1
|
Zhao X, Wang W, Nie S, Geng L, Song K, Zhang X, Yao W, Qiang P, Sun G, Wang D, Liu H. Dynamic comparison of early immune reactions and immune cell reconstitution after umbilical cord blood transplantation and peripheral blood stem cell transplantation. Front Immunol 2023; 14:1084901. [PMID: 37114055 PMCID: PMC10126295 DOI: 10.3389/fimmu.2023.1084901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Umbilical cord blood transplantation (UCBT) and peripheral blood stem cell transplantation (PBSCT) are effective allogeneic treatments for patients with malignant and non-malignant refractory hematological diseases. However, the differences in the immune cell reconstitution and the immune reactions during initial stages post-transplantation are not well established between UCBT and PBSCT. Therefore, in this study, we analyzed the differences in the immune reactions during the early stages (days 7-100 post-transplantation) such as pre-engraftment syndrome (PES), engraftment syndrome (ES), and acute graft-versus-host disease (aGVHD) and the immune cell reconstitution between the UCBT and the PBSCT group of patients. We enrolled a cohort of patients that underwent UCBT or PBSCT and healthy controls (n=25 each) and evaluated their peripheral blood mononuclear cell (PBMC) samples and plasma cytokine (IL-10 and GM-CSF) levels using flow cytometry and ELISA, respectively. Our results showed that the incidences of early immune reactions such as PES, ES, and aGVHD were significantly higher in the UCBT group compared to the PBSCT group. Furthermore, in comparison with the PBSCT group, the UCBT group showed higher proportion and numbers of naïve CD4+ T cells, lower proportion and numbers of Tregs, higher proportion of CD8+ T cells with increased activity, and higher proportion of mature CD56dim CD16+ NK cells during the early stages post-transplantation. Moreover, the plasma levels of GM-CSF were significantly higher in the UCBT group compared to the PBSCT group in the third week after transplantation. Overall, our findings demonstrated significant differences in the post-transplantation immune cell reconstitution between the UCBT and the PBSCT group of patients. These characteristics were associated with significant differences between the UCBT and the PBSCT groups regarding the incidences of immune reactions during the early stages post transplantation.
Collapse
Affiliation(s)
- Xuxu Zhao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenya Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shiqin Nie
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Liangquan Geng
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaidi Song
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyi Zhang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Yao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ping Qiang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangyu Sun
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| | - Huilan Liu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Transfusion, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| |
Collapse
|
2
|
Sztein MB, Booth JS. Controlled human infectious models, a path forward in uncovering immunological correlates of protection: Lessons from enteric fevers studies. Front Microbiol 2022; 13:983403. [PMID: 36204615 PMCID: PMC9530043 DOI: 10.3389/fmicb.2022.983403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric infectious diseases account for more than a billion disease episodes yearly worldwide resulting in approximately 2 million deaths, with children under 5 years old and the elderly being disproportionally affected. Enteric pathogens comprise viruses, parasites, and bacteria; the latter including pathogens such as Salmonella [typhoidal (TS) and non-typhoidal (nTS)], cholera, Shigella and multiple pathotypes of Escherichia coli (E. coli). In addition, multi-drug resistant and extensively drug-resistant (XDR) strains (e.g., S. Typhi H58 strain) of enteric bacteria are emerging; thus, renewed efforts to tackle enteric diseases are required. Many of these entero-pathogens could be controlled by oral or parenteral vaccines; however, development of new, effective vaccines has been hampered by lack of known immunological correlates of protection (CoP) and limited knowledge of the factors contributing to protective responses. To fully comprehend the human response to enteric infections, an invaluable tool that has recently re-emerged is the use of controlled human infection models (CHIMs) in which participants are challenged with virulent wild-type (wt) organisms. CHIMs have the potential to uncover immune mechanisms and identify CoP to enteric pathogens, as well as to evaluate the efficacy of therapeutics and vaccines in humans. CHIMs have been used to provide invaluable insights in the pathogenesis, host-pathogen interaction and evaluation of vaccines. Recently, several Oxford typhoid CHIM studies have been performed to assess the role of multiple cell types (B cells, CD8+ T, Tregs, MAIT, Monocytes and DC) during S. Typhi infection. One of the key messages that emerged from these studies is that baseline antigen-specific responses are important in that they can correlate with clinical outcomes. Additionally, volunteers who develop typhoid disease (TD) exhibit higher levels and more activated cell types (e.g., DC and monocytes) which are nevertheless defective in discrete signaling pathways. Future critical aspects of this research will involve the study of immune responses to enteric infections at the site of entry, i.e., the intestinal mucosa. This review will describe our current knowledge of immunity to enteric fevers caused byS. Typhi and S. Paratyphi A, with emphasis on the contributions of CHIMs to uncover the complex immunological responses to these organisms and provide insights into the determinants of protective immunity.
