiovascular Magnetic Resonance (SCMR) provides recommendations on CMR imaging and reporting metrics towards the goal of improved standardization and uniform data acquisition and analytic approaches when performing CMR in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Vanessa M Ferreira
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford British Heart Foundation Centre of Research Excellence, The National Institute for Health Research Oxford Biomedical Research Centre at the Oxford University Hospitals NHS Foundation Trust, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, University of Leeds, Leeds, UK
| | - Timothy C Wong
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Qian Tao
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Supriya S Jain
- Division of Pediatric Cardiology, Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, New York, USA
| | - Yuchi Han
- Cardiovascular Medicine, Wexner Medical Center, The Ohio State University, Columbus, USA
| | - Vineeta Ojha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - David A Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Kate Hanneman
- Department of Medical Imaging, Toronto General Hospital, University of Toronto, Toronto, Canada
| | - Jonathan Weinsaft
- Department of Medicine, Division of Cardiology, Weill Cornell Medicine/New York Presbyterian Hospital, Weill Cornell Medical College, New York, USA
| | - Mahesh K Vidula
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ntobeko A B Ntusi
- Division of Cardiology, Department of Medicine, University of Cape Town and Groote Schuur Hospital; Cape Heart Institute, University of Cape Town, South African Medical Research Council Extramural Unit On Intersection of Noncommunicable Diseases and Infectious Diseases, Cape Town, South Africa
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between Charité and MDC, Charité University Medicine, Berlin, Germany
- Department of Cardiology and Nephrology, Helios Hospital Berlin-Buch, Berlin, Germany
| | - Jiwon Kim
- Department of Medicine, Division of Cardiology, Weill Cornell Medicine/New York Presbyterian Hospital, Weill Cornell Medical College, New York, USA.
| |
Collapse
|
10
|
Jerosch‐Herold M, Rickers C, Petersen SE, Coelho‐Filho OR. Myocardial Tissue Characterization in Cardiac Magnetic Resonance Studies of Patients Recovering From COVID-19: A Meta-Analysis. J Am Heart Assoc 2023; 12:e027801. [PMID: 36892052 PMCID: PMC10111516 DOI: 10.1161/jaha.122.027801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/05/2023] [Indexed: 03/10/2023]
Abstract
Background Meta-analysis can identify biological factors that moderate cardiac magnetic resonance myocardial tissue markers such as native T1 (longitudinal magnetization relaxation time constant) and T2 (transverse magnetization relaxation time constant) in cohorts recovering from COVID-19 infection. Methods and Results Cardiac magnetic resonance studies of patients with COVID-19 using myocardial T1, T2 mapping, extracellular volume, and late gadolinium enhancement were identified by database searches. Pooled effect sizes and interstudy heterogeneity (I2) were estimated with random effects models. Moderators of interstudy heterogeneity were analyzed by meta-regression of the percent difference of native T1 and T2 between COVID-19 and control groups (%ΔT1 [percent difference of the study-level means of myocardial T1 in patients with COVID-19 and controls] and %ΔT2 [percent difference of the study-level means of myocardial T2 in patients with COVID-19 and controls]), extracellular volume, and the proportion of late gadolinium enhancement. Interstudy heterogeneities of %ΔT1 (I2=76%) and %ΔT2 (I2=88%) were significantly lower than for native T1 and T2, respectively, independent of field strength, with pooled effect sizes of %ΔT1=1.24% (95% CI, 0.54%-1.9%) and %ΔT2=3.77% (95% CI, 1.79%-5.79%). %ΔT1 was lower for studies in children (median age: 12.7 years) and athletes (median age: 21 years), compared with older adults (median age: 48 years). Duration of recovery from COVID-19, cardiac troponins, C-reactive protein, and age were significant moderators for %ΔT1 and/or %ΔT2. Extracellular volume, adjusted by age, was moderated by recovery duration. Age, diabetes, and hypertension were significant moderators of the proportion of late gadolinium enhancement in adults. Conclusions T1 and T2 are dynamic markers of cardiac involvement in COVID-19 that reflect the regression of cardiomyocyte injury and myocardial inflammation during recovery. Late gadolinium enhancement and to a lesser extent extracellular volume, are more static biomarkers moderated by preexisting risk factors linked to adverse myocardial tissue remodeling.
Collapse
Affiliation(s)
- Michael Jerosch‐Herold
- Department of Radiology, Cardiovascular Imaging SectionBrigham and Women’s HospitalBostonMA
| | - Carsten Rickers
- Children’s Heart Clinic, Adult Congenital Heart Disease SectionUniversity Hospital Hamburg‐Eppendorf (UKE)HamburgGermany
| | - Steffen E. Petersen
- William Harvey Research InstituteNIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse SquareLondonUnited Kingdom
- Barts Heart Centre, St Bartholomew’s HospitalBarts Health NHS TrustLondonUnited Kingdom
| | - Otávio R. Coelho‐Filho
- Department of Internal MedicineState University of Campinas (UNICAMP)Campinas, São PauloBrazil
| |
Collapse
|
11
|
Singhi AK, Mohapatra SK, Mukherjee SS, Das S, Maulick T, De A. Unexpected stormy course after uneventful device closure of atrial septal defect - Possibly due to post-COVID-19 inflammatory state. Ann Pediatr Cardiol 2023; 16:127-130. [PMID: 37767178 PMCID: PMC10522144 DOI: 10.4103/apc.apc_105_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 12/04/2022] [Indexed: 09/29/2023] Open
Abstract
COVID-19 infection has myriad manifestations from self-limiting illness to stormy multi-organ failure. A 28-year-old woman negative for COVID reverse transcription-polymerase chain reaction underwent an uneventful elective device closure of atrial septal defect on intubation anesthesia. While a brief postprocedural endotracheal bleed was noted, significant hypoxia and respiratory distress ensued after extubation with biventricular dysfunction, pleural effusion, and radiographic evidence of acute respiratory distress syndrome. COVID antibodies were positive, and inflammatory markers were elevated. After a conservative multipronged medical management including anticoagulation, antibiotics, aspirin, beta-blocker, diuretics, and sildenafil, she improved in 1 week. The clinical course during this pandemic era gives a possibility of a post-COVID inflammatory syndrome as a potential etiology.
Collapse
Affiliation(s)
- Anil Kumar Singhi
- Department of Pediatric and Congenital Heart Disease, Medica Super Specialty Hospital, Kolkata, West Bengal, India
| | - Soumya Kanti Mohapatra
- Department of Pediatric and Congenital Heart Disease, Medica Super Specialty Hospital, Kolkata, West Bengal, India
| | - Sanjeev S. Mukherjee
- Department Cardiology, Medica Super Specialty Hospital, Kolkata, West Bengal, India
| | - Soumen Das
- Department of Radiodiagnosis, Medica Super Specialty Hospital, Kolkata, West Bengal, India
| | - Tanumoy Maulick
- Department of Critical Care, Medica Super Specialty Hospital, Kolkata, West Bengal, India
| | - Arnab De
- Department Cardiology, Medica Super Specialty Hospital, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Shanmuganathan M, Kotronias RA, Burrage MK, Ng Y, Banerjee A, Xie C, Fletcher A, Manley P, Borlotti A, Emfietzoglou M, Mentzer AJ, Marin F, Raman B, Tunnicliffe EM, Neubauer S, Piechnik SK, Channon KM, Ferreira VM. Acute changes in myocardial tissue characteristics during hospitalization in patients with COVID-19. Front Cardiovasc Med 2023; 10:1097974. [PMID: 36873410 PMCID: PMC9978174 DOI: 10.3389/fcvm.2023.1097974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023] Open
Abstract
Background Patients with a history of COVID-19 infection are reported to have cardiac abnormalities on cardiovascular magnetic resonance (CMR) during convalescence. However, it is unclear whether these abnormalities were present during the acute COVID-19 illness and how they may evolve over time. Methods We prospectively recruited unvaccinated patients hospitalized with acute COVID-19 (n = 23), and compared them with matched outpatient controls without COVID-19 (n = 19) between May 2020 and May 2021. Only those without a past history of cardiac disease were recruited. We performed in-hospital CMR at a median of 3 days (IQR 1-7 days) after admission, and assessed cardiac function, edema and necrosis/fibrosis, using left and right ventricular ejection fraction (LVEF, RVEF), T1-mapping, T2 signal intensity ratio (T2SI), late gadolinium enhancement (LGE) and extracellular volume (ECV). Acute COVID-19 patients were invited for follow-up CMR and blood tests at 6 months. Results The two cohorts were well matched in baseline clinical characteristics. Both had normal LVEF (62 ± 7 vs. 65 ± 6%), RVEF (60 ± 6 vs. 58 ± 6%), ECV (31 ± 3 vs. 31 ± 4%), and similar frequency of LGE abnormalities (16 vs. 14%; all p > 0.05). However, measures of acute myocardial edema (T1 and T2SI) were significantly higher in patients with acute COVID-19 when compared to controls (T1 = 1,217 ± 41 ms vs. 1,183 ± 22 ms; p = 0.002; T2SI = 1.48 ± 0.36 vs. 1.13 ± 0.09; p < 0.001). All COVID-19 patients who returned for follow up (n = 12) at 6 months had normal biventricular function, T1 and T2SI. Conclusion Unvaccinated patients hospitalized for acute COVID-19 demonstrated CMR imaging evidence of acute myocardial edema, which normalized at 6 months, while biventricular function and scar burden were similar when compared to controls. Acute COVID-19 appears to induce acute myocardial edema in some patients, which resolves in convalescence, without significant impact on biventricular structure and function in the acute and short-term. Further studies with larger numbers are needed to confirm these findings.
Collapse
Affiliation(s)
- Mayooran Shanmuganathan
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rafail A. Kotronias
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Matthew K. Burrage
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Yujun Ng
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abhirup Banerjee
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Cheng Xie
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alison Fletcher
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter Manley
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alessandra Borlotti
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Maria Emfietzoglou
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander J. Mentzer
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
- Wellcome Center for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Federico Marin
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Betty Raman
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
| | | | - Elizabeth M. Tunnicliffe
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan K. Piechnik
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
| | - Keith M. Channon
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vanessa M. Ferreira
- Acute Vascular Imaging Center (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Oxford Center for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
13
|
Laino ME, Ammirabile A, Motta F, De Santis M, Savevski V, Francone M, Chiti A, Mannelli L, Selmi C, Monti L. Advanced Imaging Supports the Mechanistic Role of Autoimmunity and Plaque Rupture in COVID-19 Heart Involvement. Clin Rev Allergy Immunol 2023; 64:75-89. [PMID: 35089505 PMCID: PMC8796606 DOI: 10.1007/s12016-022-08925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 01/26/2023]
Abstract
The cardiovascular system is frequently affected by coronavirus disease-19 (COVID-19), particularly in hospitalized cases, and these manifestations are associated with a worse prognosis. Most commonly, heart involvement is represented by myocarditis, myocardial infarction, and pulmonary embolism, while arrhythmias, heart valve damage, and pericarditis are less frequent. While the clinical suspicion is necessary for a prompt disease recognition, imaging allows the early detection of cardiovascular complications in patients with COVID-19. The combination of cardiothoracic approaches has been proposed for advanced imaging techniques, i.e., CT scan and MRI, for a simultaneous evaluation of cardiovascular structures, pulmonary arteries, and lung parenchyma. Several mechanisms have been proposed to explain the cardiovascular injury, and among these, it is established that the host immune system is responsible for the aberrant response characterizing severe COVID-19 and inducing organ-specific injury. We illustrate novel evidence to support the hypothesis that molecular mimicry may be the immunological mechanism for myocarditis in COVID-19. The present article provides a comprehensive review of the available evidence of the immune mechanisms of the COVID-19 cardiovascular injury and the imaging tools to be used in the diagnostic workup. As some of these techniques cannot be implemented for general screening of all cases, we critically discuss the need to maximize the sustainability and the specificity of the proposed tests while illustrating the findings of some paradigmatic cases.