Collapse
Affiliation(s)
- Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Marcelo B. Sztein,
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Jayaum S. Booth,
| |
Collapse
|
3
|
T-Cell Cytokine Response in Salmonella Typhimurium-Vaccinated versus Infected Pigs. Vaccines (Basel) 2021; 9:vaccines9080845. [PMID: 34451970 PMCID: PMC8402558 DOI: 10.3390/vaccines9080845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Vaccination with the live attenuated vaccine Salmoporc is an effective measure to control Salmonella Typhimurium (STM) in affected swine populations. However, the cellular immune response evoked by the Salmoporc vaccine including differences in vaccinated pigs versus non-vaccinated pigs upon STM infection have not been characterized yet. To investigate this, tissue-derived porcine lymphocytes from different treatment groups (vaccination-only, vaccination and infection, infection-only, untreated controls) were stimulated in vitro with heat-inactivated STM and abundances of IFN-γ, TNF-α and/or IL-17A-producing T-cell subsets were compared across organs and treatment groups. Overall, our results show the induction of a strong CD4+ T-cell response after STM infection, both locally and systemically. Low-level induction of STM-specific cytokine-producing CD4+ T cells, notably for the IFN-γ/TNF-α co-producing phenotype, was detected after vaccination-only. Numerous significant contrasts in cytokine-producing T-cell phenotypes were observed after infection in vaccinated and infected versus infected-only animals. These results suggest that vaccine-induced STM-specific cytokine-producing CD4+ T cells contribute to local immunity in the gut and may limit the spread of STM to lymph nodes and systemic organs. Hence, our study provides insights into the underlying immune mechanisms that account for the efficacy of the Salmoporc vaccine.
Collapse
|
4
|
Booth JS, Goldberg E, Patil SA, Barnes RS, Greenwald BD, Sztein MB. Age-dependency of terminal ileum tissue resident memory T cell responsiveness profiles to S. Typhi following oral Ty21a immunization in humans. Immun Ageing 2021; 18:19. [PMID: 33874975 PMCID: PMC8053564 DOI: 10.1186/s12979-021-00227-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The impact of aging on the immune system is unequivocal and results in an altered immune status termed immunosenescence. In humans, the mechanisms of immunosenescence have been examined almost exclusively in blood. However, most immune cells are present in tissue compartments and exhibit differential cell (e.g., memory T cells -TM) subset distributions. Thus, it is crucial to understand immunosenescence in tissues, especially those that are exposed to pathogens (e.g., intestine). Using a human model of oral live attenuated typhoid vaccine, Ty21a, we investigated the effect of aging on terminal ileum (TI) tissue resident memory T (TRM) cells. TRM provide immediate adaptive effector immune responsiveness at the infection site. However, it is unknown whether aging impacts TRM S. Typhi-responsive cells at the site of infection (e.g., TI). Here, we determined the effect of aging on the induction of TI S. Typhi-responsive TRM subsets elicited by Ty21a immunization. RESULTS We observed that aging impacts the frequencies of TI-lamina propria mononuclear cells (LPMC) TM and TRM in both Ty21a-vaccinated and control groups. In unvaccinated volunteers, the frequencies of LPMC CD103- CD4+ TRM displayed a positive correlation with age whilst the CD4/CD8 ratio in LPMC displayed a negative correlation with age. We observed that elderly volunteers have weaker S. Typhi-specific mucosal immune responses following Ty21a immunization compared to adults. For example, CD103+ CD4+ TRM showed reduced IL-17A production, while CD103- CD4+ TRM exhibited lower levels of IL-17A and IL-2 in the elderly than in adults following Ty21a immunization. Similar results were observed in LPMC CD8+ TRM and CD103- CD8+ T cell subsets. A comparison of multifunctional (MF) profiles of both CD4+ and CD8+ TRM subsets between elderly and adults also showed significant differences in the quality and quantity of elicited single (S) and MF responses. CONCLUSIONS Aging influences tissue resident TM S. Typhi-specific responses in the terminal ileum following oral Ty21a-immunization. This study is the first to provide insights in the generation of local vaccine-specific responses in the elderly population and highlights the importance of evaluating tissue immune responses in the context of infection and aging. TRIAL REGISTRATION This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT03970304 , Registered 29 May 2019 - Retrospectively registered).