Collapse
Affiliation(s)
- Maria Elena Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Angela Ammirabile
- Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Victor Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Francone
- Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Arturo Chiti
- Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Lorenzo Monti
- Department of Radiology and Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
14
|
Artico J, Shiwani H, Moon JC, Gorecka M, McCann GP, Roditi G, Morrow A, Mangion K, Lukaschuk E, Shanmuganathan M, Miller CA, Chiribiri A, Prasad SK, Adam RD, Singh T, Bucciarelli-Ducci C, Dawson D, Knight D, Fontana M, Manisty C, Treibel TA, Levelt E, Arnold R, Macfarlane PW, Young R, McConnachie A, Neubauer S, Piechnik SK, Davies RH, Ferreira VM, Dweck MR, Berry C, Greenwood JP. Myocardial Involvement After Hospitalization for COVID-19 Complicated by Troponin Elevation: A Prospective, Multicenter, Observational Study. Circulation 2023; 147:364-374. [PMID: 36705028 PMCID: PMC9889203 DOI: 10.1161/circulationaha.122.060632] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/29/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Acute myocardial injury in hospitalized patients with coronavirus disease 2019 (COVID-19) has a poor prognosis. Its associations and pathogenesis are unclear. Our aim was to assess the presence, nature, and extent of myocardial damage in hospitalized patients with troponin elevation. METHODS Across 25 hospitals in the United Kingdom, 342 patients with COVID-19 and an elevated troponin level (COVID+/troponin+) were enrolled between June 2020 and March 2021 and had a magnetic resonance imaging scan within 28 days of discharge. Two prospective control groups were recruited, comprising 64 patients with COVID-19 and normal troponin levels (COVID+/troponin-) and 113 patients without COVID-19 or elevated troponin level matched by age and cardiovascular comorbidities (COVID-/comorbidity+). Regression modeling was performed to identify predictors of major adverse cardiovascular events at 12 months. RESULTS Of the 519 included patients, 356 (69%) were men, with a median (interquartile range) age of 61.0 years (53.8, 68.8). The frequency of any heart abnormality, defined as left or right ventricular impairment, scar, or pericardial disease, was 2-fold greater in cases (61% [207/342]) compared with controls (36% [COVID+/troponin-] versus 31% [COVID-/comorbidity+]; P<0.001 for both). More cases than controls had ventricular impairment (17.2% versus 3.1% and 7.1%) or scar (42% versus 7% and 23%; P<0.001 for both). The myocardial injury pattern was different, with cases more likely than controls to have infarction (13% versus 2% and 7%; P<0.01) or microinfarction (9% versus 0% and 1%; P<0.001), but there was no difference in nonischemic scar (13% versus 5% and 14%; P=0.10). Using the Lake Louise magnetic resonance imaging criteria, the prevalence of probable recent myocarditis was 6.7% (23/342) in cases compared with 1.7% (2/113) in controls without COVID-19 (P=0.045). During follow-up, 4 patients died and 34 experienced a subsequent major adverse cardiovascular event (10.2%), which was similar to controls (6.1%; P=0.70). Myocardial scar, but not previous COVID-19 infection or troponin, was an independent predictor of major adverse cardiovascular events (odds ratio, 2.25 [95% CI, 1.12-4.57]; P=0.02). CONCLUSIONS Compared with contemporary controls, patients with COVID-19 and elevated cardiac troponin level have more ventricular impairment and myocardial scar in early convalescence. However, the proportion with myocarditis was low and scar pathogenesis was diverse, including a newly described pattern of microinfarction. REGISTRATION URL: https://www.isrctn.com; Unique identifier: 58667920.
Collapse
Affiliation(s)
- Jessica Artico
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
| | - Hunain Shiwani
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
| | - James C. Moon
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
| | - Miroslawa Gorecka
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, UK (M.G., E. Levelt, J.P.G.)
| | - Gerry P. McCann
- University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, UK (G.P.M., R.A.)
| | - Giles Roditi
- Institute of Cardiovascular and Medical Sciences and British Heart Foundation Glasgow Cardiovascular Research Centre (G.R., A. Morrow, K.M., C.B.), Institute of Health and Wellbeing, University of Glasgow, UK
| | - Andrew Morrow
- Institute of Cardiovascular and Medical Sciences and British Heart Foundation Glasgow Cardiovascular Research Centre (G.R., A. Morrow, K.M., C.B.), Institute of Health and Wellbeing, University of Glasgow, UK
| | - Kenneth Mangion
- Institute of Cardiovascular and Medical Sciences and British Heart Foundation Glasgow Cardiovascular Research Centre (G.R., A. Morrow, K.M., C.B.), Institute of Health and Wellbeing, University of Glasgow, UK
| | - Elena Lukaschuk
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, UK (E. Lukaschuk, M.S., S.N., S.K.P., V.M.F.)
| | - Mayooran Shanmuganathan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, UK (E. Lukaschuk, M.S., S.N., S.K.P., V.M.F.)
| | - Christopher A. Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK (C.A.M.)
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King’s College London, BHF Centre of Excellence and the NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust, The Rayne Institute, St Thomas’ Hospital, London, UK (A.C., C.B.-D.)
| | - Sanjay K. Prasad
- National Heart and Lung Institute, Imperial College, London, UK (S.K.P.)
| | - Robert D. Adam
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
| | - Trisha Singh
- University of Edinburgh and British Heart Foundation Centre for Cardiovascular Science, UK (T.S., M.R.D.)
| | - Chiara Bucciarelli-Ducci
- Institute of Cardiovascular and Medical Sciences and British Heart Foundation Glasgow Cardiovascular Research Centre (G.R., A. Morrow, K.M., C.B.), Institute of Health and Wellbeing, University of Glasgow, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, BHF Centre of Excellence and the NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust, The Rayne Institute, St Thomas’ Hospital, London, UK (A.C., C.B.-D.)
- Royal Brompton and Harefield Hospitals and Guys’ and St Thomas NHS Trust, London, UK (C.B.-D.)
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Trust, Bristol, UK (C.B.-D.)
| | - Dana Dawson
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, UK (D.D.)
| | - Daniel Knight
- Division of Medicine, Royal Free Hospital (D.K., M.F.), University College London, UK
| | - Marianna Fontana
- Division of Medicine, Royal Free Hospital (D.K., M.F.), University College London, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
| | - Thomas A. Treibel
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
| | - Eylem Levelt
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, UK (M.G., E. Levelt, J.P.G.)
| | - Ranjit Arnold
- University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, UK (G.P.M., R.A.)
| | - Peter W. Macfarlane
- Electrocardiology Core Laboratory (P.W.M.), Institute of Health and Wellbeing, University of Glasgow, UK
| | - Robin Young
- Robertson Centre for Biostatistics (R.Y., A. McConnachie), Institute of Health and Wellbeing, University of Glasgow, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics (R.Y., A. McConnachie), Institute of Health and Wellbeing, University of Glasgow, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, UK (E. Lukaschuk, M.S., S.N., S.K.P., V.M.F.)
| | - Stefan K. Piechnik
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, UK (E. Lukaschuk, M.S., S.N., S.K.P., V.M.F.)
| | - Rhodri H. Davies
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
| | - Vanessa M. Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, UK (E. Lukaschuk, M.S., S.N., S.K.P., V.M.F.)
| | - Marc R. Dweck
- University of Edinburgh and British Heart Foundation Centre for Cardiovascular Science, UK (T.S., M.R.D.)
| | - Colin Berry
- Institute of Cardiovascular and Medical Sciences and British Heart Foundation Glasgow Cardiovascular Research Centre (G.R., A. Morrow, K.M., C.B.), Institute of Health and Wellbeing, University of Glasgow, UK
| | - OxAMI (Oxford Acute Myocardial Infarction Study) Investigators; COVID-HEART Investigators†
- Institute of Cardiovascular Science (J.A., H.S., J.C.M., R.D.A., C.M., T.A.T., R.H.D.), University College London, UK
- Division of Medicine, Royal Free Hospital (D.K., M.F.), University College London, UK
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, UK (M.G., E. Levelt, J.P.G.)
- University of Leicester and the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, UK (G.P.M., R.A.)
- Institute of Cardiovascular and Medical Sciences and British Heart Foundation Glasgow Cardiovascular Research Centre (G.R., A. Morrow, K.M., C.B.), Institute of Health and Wellbeing, University of Glasgow, UK
- Electrocardiology Core Laboratory (P.W.M.), Institute of Health and Wellbeing, University of Glasgow, UK
- Robertson Centre for Biostatistics (R.Y., A. McConnachie), Institute of Health and Wellbeing, University of Glasgow, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, British Heart Foundation Centre of Research Excellence, Oxford NIHR Biomedical Research Centre, University of Oxford, UK (E. Lukaschuk, M.S., S.N., S.K.P., V.M.F.)
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK (C.A.M.)
- School of Biomedical Engineering and Imaging Sciences, King’s College London, BHF Centre of Excellence and the NIHR Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust, The Rayne Institute, St Thomas’ Hospital, London, UK (A.C., C.B.-D.)
- National Heart and Lung Institute, Imperial College, London, UK (S.K.P.)
- University of Edinburgh and British Heart Foundation Centre for Cardiovascular Science, UK (T.S., M.R.D.)
- Royal Brompton and Harefield Hospitals and Guys’ and St Thomas NHS Trust, London, UK (C.B.-D.)
- Bristol Heart Institute, University Hospitals Bristol and Weston NHS Trust, Bristol, UK (C.B.-D.)
- Department of Cardiology, Aberdeen Cardiovascular and Diabetes Centre, Aberdeen Royal Infirmary and University of Aberdeen, UK (D.D.)
| | - John P. Greenwood
- Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, UK (M.G., E. Levelt, J.P.G.)
| |
Collapse
|
15
|
Ruberg FL, Baggish AL, Hays AG, Jerosch-Herold M, Kim J, Ordovas KG, Reddy G, Shenoy C, Weinsaft JW, Woodard PK. Utilization of Cardiovascular Magnetic Resonance Imaging for Resumption of Athletic Activities Following COVID-19 Infection: An Expert Consensus Document on Behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention Leadership and Endorsed by the Society for Cardiovascular Magnetic Resonance. Circ Cardiovasc Imaging 2023; 16:e014106. [PMID: 36541203 PMCID: PMC9848221 DOI: 10.1161/circimaging.122.014106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The global pandemic of COVID-19 caused by infection with SARS-CoV-2 is now entering its fourth year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. Although pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play) following resolution of infection. A variety of different testing combinations that leverage ECG, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance imaging have been proposed and implemented to mitigate risk. Cardiovascular magnetic resonance in particular affords high sensitivity for myocarditis but has been employed and interpreted nonuniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to return to play. This consensus document synthesizes available evidence to contextualize the appropriate utilization of cardiovascular magnetic resonance in the return to play assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.