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Oncology, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
Sears KT, Galen JE, Tennant SM. Advances in the development of Salmonella-based vaccine strategies for protection against Salmonellosis in humans. J Appl Microbiol 2021; 131:2640-2658. [PMID: 33665941 PMCID: PMC9292744 DOI: 10.1111/jam.15055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Salmonella spp. are important human pathogens globally causing millions of cases of typhoid fever and non‐typhoidal salmonellosis annually. There are only a few vaccines licensed for use in humans which all target Salmonella enterica serovar Typhi. Vaccine development is hampered by antigenic diversity between the thousands of serovars capable of causing infection in humans. However, a number of attenuated candidate vaccine strains are currently being developed. As facultative intracellular pathogens with multiple systems for transporting effector proteins to host cells, attenuated Salmonella strains can also serve as ideal tools for the delivery of foreign antigens to create multivalent live carrier vaccines for simultaneous immunization against several unrelated pathogens. Further, the ease with which Salmonella can be genetically modified and the extensive knowledge of the virulence mechanisms of this pathogen means that this bacterium has often served as a model organism to test new approaches. In this review we focus on (1) recent advances in live attenuated Salmonella vaccine development, (2) improvements in expression of foreign antigens in carrier vaccines and (3) adaptation of attenuated strains as sources of purified antigens and vesicles that can be used for subunit and conjugate vaccines or together with attenuated vaccine strains in heterologous prime‐boosting immunization strategies. These advances have led to the development of new vaccines against Salmonella which have or will soon be tested in clinical trials.
Collapse
Affiliation(s)
- K T Sears
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J E Galen
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - S M Tennant
- Center for Vaccine Development and Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Booth JS, Goldberg E, Barnes RS, Greenwald BD, Sztein MB. Oral typhoid vaccine Ty21a elicits antigen-specific resident memory CD4 + T cells in the human terminal ileum lamina propria and epithelial compartments. J Transl Med 2020; 18:102. [PMID: 32098623 PMCID: PMC7043047 DOI: 10.1186/s12967-020-02263-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022] Open
Abstract
Background Salmonella enterica serovar Typhi (S. Typhi) is a highly invasive bacterium that infects the human intestinal mucosa and causes ~ 11.9–20.6 million infections and ~ 130,000–223,000 deaths annually worldwide. Oral typhoid vaccine Ty21a confers a moderate level of long-lived protection (5–7 years) in the field. New and improved vaccines against enteric pathogens are needed but their development is hindered by a lack of the immunological correlates of protection especially at the site of infection. Tissue resident memory T (TRM) cells provide immediate adaptive effector immune responsiveness at the infection site. However, the mechanism(s) by which S. Typhi induces TRM in the intestinal mucosa are unknown. Here, we focus on the induction of S. Typhi-specific CD4+TRM subsets by Ty21a in the human terminal ileum lamina propria and epithelial compartments. Methods Terminal ileum biopsies were obtained from consenting volunteers undergoing routine colonoscopy who were either immunized orally with 4 doses of Ty21a or not. Isolated lamina propria mononuclear cells (LPMC) and intraepithelial lymphocytes (IEL) CD4+TRM immune responses were determined using either S. Typhi-infected or non-infected autologous EBV-B cell lines as stimulator cells. T-CMI was assessed by the production of 4 cytokines [interferon (IFN)γ, interleukin (IL)-2, IL-17A and tumor necrosis factor (TNF)α] in 36 volunteers (18 vaccinees and 18 controls volunteers). Results Although the frequencies of LPMC CD103+ CD4+TRM were significant decreased, both CD103+ and CD103− CD4+TRM subsets spontaneously produced significantly higher levels of cytokines (IFNγ and IL-17A) following Ty21a-immunization. Importantly, we observed significant increases in S. Typhi-specific LPMC CD103+ CD4+TRM (IFNγ and IL-17A) and CD103− CD4+TRM (IL-2 and IL-17A) responses following Ty21a-immunization. Further, differences in S. Typhi-specific responses between these two CD4+TRM subsets were observed following multifunctional analysis. In addition, we determined the effect of Ty21a-immunization on IEL and observed significant changes in the frequencies of IEL CD103+ (decrease) and CD103− CD4+TRM (increase) following immunization. Finally, we observed that IEL CD103− CD4+TRM, but not CD103+ CD4+TRM, produced increased cytokines (IFNγ, TNFα and IL-17A) to S. Typhi-specific stimulation following Ty21a-immunization. Conclusions Oral Ty21a-immunization elicits distinct compartment specific immune responses in CD4+TRM (CD103+ and CD103−) subsets. This study provides novel insights in the generation of local vaccine-specific responses. Trial registration This study was approved by the Institutional Review Board and registered on ClinicalTrials.gov (identifier NCT03970304, Registered 29 May 2019—Retrospectively registered, http://www.ClinicalTrials.gov/NCT03970304)
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Eric Goldberg
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Booth JS, Goldberg E, Patil SA, Barnes RS, Greenwald BD, Sztein MB. Effect of the live oral attenuated typhoid vaccine, Ty21a, on systemic and terminal ileum mucosal CD4+ T memory responses in humans. Int Immunol 2020; 31:101-116. [PMID: 30346608 PMCID: PMC6376105 DOI: 10.1093/intimm/dxy070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/07/2018] [Indexed: 01/01/2023] Open
Abstract
Our current understanding of CD4+ T-cell-mediated immunity (CMI) elicited by the oral live attenuated typhoid vaccine Ty21a is primarily derived from studies using peripheral blood. Very limited data are available in humans regarding mucosal immunity (especially CD4+ T) at the site of infection (e.g. terminal ileum; TI). Here using multiparametric flow cytometry, we examined the effect of Ty21a immunization on TI-lamina propria mononuclear cells (LPMC) and peripheral blood CD4+ T memory (TM) subsets in volunteers undergoing routine colonoscopy. Interestingly, we observed significant increases in the frequencies of LPMC CD4+ T cells following Ty21a immunization, restricted to the T effector/memory (TEM)-CD45RA+ (TEMRA) subset. Importantly, Ty21a immunization elicited Salmonella Typhi-responsive LPMC CD4+ T cells in all major TM subsets [interferon (IFN)γ and interleukin (IL)-17A in TEM; IFNγ and macrophage inflammatory protein (MIP)1β in T central/memory (TCM); and IL-2 in TEMRA]. Subsequently, we analyzed LPMC S. Typhi-responsive CD4+ T cells in depth for multifunctional (MF) effectors. We found that LPMC CD4+ TEM responses were mostly MF, except for those cells exhibiting the characteristics associated with IL-17A responses. Finally, we compared mucosal to systemic responses and observed that LPMC CD4+S. Typhi-specific responses were unique and distinct from their systemic counterparts. This study provides the first demonstration of S. Typhi-specific CD4+ TM responses in the human TI mucosa and provides valuable information about the generation of mucosal immune responses following oral Ty21a immunization.