Collapse
Affiliation(s)
- Frederick L. Ruberg
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine/Boston Medical Center, Boston, MA (F.L.R.)
| | - Aaron L. Baggish
- Cardiac Performance Program, Harvard Medical School/Massachusetts General Hospital, Boston, MA (A.L.B.)
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD (A.G.H.)
| | - Michael Jerosch-Herold
- Cardiovascular Imaging Section, Harvard Medical School/Brigham and Women’s Hospital, Boston, MA (M.J.-H.)
| | - Jiwon Kim
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY (J.K., J.W.W.)
| | - Karen G. Ordovas
- Department of Radiology, University of Washington School of Medicine, Seattle, WA (K.G.O., G.R.)
| | - Gautham Reddy
- Department of Radiology, University of Washington School of Medicine, Seattle, WA (K.G.O., G.R.)
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN (C.S.)
| | - Jonathan W. Weinsaft
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY (J.K., J.W.W.)
| | - Pamela K. Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO (P.K.W.)
| |
Collapse
|
16
|
Yar A, Uusitalo V, Vaara SM, Holmström M, Vuorinen AM, Heliö T, Paakkanen R, Kivistö S, Syväranta S, Hästbacka J. Cardiac magnetic resonance -detected myocardial injury is not associated with long-term symptoms in patients hospitalized due to COVID-19. PLoS One 2023; 18:e0282394. [PMID: 36888600 PMCID: PMC9994679 DOI: 10.1371/journal.pone.0282394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Long-term symptoms are frequent after coronavirus disease 2019 (COVID-19). We studied the prevalence of post-acute myocardial scar on cardiac magnetic resonance imaging (CMR) in patients hospitalized due to COVID-19 and its association with long-term symptoms. MATERIALS AND METHODS In this prospective observational single-center study, 95 formerly hospitalized COVID-19 patients underwent CMR imaging at the median of 9 months after acute COVID-19. In addition, 43 control subjects were imaged. Myocardial scar characteristic of myocardial infarction or myocarditis were noted from late gadolinium enhancement images (LGE). Patient symptoms were screened using a questionnaire. Data are presented as mean ± standard deviation or median (interquartile range). RESULTS The presence of any LGE was higher in COVID-19 patients (66% vs. 37%, p<0.01) as was the presence of LGE suggestive of previous myocarditis (29% vs. 9%, p = 0.01). The prevalence of ischemic scar was comparable (8% vs. 2%, p = 0.13). Only two COVID-19 patients (7%) had myocarditis scar combined with left ventricular dysfunction (EF <50%). Myocardial edema was not detected in any participant. The need for intensive care unit (ICU) treatment during initial hospitalization was comparable in patients with and without myocarditis scar (47% vs. 67%, p = 0.44). Dyspnea, chest pain, and arrhythmias were prevalent in COVID-19 patients at follow-up (64%, 31%, and 41%, respectively) but not associated with myocarditis scar on CMR. CONCLUSIONS Myocardial scar suggestive of possible previous myocarditis was detected in almost one-third of hospital-treated COVID-19 patients. It was not associated with the need for ICU treatment, greater symptomatic burden, or ventricular dysfunction at 9 months follow-up. Thus, post-acute myocarditis scar on COVID-19 patients seems to be a subclinical imaging finding and does not commonly require further clinical evaluation.
Collapse
Affiliation(s)
- Aria Yar
- Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Valtteri Uusitalo
- Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Clinical Physiology and Nuclear Medicine, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Satu M. Vaara
- Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Miia Holmström
- Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Aino-Maija Vuorinen
- Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tiina Heliö
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Riitta Paakkanen
- Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Kivistö
- Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Suvi Syväranta
- Radiology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Anesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital, and University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Ruberg FL, Baggish AL, Hays AG, Jerosch-Herold M, Kim J, Ordovas KG, Reddy G, Shenoy C, Weinsaft JW, Woodard PK. Utilization of cardiovascular magnetic resonance (CMR) imaging for resumption of athletic activities following COVID-19 infection: an expert consensus document on behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention (CVRI) Leadership and endorsed by the Society for Cardiovascular Magnetic Resonance (SCMR). J Cardiovasc Magn Reson 2022; 24:73. [PMID: 36539786 PMCID: PMC9767806 DOI: 10.1186/s12968-022-00907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) caused by infection with severe acute respiratory suyndrome coronavirus 2 (SARS-CoV-2) is now entering its 4th year with little evidence of abatement. As of December 2022, the World Health Organization Coronavirus (COVID-19) Dashboard reported 643 million cumulative confirmed cases of COVID-19 worldwide and 98 million in the United States alone as the country with the highest number of cases. While pneumonia with lung injury has been the manifestation of COVID-19 principally responsible for morbidity and mortality, myocardial inflammation and systolic dysfunction though uncommon are well-recognized features that also associate with adverse prognosis. Given the broad swath of the population infected with COVID-19, the large number of affected professional, collegiate, and amateur athletes raises concern regarding the safe resumption of athletic activity (return to play, RTP) following resolution of infection. A variety of different testing combinations that leverage the electrocardiogram, echocardiography, circulating cardiac biomarkers, and cardiovascular magnetic resonance (CMR) imaging have been proposed and implemented to mitigate risk. CMR in particular affords high sensitivity for myocarditis but has been employed and interpreted non-uniformly in the context of COVID-19 thereby raising uncertainty as to the generalizability and clinical relevance of findings with respect to RTP. This consensus document synthesizes available evidence to contextualize the appropriate utilization of CMR in the RTP assessment of athletes with prior COVID-19 infection to facilitate informed, evidence-based decisions, while identifying knowledge gaps that merit further investigation.
Collapse
Affiliation(s)
- Frederick L Ruberg
- Section of Cardiovascular Medicine, Department of Medicine, School of Medicine/Boston Medical Center, Boston University, 72 E Concord St, Boston, MA, 02118, USA.
| | - Aaron L Baggish
- Cardiac Performance Program, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA
| | - Allison G Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Jerosch-Herold
- Cardiovascular Imaging Section, Harvard Medical School/Brigham and Women's Hospital, Boston, MA, USA
| | - Jiwon Kim
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Karen G Ordovas
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Gautham Reddy
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jonathan W Weinsaft
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, NY, USA
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
18
|
Wojtowicz D, Dorniak K, Ławrynowicz M, Wąż P, Fijałkowska J, Kulawiak-Gałąska D, Rejszel-Baranowska J, Knut R, Haberka M, Szurowska E, Koziński M. Cardiac Magnetic Resonance Findings in Patients Recovered from COVID-19 Pneumonia and Presenting with Persistent Cardiac Symptoms: The TRICITY-CMR Trial. BIOLOGY 2022; 11:biology11121848. [PMID: 36552357 PMCID: PMC9775441 DOI: 10.3390/biology11121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/03/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The prevalence and clinical consequences of coronavirus disease 2019 (COVID-19)-related non-ischemic cardiac injury are under investigation. The main purpose of this study was to determine the occurrence of non-ischemic cardiac injury using cardiac magnetic resonance (CMR) imaging in patients with persistent cardiac symptoms following recovery from COVID-19 pneumonia. We conducted a single-center, cross-sectional study. Between January 2021 and May 2021, we enrolled 121 patients with a recent COVID-19 infection and persistent cardiac symptoms. Study participants were divided into those who required hospitalization during the acute phase of SARS-CoV-2 infection (n = 58; 47.9%) and those non-hospitalized (n = 63; 52.1%). Non-ischemic cardiac injury (defined as the presence of late gadolinium enhancement (LGE) lesion and/or active myocarditis in CMR) was detected in over half of post-COVID-19 patients (n = 64; 52.9%). LGE lesions were present in 63 (52.1%) and active myocarditis in 10 (8.3%) post-COVID-19 study participants. The majority of LGE lesions were located in the left ventricle at inferior and inferolateral segments at the base. There were no significant differences in the occurrence of LGE lesions (35 (60.3%) vs. 28 (44.4%); p = 0.117) or active myocarditis (6 (10.3%) vs. 4 (6.3%); p = 0.517) between hospitalized and non-hospitalized post-COVID-19 patients. However, CMR imaging revealed lower right ventricular ejection fraction (RVEF; 49.5 (44; 54) vs. 53 (50; 58) %; p = 0.001) and more frequent presence of reduced RVEF (60.3% vs. 33.3%; p = 0.005) in the former subgroup. In conclusion, more than half of our patients presenting with cardiac symptoms after a recent recovery from COVID-19 pneumonia had CMR imaging abnormalities indicating non-ischemic cardiac injury. The most common finding was LGE, while active myocarditis was detected in the minority of patients. CMR imaging abnormalities were observed both in previously hospitalized and non-hospitalized post-COVID-19 patients. Further research is needed to determine the long-term cardiovascular consequences of COVID-19 infection and the optimal management of patients with suspected post-COVID-19 non-ischemic cardiac injury.
Collapse
Affiliation(s)
- Dagmara Wojtowicz
- Department of Cardiology and Internal Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland
- Department of Noninvasive Cardiac Diagnostics, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Karolina Dorniak
- Department of Noninvasive Cardiac Diagnostics, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Marzena Ławrynowicz
- Department of Cardiology and Internal Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland
| | - Piotr Wąż
- Department of Nuclear Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jadwiga Fijałkowska
- Second Department of Radiology, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | | | - Joanna Rejszel-Baranowska
- Department of Cardiology and Internal Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland
| | - Robert Knut
- Department of Cardiology and Internal Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland
| | - Maciej Haberka
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| | - Edyta Szurowska
- Second Department of Radiology, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Marek Koziński
- Department of Cardiology and Internal Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 81-519 Gdynia, Poland
- Correspondence: ; Tel.: +48-58-699-84-06
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW There is emerging evidence that the post-acute and chronic phases of COVID-19 infection are associated with various significant cardiovascular sequelae. RECENT FINDINGS Long COVID has been shown to be associated with multiple cardiovascular sequelae including direct myocardial injury, arrhythmias, and cardiomyopathies. Hypotheses on the mechanism of myocardial injury include direct viral infiltration and autoimmune dysregulation. Long COVID is associated with persistent cardiac ischemia in patients with no previous history of coronary disease, atrial and ventricular arrhythmias, and the development of new-onset heart failure in previously healthy patients. Onset of long COVID may be related to severity of the initial SARS-CoV2 infection. Cardiac MRI is a valuable tool in assessing myocarditis and the development of cardiomyopathies in the setting of long COVID. Both patients with and without pre-existing cardiovascular disease are at risk of developing myocardial injury in the setting of long COVID. Future studies will elucidate both cardiovascular mortality and cardiac rehabilitation in the post-acute and chronic phases of COVID-19.