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Booth JS, Goldberg E, Patil SA, Greenwald BD, Sztein MB. Association between S. Typhi-specific memory CD4+ and CD8+ T responses in the terminal ileum mucosa and in peripheral blood elicited by the live oral typhoid vaccine Ty21a in humans. Hum Vaccin Immunother 2019; 15:1409-1420. [PMID: 30836838 PMCID: PMC6663141 DOI: 10.1080/21645515.2018.1564570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CD4+ and CD8+ T subsets are essential components of the adaptive immune system which act in concert at the site of infections to effectively protect against pathogens. Very limited data is available in humans regarding the relationship between CD4+ and CD8+ S. Typhi responsive cells in the terminal ileum mucosa (TI) and peripheral blood following Ty21a oral typhoid immunization. Here, we compared TI lamina propria mononuclear cells (LPMC) and peripheral blood CD4+ and CD8+ T memory (TM) subsets responses and their relationship by Spearman’s correlation following Ty21a immunization in volunteers undergoing routine colonoscopy. We observed that Ty21a immunization (i) influences the homing and accumulation of both CD4+ and CD8+ T cells in the TI, particularly integrin α4β7+ CCR9+ CD8+ T cells, (ii) elicits significantly higher frequencies of LPMC S. Typhi-responsive CD8+ T multifunctional (CD107a, IFNγ, IL-17A and/or MIP1β) cells than their CD4+ T counterparts, and (iii) results in the correlation of LPMC CD4+ Teffector/memory (TEM) S. Typhi responses (CD107a, IFNγ, TNFα, IL-17A and/or MIP1β) to their LPMC CD8+ TEM counterparts. Moreover, we demonstrated that these positive correlations between CD4+ and CD8+ TEM occur primarily in TI LPMC but not in PBMC, suggesting important differences in responses between the mucosal and systemic compartments following oral Ty21a immunization. This study provides the first demonstration of the correlation of S. Typhi-specific CD4+ and CD8+ TM responses in the human terminal ileum mucosa and provides valuable information regarding the generation of mucosal and systemic immune responses following oral Ty21a-immunization which might impact future vaccine design and development.
Collapse
Affiliation(s)
- Jayaum S Booth
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA.,b Department of Pediatrics , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Eric Goldberg
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Seema A Patil
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Bruce D Greenwald
- c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.,d Division of Gastroenterology and Hepatology , University of Maryland School of Medicine , Baltimore , MD , USA
| | - Marcelo B Sztein
- a Center for Vaccine Development and Global Health , University of Maryland School of Medicine , Baltimore , MD , USA.,b Department of Pediatrics , University of Maryland School of Medicine , Baltimore , MD , USA.,c Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| |
Collapse
|
9
|
Booth JS, Patil SA, Goldberg E, Barnes RS, Greenwald BD, Sztein MB. Attenuated Oral Typhoid Vaccine Ty21a Elicits Lamina Propria and Intra-Epithelial Lymphocyte Tissue-Resident Effector Memory CD8 T Responses in the Human Terminal Ileum. Front Immunol 2019; 10:424. [PMID: 30923521 PMCID: PMC6426796 DOI: 10.3389/fimmu.2019.00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022] Open
Abstract
Tissue-resident memory T cells (TRM) are newly defined memory T cells (TM) distinct from circulating TM subsets which have the potential to mount rapid protective immune responses at the site of infection. However, very limited information is available regarding the role and contribution of TRM in vaccine-mediated immune responses in humans at the site of infection. Here, we studied the role and contribution of tissue resident memory T cells (TRM) located in the terminal ileum (TI) (favored site of infection for S. Typhi) following oral Ty21a immunization in humans. We examined TI-lamina propria mononuclear cells (LPMC) and intra-epithelial lymphocytes (IEL) CD8+ TRM subsets