Collapse
Affiliation(s)
- Khan O. Mohammad
- Department of Internal Medicine, Dell Medical School at The University of Texas, 1500 Red River St., Austin, TX 78701 USA
| | - Andrew Lin
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, San Diego, CA USA
| | - Jose B. Cruz Rodriguez
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, San Diego, CA USA
| |
Collapse
|
20
|
Mojica-Pisciotti ML, Panovský R, Holeček T, Opatřil L. CMR Findings in COVID-19 Recovered Patients: A Review on Parametric Mapping, Feature-Tracking, and LGE. Rev Cardiovasc Med 2022; 23:355. [PMID: 39076192 PMCID: PMC11269062 DOI: 10.31083/j.rcm2311355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 07/31/2024] Open
Abstract
On March 11, 2020, the World Health Organization raised the coronavirus disease 2019 (COVID-19) status to a pandemic level. The disease caused a global outbreak with devastating consequences, and a fair percentage of patients who have recovered from it continue experiencing persistent sequelae. Hence, identifying the medium and long-term effects of the COVID-19 disease is crucial for its future management. In particular, cardiac complications, from affected function to myocardial injuries, have been reported in these patients. Considering that cardiovascular magnetic resonance (CMR) imaging is the gold standard in diagnosing myocardial involvement and has more advantages than other medical imaging modalities, assessing the outcomes of patients who recovered from COVID-19 with CMR could prove beneficial. This review compiles common findings in CMR in patients from the general population who recovered from COVID-19. The CMR-based techniques comprised parametric mapping for analyzing myocardial composition, feature tracking for studying regional heart deformation, and late gadolinium enhancement for detecting compromised areas in the cardiac muscle. A total of 19 studies were included. The evidence suggests that it is more likely to find signs of myocardial injury in patients who recovered from COVID-19 than in healthy controls, including changes in T1 and T2 mapping relaxation times, affected strain, or the presence of late gadolinium enhancement (LGE) lesions. However, more than two years after the outbreak, there is still a lack of consensus about how these parameters may indicate cardiac involvement in patients who recovered from the disease, as limited and contradictory data is available.
Collapse
Affiliation(s)
- Mary Luz Mojica-Pisciotti
- International Clinical Research Center at St. Anne's University Hospital, 60200 Brno, Czech Republic
| | - Roman Panovský
- International Clinical Research Center at St. Anne's University Hospital, 60200 Brno, Czech Republic
- 1st Department of Internal Medicine/Cardioangiology at St. Anne's University Hospital, 60200 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500 Bohunice, Czech Republic
| | - Tomáš Holeček
- International Clinical Research Center at St. Anne's University Hospital, 60200 Brno, Czech Republic
- Department of Biomedical Engineering, Brno University of Technology, 61600 Brno, Czech Republic
| | - Lukáš Opatřil
- International Clinical Research Center at St. Anne's University Hospital, 60200 Brno, Czech Republic
- 1st Department of Internal Medicine/Cardioangiology at St. Anne's University Hospital, 60200 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 62500 Bohunice, Czech Republic
| |
Collapse
|
21
|
Zhang L, Wei X, Wang H, Jiang R, Tan Z, Ouyang J, Li X, Lei C, Liu H, Liu J. Cardiac involvement in patients recovering from Delta Variant of COVID-19: a prospective multi-parametric MRI study. ESC Heart Fail 2022; 9:2576-2584. [PMID: 35560820 PMCID: PMC9288765 DOI: 10.1002/ehf2.13971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 01/03/2023] Open
Abstract
AIMS The cardiac injury and sequelae of Delta Variant of coronavirus disease 2019 (COVID-19) remain unknown. This study aimed to evaluate the presence of cardiac involvement in patients recovering from Delta Variant of COVID-19 based on multi-parametric cardiac magnetic resonance imaging (MRI). METHODS AND RESULTS We prospectively assessed patients recovering from Delta Variant of COVID-19 using multi-parametric cardiac magnetic resonance imaging (MRI) between June 2021 and July 2021. Comparison was made with 25 healthy controls. Forty-four patients (median age 51 years, 28 women) recovering from Delta Variant were recruited and had a median time of 35 days between diagnosis and cardiac MRI. There were no patients with chest pain (0/44, 0%) and high sensitivity cardiac troponin T troponin elevation (median levels 2.20 pg/mL, IQR levels 0.85-4.40 pg/mL). Regarding the cardiac imaging findings, a total of 14 (32%) patients presented cardiac tissue feature abnormalities, and a total of 9 (20%) patients had a myocarditis-like injury based on cardiac MRI 2018 Lake Louise criteria. When we further assessed the T1 and T2 mapping values for of patients' individual, abnormal raised global native T1, T2, and extracellular volume were seen in 6 (14%), 6 (14%), and 4 (9%) patients, respectively. Comparing with controls, the patients had lower LV global longitudinal strain and (-22.2 ± 2.8% vs. -24.6 ± 2.0%, P < 0.001) and global circumferential strain (-20.7 ± 6.8% vs. -24.3 ± 2.9%, P = 0.014), but higher global native T1 (1318.8 ± 55.5 ms vs. 1282.9 ± 38.1 ms, P = 0.006). Four (9%) patients presented myocardial late gadolinium enhancement with subepicardial pattern mostly common seen, and two (5%) patients presented pericardial enhancement. CONCLUSIONS The cardiac MRI could detect subclinical functional and myocardial tissue characteristic abnormalities in individuals who were recovering from Delta Variant without cardiac-related clinical findings. The native T1 mapping and strain imaging may be a sensitive tool for the noninvasive detection of a subset of patients who are at risk for cardiac sequelae and more prone to myocardial damage in survivors with Delta Variant.
Collapse
Affiliation(s)
- Lieguang Zhang
- Department of Radiology, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoyu Wei
- Department of Radiology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Huimin Wang
- Department of Radiology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Rui Jiang
- Department of Radiology, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Zekun Tan
- Department of Radiology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jienan Ouyang
- Department of Radiology, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Chunliang Lei
- Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- The School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jinxin Liu
- Department of Radiology, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
22
|
Salah HM, Fudim M, O'Neil ST, Manna A, Chute CG, Caughey MC. Post-recovery COVID-19 and incident heart failure in the National COVID Cohort Collaborative (N3C) study. Nat Commun 2022; 13:4117. [PMID: 35840623 PMCID: PMC9284961 DOI: 10.1038/s41467-022-31834-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiac involvement has been noted in COVID-19 infection. However, the relationship between post-recovery COVID-19 and development of de novo heart failure has not been investigated in a large, nationally representative population. We examined post-recovery outcomes of 587,330 patients hospitalized in the United States (257,075 with COVID-19 and 330,255 without), using data from the National COVID Cohort Collaborative study. Patients hospitalized with COVID-19 were older (51 vs. 46 years), more often male (49% vs. 42%), and less often White (61% vs. 69%). Over a median follow up of 367 days, 10,979 incident heart failure events occurred. After adjustments, COVID-19 hospitalization was associated with a 45% higher hazard of incident heart failure (hazard ratio = 1.45; 95% confidence interval: 1.39-1.51), with more pronounced associations among patients who were younger (P-interaction = 0.003), White (P-interaction = 0.005), or who had established cardiovascular disease (P-interaction = 0.005). In conclusion, COVID-19 hospitalization is associated with increased risk of incident heart failure.
Collapse
Affiliation(s)
- Husam M Salah
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marat Fudim
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA.
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA.
| | - Shawn T O'Neil
- Center for Health AI, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Christopher G Chute
- Schools of Medicine, Public Health, and Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Melissa C Caughey
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Sonkar C, Hase V, Banerjee D, Kumar A, Kumar R, Jha HC. Post COVID-19 complications, adjunct therapy explored, and steroidal after effects. CAN J CHEM 2022; 100:459-474. [DOI: 10.1139/cjc-2021-0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
For COVID-19 survivors, defeating the virus is just the beginning of a long road to recovery. The inducibility and catastrophic effects of the virus are distributed across multiple organs. The induction of cytokine storms in COVID-19 patients is due to the interaction of the SARS-CoV-2 virus and the host receptor, leading to various immunopathological consequences that may eventually lead to death. So far, COVID-19 has affected tons of people across the world, but there is still no effective treatment. Patients facing complications of COVID-19 after recovery have shown extensive clinical symptoms similar to that of patients recovering from previously circulating coronaviruses. Previous knowledge and literature have opened up ways to treat this disease and manage post-COVID-19 complications, which pose a severe challenge to the health system globally and may exacerbate the fragmentation of diseases. The use of steroids as a treatment has resulted in various health problems and side-effects in COVID-19 patients. This review discusses various post-COVID-19 complications observed and adjunctive therapies used along with common COVID-19 treatment and spotlights their side effects and consequences. This review provides the latest literature on COVID-19, which emphasizes the subsequent complications in various organs, side effects of drugs, and alternative regimens used to treat COVID-19.
Collapse
Affiliation(s)
- Charu Sonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vaishnavi Hase
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, Navi Mumbai 400614, India
| | - Durba Banerjee
- School of Biotechnology (SOB), Gautam Buddha University (Delhi NCR), Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201312, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, India
| | - Rajesh Kumar
- Department of Physics, Indian Institute of Technology, Indore 453552, India
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
24
|
Petersen SE, Friedrich MG, Leiner T, Elias MD, Ferreira VM, Fenski M, Flamm SD, Fogel M, Garg R, Halushka MK, Hays AG, Kawel-Boehm N, Kramer CM, Nagel E, Ntusi NA, Ostenfeld E, Pennell DJ, Raisi-Estabragh Z, Reeder SB, Rochitte CE, Starekova J, Suchá D, Tao Q, Schulz-Menger J, Bluemke DA. Cardiovascular Magnetic Resonance for Patients With COVID-19. JACC Cardiovasc Imaging 2022; 15:685-699. [PMID: 34656482 PMCID: PMC8514168 DOI: 10.1016/j.jcmg.2021.08.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is associated with myocardial injury caused by ischemia, inflammation, or myocarditis. Cardiovascular magnetic resonance (CMR) is the noninvasive reference standard for cardiac function, structure, and tissue composition. CMR is a potentially valuable diagnostic tool in patients with COVID-19 presenting with myocardial injury and evidence of cardiac dysfunction. Although COVID-19-related myocarditis is likely infrequent, COVID-19-related cardiovascular histopathology findings have been reported in up to 48% of patients, raising the concern for long-term myocardial injury. Studies to date report CMR abnormalities in 26% to 60% of hospitalized patients who have recovered from COVID-19, including functional impairment, myocardial tissue abnormalities, late gadolinium enhancement, or pericardial abnormalities. In athletes post-COVID-19, CMR has detected myocarditis-like abnormalities. In children, multisystem inflammatory syndrome may occur 2 to 6 weeks after infection; associated myocarditis and coronary artery aneurysms are evaluable by CMR. At this time, our understanding of COVID-19-related cardiovascular involvement is incomplete, and multiple studies are planned to evaluate patients with COVID-19 using CMR. In this review, we summarize existing studies of CMR for patients with COVID-19 and present ongoing research. We also provide recommendations for clinical use of CMR for patients with acute symptoms or who are recovering from COVID-19.