obtained from healthy volunteers undergoing medically-indicated colonoscopies who were either immunized with Ty21a or unvaccinated. No significant differences in the frequencies of LPMC CD8+ TRM and CD8+CD69+CD103– T cells subsets were observed following Ty21a-immunization. However, LPMC CD8+ TRM exhibited significantly higher levels of cytokines (IFN-γ, IL-17A, and TNF-α) ex-vivo in Ty21a-vaccinated than in unvaccinated volunteers. LPMC CD8+ TRMS. Typhi-specific responses were evaluated using S. Typhi-infected targets and found to produce significantly higher levels of S. Typhi-specific IL-17A. In contrast, LPMC CD8+CD69+CD103- T cells produced significantly increased S. Typhi-specific levels of IFN-γ, IL-2, and IL-17A. Finally, we assessed CD8+ TRM in IEL and observed that the frequency of IEL CD8+ TRM is significantly lower following Ty21a immunization. However, ex-vivo IEL CD8+ TRM elicited by Ty21a immunization spontaneously produced significantly higher levels of cytokines (IFN-γ, IL-17A, IL-2, and TNF-α). This study provides the first demonstration of the effect of oral Ty21a vaccination on CD8+ TRM subsets (spontaneous and S. Typhi-specific) responses in the LPMC and IEL compartment of the human terminal ileum mucosa, contributing novel information to our understanding of the generation of mucosal immune responses following oral Ty21a-immunization.
Collapse
Affiliation(s)
- Jayaum S Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A Patil
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Eric Goldberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin S Barnes
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Bruce D Greenwald
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States.,Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Wahid R, Kotloff KL, Levine MM, Sztein MB. Cell mediated immune responses elicited in volunteers following immunization with candidate live oral Salmonella enterica serovar Paratyphi A attenuated vaccine strain CVD 1902. Clin Immunol 2019; 201:61-69. [PMID: 30849494 DOI: 10.1016/j.clim.2019.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 01/01/2023]
Abstract
The incidence of Salmonella enterica serovar Paratyphi A (PA) infection is on the rise and no licensed vaccines are available. We evaluated cell mediated immune (CMI) responses elicited in volunteers following immunization with a single dose (109 or 1010 cfu) of a novel attenuated live oral PA-vaccine strain (CVD 1902). Results showed increases in PA-lipopolysaccharide-specific IgG- and/or IgA B-memory cells and production of IFN-γ, TNF-α, IL-10, IL-23 and RANTES following stimulation with PA-antigens by peripheral blood mononuclear cells obtained 28 days post immunization. Flow cytometry assays revealed that vaccine elicited PA-specific CD8+ and/or CD4+ T effector/memory cells were predominantly multifunctional concomitantly expressing CD107a and/or producing IFN-γ, TNF-α and/or IL-2. Similar proportions of these MF cells expressed, or not, the gut homing marker integrin α4β7. The results suggest that immunization with CVD 1902 elicits CMI responses against PA supporting its further evaluation as a potential vaccine candidate against paratyphoid A fever.
Collapse
Affiliation(s)
- Rezwanul Wahid
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Karen L Kotloff
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Myron M Levine
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcelo B Sztein
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Edelblum KL. Location Matters in Defining T Cell-mediated Immunity in Response to Salmonella Typhi Vaccination. Cell Mol Gastroenterol Hepatol 2017; 4:439-440. [PMID: 29062877 PMCID: PMC5650602 DOI: 10.1016/j.jcmgh.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Karen L. Edelblum
- Correspondence Address correspondence to: Karen L. Edelblum, PhD, Rutgers New Jersey Medical School, 205 South Orange Avenue, Cancer Center G1228, Newark, New Jersey 07103.Rutgers New Jersey Medical School205 South Orange AvenueCancer Center G1228NewarkNew Jersey 07103
| |
Collapse
|