Collapse
Affiliation(s)
- Steffen E. Petersen
- William Harvey Research Institute, National Institute for Health Research Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom,Barts Heart Centre, St Bartholomew’s Hospital, Barts Health National Health Service Trust, West Smithfield, London, United Kingdom
| | - Matthias G. Friedrich
- Department of Medicine and Diagnostic Radiology, McGill University, Montreal, Quebec, Canada
| | - Tim Leiner
- University Medical Center Utrecht, Department of Radiology, Utrecht, the Netherlands,Mayo Clinic, Department of Radiology, Rochester, Minnestoa, USA
| | - Matthew D. Elias
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Vanessa M. Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Oxford National Institute for Health Research Biomedical Research Centre, University of Oxford, United Kingdom
| | - Maximilian Fenski
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Working Group on Cardiac Magnetic Resonance, Experimental Clinical Research Centre, Berlin, Germany,Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany,Deutsches Zentrum für Herz-Kreislaufforschung-Partnersite-Berlin, Berlin, Germany
| | - Scott D. Flamm
- Cardiovascular Imaging, Imaging and Heart, Vascular, and Thoracic Institutes, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mark Fogel
- Department of Pediatrics (Cardiology) and Radiology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Radiology, The Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ria Garg
- Department of Medicine and Diagnostic Radiology, McGill University, Montreal, Quebec, Canada
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore Maryland, USA
| | - Allison G. Hays
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nadine Kawel-Boehm
- Department of Radiology, Kantonsspital Graubuenden, Chur, Switzerland,Institute for Diagnostic Interventional Pediatric Radiology, Inselspital, Bern, University Hospital of Bern, Switzerland
| | - Christopher M. Kramer
- Cardiovascular Division, Departments of Medicine and Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, DZHK Center for Cardiovascular Imaging, University Hospital Frankfurt, Frankfurt AM Main, Germany
| | - Ntobeko A.B. Ntusi
- Division of Cardiology, Department of Medicine, University of Cape Town, Cape Town, South Africa,Groote Schuur Hospital, Cape Town, South Africa,Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology, Lund University, Lund, Sweden,Skåne University Hospital, Lund, Sweden
| | - Dudley J. Pennell
- National Heart and Lung Institute, Imperial College, Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, National Institute for Health Research Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London, United Kingdom,Barts Heart Centre, St Bartholomew’s Hospital, Barts Health National Health Service Trust, West Smithfield, London, United Kingdom
| | - Scott B. Reeder
- Departments of Radiology, Medical Physics, Biomedical Engineering, Medicine, and Emergency Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Carlos E. Rochitte
- Heart Institute, InCor, University of São Paulo Medical School and Heart Hospital, Hospital do Coração, São Paulo, Brazil
| | - Jitka Starekova
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Dominika Suchá
- University Medical Center Utrecht, Department of Radiology, Utrecht, the Netherlands
| | - Qian Tao
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands,Division of Imaging Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeanette Schulz-Menger
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Working Group on Cardiac Magnetic Resonance, Experimental Clinical Research Centre, Berlin, Germany,Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany,Deutsches Zentrum für Herz-Kreislaufforschung-Partnersite-Berlin, Berlin, Germany
| | - David A. Bluemke
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin, USA,Address for correspondence: Dr David A. Bluemke, University of Wisconsin School of Medicine and Public Health, 600 Highland Drive, Madison, Wisconsin 53792, USA
| |
Collapse
|
25
|
Kato S, Azuma M, Fukui K, Kodama S, Nakayama N, Kitamura H, Hagiwara E, Ogura T, Horita N, Namkoong H, Kimura K, Tamura K, Utsunomiya D. Cardiac involvement in coronavirus disease 2019 assessed by cardiac magnetic resonance imaging: a meta-analysis. Heart Vessels 2022; 37:1570-1582. [PMID: 35294611 PMCID: PMC8925980 DOI: 10.1007/s00380-022-02055-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
In this systematic review and meta-analysis, we sought to evaluate the prevalence of cardiac involvement in patients with COVID-19 using cardiac magnetic resonance imaging. A literature review was performed to investigate the left ventricular (LV) and right ventricular (RV) ejection fraction (EF), the prevalence of LV late gadolinium enhancement (LGE), pericardial enhancement, abnormality on T1 mapping, and T2 mapping/T2-weighted imaging (T2WI), and myocarditis (defined by modified Lake Louis criteria). Pooled mean differences (MD) between COVID-19 patients and controls for LVEF and RVEF were estimated using random-effects models. We included data from 10.462 patients with COVID-19, comprising 1.010 non-athletes and 9.452 athletes from 29 eligible studies. The meta-analysis showed a significant difference between COVID-19 patients and controls in terms of LVEF [MD = − 2.84, 95% confidence interval (CI) − 5.11 to − 0.56, p < 0.001] and RVEF (MD = − 2.69%, 95% CI − 4.41 to − 1.27, p < 0.001). However, in athletes, no significant difference was identified in LVEF (MD = − 0.74%, 95% CI − 2.41 to − 0.93, p = 0.39) or RVEF (MD = − 1.88%, 95% CI − 5.21 to 1.46, p = 0.27). In non-athletes, the prevalence of LV LGE abnormalities, pericardial enhancement, T1 mapping, T2 mapping/T2WI, myocarditis were 27.5% (95%CI 17.4–37.6%), 11.9% (95%CI 4.1–19.6%), 39.5% (95%CI 16.2–62.8%), 38.1% (95%CI 19.0–57.1%) and 17.6% (95%CI 6.3–28.9%), respectively. In athletes, these values were 10.8% (95%CI 2.3–19.4%), 35.4% (95%CI − 3.2 to 73.9%), 5.7% (95%CI − 2.9 to 14.2%), 1.9% (95%CI 1.1–2.7%), 0.9% (0.3–1.6%), respectively. Both LVEF and RVEF were significantly impaired in COVID-19 patients compared to controls, but not in athletes. In addition, the prevalence of myocardial involvement is not negligible in patients with COVID-19.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan.
| | - Mai Azuma
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Kazuki Fukui
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Sho Kodama
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Naoki Nakayama
- Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Hideya Kitamura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Eri Hagiwara
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Kimura
- Department of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University, Yokohama, Japan
| | - Daisuke Utsunomiya
- Department of Diagnostic Radiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
26
|
Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J 2022; 43:1157-1172. [PMID: 35176758 PMCID: PMC8903393 DOI: 10.1093/eurheartj/ehac031] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Emerging as a new epidemic, long COVID or post-acute sequelae of coronavirus disease 2019 (COVID-19), a condition characterized by the persistence of COVID-19 symptoms beyond 3 months, is anticipated to substantially alter the lives of millions of people globally. Cardiopulmonary symptoms including chest pain, shortness of breath, fatigue, and autonomic manifestations such as postural orthostatic tachycardia are common and associated with significant disability, heightened anxiety, and public awareness. A range of cardiovascular (CV) abnormalities has been reported among patients beyond the acute phase and include myocardial inflammation, myocardial infarction, right ventricular dysfunction, and arrhythmias. Pathophysiological mechanisms for delayed complications are still poorly understood, with a dissociation seen between ongoing symptoms and objective measures of cardiopulmonary health. COVID-19 is anticipated to alter the long-term trajectory of many chronic cardiac diseases which are abundant in those at risk of severe disease. In this review, we discuss the definition of long COVID and its epidemiology, with an emphasis on cardiopulmonary symptoms. We further review the pathophysiological mechanisms underlying acute and chronic CV injury, the range of post-acute CV sequelae, and impact of COVID-19 on multiorgan health. We propose a possible model for referral of post-COVID-19 patients to cardiac services and discuss future directions including research priorities and clinical trials that are currently underway to evaluate the efficacy of treatment strategies for long COVID and associated CV sequelae.
Collapse
Affiliation(s)
- Betty Raman
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - David A. Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 3252 Clinical Science Center, 600 Highland Ave, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 3252 Clinical Science Center, 600 Highland Ave, Madison, WI 53792, USA
| | - Thomas F. Lüscher
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, UK
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
27
|
Fick TA, Cua CL, Lee S. Imaging Findings in Pediatric COVID-19: A Review of Current Literature. Cardiol Ther 2022; 11:185-201. [PMID: 35233725 PMCID: PMC8888132 DOI: 10.1007/s40119-022-00256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
The recent COVID-19 pandemic has afflicted over 200 million individuals to date, with many different organ systems involved. The pediatric involvement has been variable, but of note is the risk of cardiac disease in pediatric COVID-19 patients. We review here the cardiac involvement in pediatric patients with COVID-19. Several studies highlight a possible cardiotropic nature of SARS-CoV-2, and describe the disease severity in myocarditis, both symptomatic and occult, as well as MIS-C. We describe the expected clinical course of these patients and note the lack of long-term follow-up data and the concerning prevalence of continued abnormal findings on follow-up imaging. With this paucity of long-term cardiac data, we recommend consideration of advanced imaging for pediatric patients with cardiac symptoms and/or elevation of cardiac serum biomarkers.
Collapse
Affiliation(s)
- Tyler A Fick
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Clifford L Cua
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Simon Lee
- The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
28
|
Siripanthong B, Asatryan B, Hanff TC, Chatha SR, Khanji MY, Ricci F, Muser D, Ferrari VA, Nazarian S, Santangeli P, Deo R, Cooper LT, Mohiddin SA, Chahal CAA. The Pathogenesis and Long-Term Consequences of COVID-19 Cardiac Injury. JACC Basic Transl Sci 2022; 7:294-308. [PMID: 35165665 PMCID: PMC8828362 DOI: 10.1016/j.jacbts.2021.10.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
COVID-19 myocardial injury results from immune and hypercoagulability responses. Long-term cardiac consequences of COVID-19 include structural and functional changes. Myocarditis after COVID-19 vaccination is uncommon (highest risk in teenage males). Larger population-based studies are necessary to validate these early results.
The mechanisms of coronavirus disease-2019 (COVID-19)–related myocardial injury comprise both direct viral invasion and indirect (hypercoagulability and immune-mediated) cellular injuries. Some patients with COVID-19 cardiac involvement have poor clinical outcomes, with preliminary data suggesting long-term structural and functional changes. These include persistent myocardial fibrosis, edema, and intraventricular thrombi with embolic events, while functionally, the left ventricle is enlarged, with a reduced ejection fraction and new-onset arrhythmias reported in a number of patients. Myocarditis post-COVID-19 vaccination is rare but more common among young male patients. Larger studies, including prospective data from biobanks, will be useful in expanding these early findings and determining their validity.
Collapse
Affiliation(s)
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Salman R Chatha
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.,University Hospital of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Mohammed Y Khanji
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.,Newham University Hospital, Barts Health NHS Trust, London, United Kingdom.,NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Casa di Cura Villa Serena, Città Sant'Angelo, Pescara, Italy.,Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Daniele Muser
- Dipartimento Cardiotoracico, U.O.C. di Cardiologia, Presidio Ospedaliero Universitario "Santa Maria Della Misericordia," Udine, Italy
| | - Victor A Ferrari
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Cardiovascular Institute, Philadelphia, Pennsylvania, USA
| | - Saman Nazarian
- Electrophysiology Section, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pasquale Santangeli
- Electrophysiology Section, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rajat Deo
- Electrophysiology Section, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Saidi A Mohiddin
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.,NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - C Anwar A Chahal
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom.,Electrophysiology Section, Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,WellSpan Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania, USA
| |
Collapse
|
29
|
Joy G, Artico J, Kurdi H, Seraphim A, Lau C, Thornton GD, Oliveira MF, Adam RD, Aziminia N, Menacho K, Chacko L, Brown JT, Patel RK, Shiwani H, Bhuva A, Augusto JB, Andiapen M, McKnight A, Noursadeghi M, Pierce I, Evain T, Captur G, Davies RH, Greenwood JP, Fontana M, Kellman P, Schelbert EB, Treibel TA, Manisty C, Moon JC. Prospective Case-Control Study of Cardiovascular Abnormalities 6 Months Following Mild COVID-19 in Healthcare Workers. JACC Cardiovasc Imaging 2021; 14:2155-2166. [PMID: 33975819 PMCID: PMC8105493 DOI: 10.1016/j.jcmg.2021.04.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The purpose of this study was to detect cardiovascular changes after mild severe acute respiratory syndrome-coronavirus-2 infection. BACKGROUND Concern exists that mild coronavirus disease 2019 may cause myocardial and vascular disease. METHODS Participants were recruited from COVIDsortium, a 3-hospital prospective study of 731 health care workers who underwent first-wave weekly symptom, polymerase chain reaction, and serology assessment over 4 months, with seroconversion in 21.5% (n = 157). At 6 months post-infection, 74 seropositive and 75 age-, sex-, and ethnicity-matched seronegative control subjects were recruited for cardiovascular phenotyping (comprehensive phantom-calibrated cardiovascular magnetic resonance and blood biomarkers). Analysis was blinded, using objective artificial intelligence analytics where available. RESULTS A total of 149 subjects (mean age 37 years, range 18 to 63 years, 58% women) were recruited. Seropositive infections had been mild with case definition, noncase definition, and asymptomatic disease in 45 (61%), 18 (24%), and 11 (15%), respectively, with 1 person hospitalized (for 2 days). Between seropositive and seronegative groups, there were no differences in cardiac structure (left ventricular volumes, mass, atrial area), function (ejection fraction, global longitudinal shortening, aortic distensibility), tissue characterization (T1, T2, extracellular volume fraction mapping, late gadolinium enhancement) or biomarkers (troponin, N-terminal pro-B-type natriuretic peptide). With abnormal defined by the 75 seronegatives (2 SDs from mean, e.g., ejection fraction <54%, septal T1 >1,072 ms, septal T2 >52.4 ms), individuals had abnormalities including reduced ejection fraction (n = 2, minimum 50%), T1 elevation (n = 6), T2 elevation (n = 9), late gadolinium enhancement (n = 13, median 1%, max 5% of myocardium), biomarker elevation (borderline troponin elevation in 4; all N-terminal pro-B-type natriuretic peptide normal). These were distributed equally between seropositive and seronegative individuals. CONCLUSIONS Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome-coronavirus-2 infection.
Collapse
Affiliation(s)
- George Joy
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Jessica Artico
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Hibba Kurdi
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Andreas Seraphim
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Clement Lau
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - George D Thornton
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Marta Fontes Oliveira
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Cardiology Department, University Hospital Centre of Porto, Porto, Portugal
| | - Robert Daniel Adam
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Nikoo Aziminia
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom
| | - Katia Menacho
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Liza Chacko
- Institute of Cardiovascular Science, University College London, London, United Kingdom; National Amyloidosis Centre, Division of Medicine, University College London, London, United Kingdom; Royal Free London NHS Foundation Trust, Pond Street, London, United Kingdom
| | - James T Brown
- Institute of Cardiovascular Science, University College London, London, United Kingdom; National Amyloidosis Centre, Division of Medicine, University College London, London, United Kingdom; Royal Free London NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Rishi K Patel
- Institute of Cardiovascular Science, University College London, London, United Kingdom; National Amyloidosis Centre, Division of Medicine, University College London, London, United Kingdom; Royal Free London NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Hunain Shiwani
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Anish Bhuva
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Joao B Augusto
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; Cardiology Department, Hospital Prof Doutor Fernando Fonseca Amadora, Portugal
| | - Mervyn Andiapen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Aine McKnight
- Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Iain Pierce
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | | | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Royal Free London NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Rhodri H Davies
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, London, United Kingdom; National Amyloidosis Centre, Division of Medicine, University College London, London, United Kingdom; Royal Free London NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | | | - Thomas A Treibel
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Charlotte Manisty
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - James C Moon
- Barts Heart Centre, Barts Health NHS Trust, West Smithfield, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
30
|
Alveolar Regeneration in COVID-19 Patients: A Network Perspective. Int J Mol Sci 2021; 22:ijms222011279. [PMID: 34681944 PMCID: PMC8538208 DOI: 10.3390/ijms222011279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
A viral infection involves entry and replication of viral nucleic acid in a host organism, subsequently leading to biochemical and structural alterations in the host cell. In the case of SARS-CoV-2 viral infection, over-activation of the host immune system may lead to lung damage. Albeit the regeneration and fibrotic repair processes being the two protective host responses, prolonged injury may lead to excessive fibrosis, a pathological state that can result in lung collapse. In this review, we discuss regeneration and fibrosis processes in response to SARS-CoV-2 and provide our viewpoint on the triggering of alveolar regeneration in coronavirus disease 2019 (COVID-19) patients.
Collapse
|
31
|
Piccioni A, Saviano A, Cicchinelli S, Franza L, Rosa F, Zanza C, Santoro MC, Candelli M, Covino M, Nannini G, Amedei A, Franceschi F. Microbiota and Myopericarditis: The New Frontier in the Car-Diological Field to Prevent or Treat Inflammatory Cardiomyo-Pathies in COVID-19 Outbreak. Biomedicines 2021; 9:1234. [PMID: 34572420 PMCID: PMC8468627 DOI: 10.3390/biomedicines9091234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
Myopericarditis is an inflammatory heart condition involving the pericardium and myocardium. It can lead to heart failure, dilated cardiomyopathy, arrhythmia and sudden death. Its pathogenesis is mainly mediated by viral infections but also can be induced by bacterial infections, toxic substances and immune mediated disorders. All these conditions can produce severe inflammation and myocardial injury, often associated with a poor prognosis. The specific roles of these different pathogens (in particular viruses), the interaction with the host, the interplay with gut microbiota, and the immune system responses to them are still not completely clear and under investigation. Interestingly, some research has demonstrated the contribution of the gut microbiota, and its related metabolites (some of which can mimic the cardiac myosin), in cardiac inflammation and in the progression of this disease. They can stimulate a continuous and inadequate immune response, with a subsequent myocardial inflammatory damage. The aim of our review is to investigate the role of gut microbiota in myopericarditis, especially for the cardiovascular implications of COVID-19 viral infection, based on the idea that the modulation of gut microbiota can be a new frontier in the cardiological field to prevent or treat inflammatory cardiomyopathies.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Angela Saviano
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Sara Cicchinelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Laura Franza
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Federico Rosa
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Christian Zanza
- Department of Anesthesia, Critical Care and Emergency Medicine, Pietro and Michele Ferrero Hospital, Foundation Nuovo-Ospedale Alba-Bra, 12060 Verduno, Italy;
| | - Michele Cosimo Santoro
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy; (G.N.); (A.A.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy; (G.N.); (A.A.)
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.P.); (S.C.); (L.F.); (F.R.); (M.C.S.); (M.C.); (M.C.); (F.F.)
| |
Collapse
|
32
|
Kim JY, Han K, Suh YJ. Prevalence of abnormal cardiovascular magnetic resonance findings in recovered patients from COVID-19: a systematic review and meta-analysis. J Cardiovasc Magn Reson 2021; 23:100. [PMID: 34479603 PMCID: PMC8414035 DOI: 10.1186/s12968-021-00792-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/08/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The prevalence of abnormal cardiovascular magnetic resonance (CMR) findings in recovered coronavirus disease 2019 (COVID-19) patients is unclear. This study aimed to investigate the prevalence of abnormal CMR findings in recovered COVID-19 patients. METHODS A systematic literature search was performed to identify studies that report the prevalence of abnormal CMR findings in recovered COVID-19 patients. The number of patients with abnormal CMR findings and diagnosis of myocarditis on CMR (based on the Lake Louise criteria) and each abnormal CMR parameter were extracted. Subgroup analyses were performed according to patient characteristics (athletes vs. non-athletes and normal vs. undetermined cardiac enzyme levels). The pooled prevalence and 95% confidence interval (CI) of each CMR finding were calculated. Study heterogeneity was assessed, and meta-regression analysis was performed to investigate factors associated with heterogeneity. RESULTS In total, 890 patients from 16 studies were included in the analysis. The pooled prevalence of one or more abnormal CMR findings in recovered COVID-19 patients was 46.4% (95% CI 43.2%-49.7%). The pooled prevalence of myocarditis and late gadolinium enhancement (LGE) was 14.0% (95% CI 11.6%-16.8%) and 20.5% (95% CI 17.7%-23.6%), respectively. Further, heterogeneity was observed (I2 > 50%, p < 0.1). In the subgroup analysis, the pooled prevalence of abnormal CMR findings and myocarditis was higher in non-athletes than in athletes (62.5% vs. 17.1% and 23.9% vs. 2.5%, respectively). Similarly, the pooled prevalence of abnormal CMR findings and LGE was higher in the undetermined than in the normal cardiac enzyme level subgroup (59.4% vs. 35.9% and 45.5% vs. 8.3%, respectively). Being an athlete was a significant independent factor related to heterogeneity in multivariate meta-regression analysis (p < 0.05). CONCLUSIONS Nearly half of recovered COVID-19 patients exhibited one or more abnormal CMR findings. Athletes and patients with normal cardiac enzyme levels showed a lower prevalence of abnormal CMR findings than non-athletes and patients with undetermined cardiac enzyme levels. Trial registration The study protocol was registered in the PROSPERO database (registration number: CRD42020225234).
Collapse
Affiliation(s)
- Jin Young Kim
- Department of Radiology, Dongsan Hospital, Keimyung University College of Medicine, Daegu, Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50–1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
| | - Young Joo Suh
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50–1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Korea
| |
Collapse
|
33
|
Ramadan MS, Bertolino L, Zampino R, Durante-Mangoni E. Cardiac sequelae after coronavirus disease 2019 recovery: a systematic review. Clin Microbiol Infect 2021; 27:1250-1261. [PMID: 34171458 PMCID: PMC8220864 DOI: 10.1016/j.cmi.2021.06.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has been implicated in a wide spectrum of cardiac manifestations following the acute phase of the disease. OBJECTIVES To assess the range of cardiac sequelae after COVID-19 recovery. DATA SOURCES PubMed, Embase, Scopus (inception through 17 February 2021) and Google scholar (2019 through 17 February 2021). STUDY ELIGIBILITY CRITERIA Prospective and retrospective studies, case reports and case series. PARTICIPANTS Adult patients assessed for cardiac manifestations after COVID-19 recovery. EXPOSURE Severe acute respiratory syndrome coronavirus 2 infection diagnosed by PCR. METHODS Systematic review. RESULTS Thirty-five studies (fifteen prospective cohort, seven case reports, five cross-sectional, four case series, three retrospective cohort and one ambidirectional cohort) evaluating cardiac sequelae in 52 609 patients were included. Twenty-nine studies used objective cardiac assessments, mostly cardiac magnetic resonance imaging (CMR) in 16 studies, echocardiography in 15, electrocardiography (ECG) in 16 and cardiac biomarkers in 18. Most studies had a fair risk of bias. The median time from diagnosis/recovery to cardiac assessment was 48 days (1-180 days). Common short-term cardiac abnormalities (<3 months) included increased T1 (proportion: 30%), T2 (16%), pericardial effusion (15%) and late gadolinium enhancement (11%) on CMR, with symptoms such as chest pain (25%) and dyspnoea (36%). In the medium term (3-6 months), common changes included reduced left ventricular global longitudinal strain (30%) and late gadolinium enhancement (10%) on CMR, diastolic dysfunction (40%) on echocardiography and elevated N-terminal proB-type natriuretic peptide (18%). In addition, COVID-19 survivors had higher risk (risk ratio 3; 95% CI 2.7-3.2) of developing heart failure, arrythmias and myocardial infarction. CONCLUSIONS COVID-19 appears to be associated with persistent/de novo cardiac injury after recovery, particularly subclinical myocardial injury in the earlier phase and diastolic dysfunction later. Larger well-designed and controlled studies with baseline assessments are needed to better measure the extent of cardiac injury and its clinical impact.
Collapse
Affiliation(s)
- Mohammad Said Ramadan
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy; Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Lorenzo Bertolino
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy; Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Rosa Zampino
- Department of Advanced Medical and Surgical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy; Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy; Unit of Infectious and Transplant Medicine, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy.
| |
Collapse
|
34
|
Shafiabadi Hassani N, Talakoob H, Karim H, Mozafari Bazargany MH, Rastad H. Cardiac Magnetic Resonance Imaging Findings in 2954 COVID-19 Adult Survivors: A Comprehensive Systematic Review. J Magn Reson Imaging 2021; 55:866-880. [PMID: 34309139 PMCID: PMC8427049 DOI: 10.1002/jmri.27852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies have utilized MRI to determine the extent to which COVID‐19 survivors may experience cardiac sequels after recovery. Purpose To systematically review the main cardiac MRI findings in COVID‐19 adult survivors. Study type Systematic review. Subjects A total of 2954 COVID‐19 adult survivors from 16 studies. Field Strength/sequence Late gadolinium enhancement (LGE), parametric mapping (T1‐native, T2, T1‐post (extracellular volume fraction [ECV]), T2‐weighted sequences (myocardium/pericardium), at 1.5 T and 3 T. Assessment A systematic search was performed on PubMed, Embase, and Google scholar databases using Boolean operators and the relevant key terms covering COVID‐19, cardiac injury, CMR, and follow‐up. MRI data, including (if available) T1, T2, extra cellular volume, presence of myocardial or pericardial late gadolinium enhancement (LGE) and left and right ventricular ejection fraction were extracted. Statistical Tests The main results of the included studies are summarized. No additional statistical analysis was performed. Results Of 1601 articles retrieved from the initial search, 12 cohorts and 10 case series met our eligibility criteria. The rate of raised T1 in COVID‐19 adult survivors varied across studies from 0% to 73%. Raised T2 was detected in none of patients in 4 out of 15 studies, and in the remaining studies, its rate ranged from 2% to 60%. In most studies, LGE (myocardial or pericardial) was observed in COVID‐19 survivors, the rate ranging from 4% to 100%. Myocardial LGE mainly had nonischemic patterns. None of the cohort studies observed myocardial LGE in “healthy” controls. Most studies found that patients who recovered from COVID‐19 had a significantly greater T1 and T2 compared to participants in the corresponding control group. Data Conclusion Findings of MRI studies suggest the presence of myocardial and pericardial involvement in a notable number of patients recovered from COVID‐19. Level of Evidence 3 Technical Efficacy Stage 3
Collapse
Affiliation(s)
| | - Hamed Talakoob
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Karim
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Hadith Rastad
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
35
|
Suvvari TK, Kutikuppala LVS, Tsagkaris C, Corriero AC, Kandi V. Post-COVID-19 complications: Multisystemic approach. J Med Virol 2021; 93:6451-6455. [PMID: 34289162 PMCID: PMC8427008 DOI: 10.1002/jmv.27222] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/17/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Tarun K Suvvari
- Dr. N.T.R. University of Health Sciences, Andhra Pradesh, India
| | | | - Christos Tsagkaris
- Department of Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | | | - Venkataramana Kandi
- Department of Microbiology, Prathima Institute of Medical Sciences, Karimnagar, India
| |
Collapse
|
36
|
Abstract
The emergence of the novel SARS coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has resulted in an unprecedented pandemic that has been accompanied by a global health crisis. Although the lungs are the main organs involved in COVID-19, systemic disease with a wide range of clinical manifestations also develops in patients infected with SARS-CoV-2. One of the major systems affected by this virus is the cardiovascular system. The presence of preexisting cardiovascular disease increases mortality in patients with COVID-19, and cardiovascular injuries, including myocarditis, cardiac rhythm abnormalities, endothelial cell injury, thrombotic events, and myocardial interstitial fibrosis, are observed in some patients with COVID-19. The underlying pathophysiology of COVID-19-associated cardiovascular complications is not fully understood, although direct viral infection of myocardium and cytokine storm have been suggested as possible mechanisms of myocarditis. In this Review, we summarize available data on SARS-CoV-2-related cardiac damage and discuss potential mechanisms of cardiovascular implications of this rapidly spreading virus.
Collapse
|
37
|
Korompoki E, Gavriatopoulou M, Hicklen RS, Ntanasis-Stathopoulos I, Kastritis E, Fotiou D, Stamatelopoulos K, Terpos E, Kotanidou A, Hagberg CA, Dimopoulos MA, Kontoyiannis DP. Epidemiology and organ specific sequelae of post-acute COVID19: A narrative review. J Infect 2021; 83:1-16. [PMID: 33992686 PMCID: PMC8118709 DOI: 10.1016/j.jinf.2021.05.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES "Long COVID", a term coined by COVID-19 survivors, describes persistent or new symptoms in a subset of patients who have recovered from acute illness. Globally, the population of people infected with SARS-CoV-2 continues to expand rapidly, necessitating the need for a more thorough understanding of the array of potential sequelae of COVID-19. The multisystemic aspects of acute COVID-19 have been the subject of intense investigation, but the long-term complications remain poorly understood. Emerging data from lay press, social media, commentaries, and emerging scientific reports suggest that some COVID-19 survivors experience organ impairment and/or debilitating chronic symptoms, at times protean in nature, which impact their quality of life. METHODS/RESULTS In this review, by addressing separately each body system, we describe the pleiotropic manifestations reported post COVID-19, their putative pathophysiology and risk factors, and attempt to offer guidance regarding work-up, follow-up and management strategies. Long term sequelae involve all systems with a negative impact on mental health, well-being and quality of life, while a subset of patients, report debilitating chronic fatigue, with or without other fluctuating or persistent symptoms, such as pain or cognitive dysfunction. Although the pathogenesis is unclear, residual damage from acute infection, persistent immune activation, mental factors, or unmasking of underlying co-morbidities are considered as drivers. Comparing long COVID with other post viral chronic syndromes may help to contextualize the complex somatic and emotional sequalae of acute COVID-19. The pace of recovery of different aspects of the syndrome remains unclear as the pandemic began only a year ago. CONCLUSIONS Early recognition of long-term effects and thorough follow-up through dedicated multidisciplinary outpatient clinics with a carefully integrated research agenda are essential for treating COVID-19 survivors holistically.
Collapse
Affiliation(s)
- Eleni Korompoki
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece; Divison of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Rachel S Hicklen
- Research Medical Library, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1460, Houston TX 77030, United States.
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece.
| | - Anastasia Kotanidou
- Department of Critical Care Medicine and Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens 11528, Greece.
| | - Carin A Hagberg
- Division of Anesthesiology, Critical Care and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece.
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
38
|
Webster G, Patel AB, Carr MR, Rigsby CK, Rychlik K, Rowley AH, Robinson JD. Cardiovascular magnetic resonance imaging in children after recovery from symptomatic COVID-19 or MIS-C: a prospective study. J Cardiovasc Magn Reson 2021; 23:86. [PMID: 34193197 PMCID: PMC8245157 DOI: 10.1186/s12968-021-00786-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cardiac evaluations, including cardiovascular magnetic resonance (CMR) imaging and biomarker results, are needed in children during mid-term recovery after infection with SARS-CoV-2. The incidence of CMR abnormalities 1-3 months after recovery is over 50% in older adults and has ranged between 1 and 15% in college athletes. Abnormal cardiac biomarkers are common in adults, even during recovery. METHODS We performed CMR imaging in a prospectively-recruited pediatric cohort recovered from COVID-19 and multisystem inflammatory syndrome in children (MIS-C). We obtained CMR data and serum biomarkers. We compared these results to age-matched control patients, imaged prior to the SARS-CoV-2 pandemic. RESULTS CMR was performed in 17 children (13.9 years, all ≤ 18 years) and 29 age-matched control patients without SARS-CoV-2 infection. Cases were recruited with symptomatic COVID-19 (11/17, 65%) or MIS-C (6/17, 35%) and studied an average of 2 months after diagnosis. All COVID-19 patients had been symptomatic with fever (73%), vomiting/diarrhea (64%), or breathing difficulty (55%) during infection. Left ventricular and right ventricular ejection fractions were indistinguishable between cases and controls (p = 0.66 and 0.70, respectively). Mean native global T1, global T2 values and segmental T2 maximum values were also not statistically different from control patients (p ≥ 0.06 for each). NT-proBNP and troponin levels were normal in all children. CONCLUSIONS Children prospectively recruited following SARS-CoV-2 infection had normal CMR and cardiac biomarker evaluations during mid-term recovery. Trial Registration Not applicable.
Collapse
Affiliation(s)
- Gregory Webster
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Ave., Box 21, Chicago, IL, 60611, USA.
| | - Ami B Patel
- Division of Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Michael R Carr
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Ave., Box 21, Chicago, IL, 60611, USA
| | - Cynthia K Rigsby
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Karen Rychlik
- Biostatistics Research Core, Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Anne H Rowley
- Division of Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Joshua D Robinson
- Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Ave., Box 21, Chicago, IL, 60611, USA
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
39
|
Imaging Cardiovascular Inflammation in the COVID-19 Era. Diagnostics (Basel) 2021; 11:diagnostics11061114. [PMID: 34207266 PMCID: PMC8233709 DOI: 10.3390/diagnostics11061114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cardiac complications are among the most frequent extrapulmonary manifestations of COVID-19 and are associated with high mortality rates. Moreover, positive SARS-CoV-2 patients with underlying cardiovascular disease are more likely to require intensive care and are at higher risk of death. The underlying mechanism for myocardial injury is multifaceted, in which the severe inflammatory response causes myocardial inflammation, coronary plaque destabilization, acute thrombotic events, and ischemia. Cardiac magnetic resonance (CMR) imaging is the non-invasive method of choice for identifying myocardial injury, and it is able to differentiate between underlying causes in various and often challenging clinical scenarios. Multimodal imaging protocols that incorporate CMR and computed tomography provide a complex evaluation for both respiratory and cardiovascular complications of SARS-CoV2 infection. This, in relation to biological evaluation of systemic inflammation, can guide appropriate therapeutic management in every stage of the disease. The use of artificial intelligence can further improve the diagnostic accuracy of these imaging techniques, thus enabling risk stratification and evaluation of prognosis. The present manuscript aims to review the current knowledge on the possible modalities for imaging COVID-related myocardial inflammation or post-COVID coronary inflammation and atherosclerosis.
Collapse
|
40
|
Blankstein R, Chandrashekhar Y. New Insights on COVID-19 and the Heart. JACC Cardiovasc Imaging 2021; 14:706-708. [PMID: 33663773 PMCID: PMC7920531 DOI: 10.1016/j.jcmg.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
41
|
Catapano F, Marchitelli L, Cundari G, Cilia F, Mancuso G, Pambianchi G, Galea N, Ricci P, Catalano C, Francone M. Role of advanced imaging in COVID-19 cardiovascular complications. Insights Imaging 2021; 12:28. [PMID: 33625637 PMCID: PMC7903405 DOI: 10.1186/s13244-021-00973-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Clinical manifestations of COVID-19 patients are dominated by respiratory symptoms, but cardiac complications are commonly observed and associated with increased morbidity and mortality. Underlying pathological mechanisms of cardiac injury are still not entirely elucidated, likely depending on a combination of direct viral damage with an uncontrolled immune activation. Cardiac involvement in these patients ranges from a subtle myocardial injury to cardiogenic shock. Advanced cardiac imaging plays a key role in discriminating the broad spectrum of differential diagnoses. Present article aims to review the value of advanced multimodality imaging in patients with suspected SARS-CoV-2-related cardiovascular involvement and its essential role in risk stratification and tailored treatment strategies. Based on our experience, we also sought to suggest possible diagnostic algorithms for the rationale utilization of advanced imaging tools, such as cardiac CT and CMR, avoiding unnecessary examinations and diagnostic delays.
Collapse
Affiliation(s)
- Federica Catapano
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Livia Marchitelli
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Francesco Cilia
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Giuseppe Mancuso
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Giacomo Pambianchi
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Paolo Ricci
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
- Unit of Emergency Radiology, Policlinico Umberto I, Policlinico Umberto I, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
42
|
The effect of moderate and severe COVID-19 pneumonia on short-term right ventricular functions: a prospective observational single pandemic center analysis. Int J Cardiovasc Imaging 2021; 37:1883-1890. [PMID: 33555535 PMCID: PMC7868518 DOI: 10.1007/s10554-021-02171-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 01/08/2023]
Abstract
It has been reported that myocardial damage and heart failure are more common in COVID-19 patients with severe symptoms. The aim of our study was to measure the right ventricular functions of COVID-19 patients 30 days after their discharge, and compare them to the right ventricular functions of healthy volunteers. Fifty one patients with COVID-19 and 32 healthy volunteers who underwent echocardiographic examinations were enrolled in our study. 29 patients were treated for severe and 22 patients were treated for moderate COVID-19 pneumonia. The study was conducted prospectively, in a single center, between 15 May 2020 and 15 July 2020. We analyzed the right ventricular functions of the patients using conventional techniques and two-dimensional speckle-tracking. Right ventricular end-diastolic and end-systolic area were statistically higher than control group. The right ventricular fractional area change (RVFAC) was significantly lesser in the patient group compared to the control group. Tricuspid annular plane systolic motion (TAPSE) was within normal limits in both groups, it was lower in the patient group compared to the control group. Pulmonary artery pressure was found to be significantly higher in the patient group. Right ventricular global longitudinal strain (RV-GLS) was lesser than the control group (- 15.7 [(- 12.6)-(- 18.7)] vs. - 18.1 [(- 14.8)-(- 21)]; p 0.011). Right ventricular free wall strain (RV-FWS) was lesser in the patient group compared to the control group (- 16 [(- 12.7)-(- 19)] vs - 21.6 [(- 17)-(- 25.3)]; p < 0.001). We found subclinical right ventricular dysfunction in the echocardiographies of COVID-19 patients although there were no risk factors.
Collapse
|
43
|
Jaiswal V, Sarfraz Z, Sarfraz A, Mukherjee D, Batra N, Hitawala G, Yaqoob S, Patel A, Agarwala P, Ruchika, Sarfraz M, Bano S, Azeem N, Naz S, Jaiswal A, Sharma P, Chaudhary G. COVID-19 Infection and Myocarditis: A State-of-the-Art Systematic Review. J Prim Care Community Health 2021; 12:21501327211056800. [PMID: 34854348 PMCID: PMC8647231 DOI: 10.1177/21501327211056800] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND COVID-19 was initially considered to be a respiratory illness, but current findings suggest that SARS-CoV-2 is increasingly expressed in cardiac myocytes as well. COVID-19 may lead to cardiovascular injuries, resulting in myocarditis, with inflammation of the heart muscle. OBJECTIVE This systematic review collates current evidence about demographics, symptomatology, diagnostic, and clinical outcomes of COVID-19 infected patients with myocarditis. METHODS In accordance with PRISMA 2020 guidelines, a systematic search was conducted using PubMed, Cochrane Central, Web of Science and Google Scholar until August, 2021. A combination of the following keywords was used: SARS-CoV-2, COVID-19, myocarditis. Cohorts and case reports that comprised of patients with confirmed myocarditis due to COVID-19 infection, aged >18 years were included. The findings were tabulated and subsequently synthesized. RESULTS In total, 54 case reports and 5 cohorts were identified comprising 215 patients. Hypertension (51.7%), diabetes mellitus type 2 (46.4%), cardiac comorbidities (14.6%) were the 3 most reported comorbidities. Majority of the patients presented with cough (61.9%), fever (60.4%), shortness of breath (53.2%), and chest pain (43.9%). Inflammatory markers were raised in 97.8% patients, whereas cardiac markers were elevated in 94.8% of the included patients. On noting radiographic findings, cardiomegaly (32.5%) was the most common finding. Electrocardiography testing obtained ST segment elevation among 44.8% patients and T wave inversion in 7.3% of the sample. Cardiovascular magnetic resonance imaging yielded 83.3% patients with myocardial edema, with late gadolinium enhancement in 63.9% patients. In hospital management consisted of azithromycin (25.5%), methylprednisolone/steroids (8.5%), and other standard care treatments for COVID-19. The most common in-hospital complication included acute respiratory distress syndrome (66.4%) and cardiogenic shock (14%). On last follow up, 64.7% of the patients survived, whereas 31.8% patients did not survive, and 3.5% were in the critical care unit. CONCLUSION It is essential to demarcate COVID-19 infection and myocarditis presentations due to the heightened risk of death among patients contracting both myocardial inflammation and ARDS. With a multitude of diagnostic and treatment options available for COVID-19 and myocarditis, patients that are under high risk of suspicion for COVID-19 induced myocarditis must be appropriately diagnosed and treated to curb co-infections.
Collapse
Affiliation(s)
| | | | | | | | - Nitya Batra
- Maulana Azad Medical College, New
Delhi, India
| | | | - Sadia Yaqoob
- Jinnah Medical and Dental College,
Karachi, Pakistan
| | | | | | - Ruchika
- JJM Medical college, Davangere,
India
| | | | - Shehar Bano
- Fatima Jinnah Medical University,
Lahore, Pakistan
| | | | - Sidra Naz
- Harvard Medical School, Boston, MA,
USA
| | - Akash Jaiswal
- All India Institute of Medical
Science, New Delhi, India
| | | | | |
Collapse
|
44
|
Goldraich LA, Silvestre OM, Gomes E, Biselli B, Montera MW. Emerging Topics in Heart Failure: COVID-19 and Heart Failure. Arq Bras Cardiol 2020; 115:942-944. [PMID: 33295461 PMCID: PMC8452204 DOI: 10.36660/abc.20201081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | - Edval Gomes
- Universidade Estadual de Feira de Santana, Feira de Santana, BA - Brasil
| | - Bruno Biselli
- Instituto do Coração da Universidade de São Paulo, São Paulo, SP - Brasil
| | | |
Collapse
|
45
|
Ng MY, Wan EYF, Wong HYF, Leung ST, Lee JCY, Chin TWY, Lo CSY, Lui MMS, Chan EHT, Fong AHT, Fung SY, Ching OH, Chiu KWH, Chung TWH, Vardhanbhuti V, Lam HYS, To KKW, Chiu JLF, Lam TPW, Khong PL, Liu RWT, Chan JWM, Wu AKL, Lung KC, Hung IFN, Lau CS, Kuo MD, Ip MSM. Development and validation of risk prediction models for COVID-19 positivity in a hospital setting. Int J Infect Dis 2020; 101:74-82. [PMID: 32947055 PMCID: PMC7491462 DOI: 10.1016/j.ijid.2020.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To develop: (1) two validated risk prediction models for coronavirus disease-2019 (COVID-19) positivity using readily available parameters in a general hospital setting; (2) nomograms and probabilities to allow clinical utilisation. METHODS Patients with and without COVID-19 were included from 4 Hong Kong hospitals. The database was randomly split into 2:1: for model development database (n = 895) and validation database (n = 435). Multivariable logistic regression was utilised for model creation and validated with the Hosmer-Lemeshow (H-L) test and calibration plot. Nomograms and probabilities set at 0.1, 0.2, 0.4 and 0.6 were calculated to determine sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). RESULTS A total of 1330 patients (mean age 58.2 ± 24.5 years; 50.7% males; 296 COVID-19 positive) were recruited. The first prediction model developed had age, total white blood cell count, chest x-ray appearances and contact history as significant predictors (AUC = 0.911 [CI = 0.880-0.941]). The second model developed has the same variables except contact history (AUC = 0.880 [CI = 0.844-0.916]). Both were externally validated on the H-L test (p = 0.781 and 0.155, respectively) and calibration plot. Models were converted to nomograms. Lower probabilities give higher sensitivity and NPV; higher probabilities give higher specificity and PPV. CONCLUSION Two simple-to-use validated nomograms were developed with excellent AUCs based on readily available parameters and can be considered for clinical utilisation.
Collapse
Affiliation(s)
- Ming-Yen Ng
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong Special Administrative Region.
| | - Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho Yuen Frank Wong
- Department of Radiology, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - Siu Ting Leung
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong Special Administrative Region
| | - Jonan Chun Yin Lee
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Thomas Wing-Yan Chin
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | | | - Macy Mei-Sze Lui
- Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - Edward Hung Tat Chan
- Department of Medical Imaging, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Hong Kong Special Administrative Region
| | - Ambrose Ho-Tung Fong
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Sau Yung Fung
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - On Hang Ching
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Keith Wan-Hang Chiu
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Tom Wai Hin Chung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Varut Vardhanbhuti
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hiu Yin Sonia Lam
- Department of Radiology, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - Kelvin Kai Wang To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Jeffrey Long Fung Chiu
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Tina Poy Wing Lam
- Department of Radiology, Queen Mary Hospital, Hong Kong Special Administrative Region
| | - Pek Lan Khong
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Raymond Wai To Liu
- Department of Medicine, Ruttonjee Hospital, Hong Kong Special Administrative Region
| | - Johnny Wai Man Chan
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Alan Ka Lun Wu
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong Special Administrative Region
| | - Kwok-Cheung Lung
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong Special Administrative Region
| | - Ivan Fan Ngai Hung
- Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region; Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chak Sing Lau
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Michael D Kuo
- Medical Artificial Intelligence Laboratory (MAIL) Program, Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Mary Sau-Man Ip
- Department of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Division of Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
46
|
Sengupta PP, Chandrashekhar YS. Cardiac Involvement in the COVID-19 Pandemic: Hazy Lessons From Cardiac Imaging? JACC Cardiovasc Imaging 2020; 13:2480-2483. [PMID: 33153538 PMCID: PMC7547566 DOI: 10.1016/j.jcmg.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
47
|
|