1
|
Tobi M, Antaki F, Rambus M, Hellman J, Hatfield J, Fligiel S, McVicker B. Inflammatory Bowel Disease from the Perspective of Newer Innate Immune System Biomarkers. GASTROINTESTINAL DISORDERS 2025; 7:22. [PMID: 40129852 PMCID: PMC11931671 DOI: 10.3390/gidisord7010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
Background The perspective of inflammatory bowel disease (IBD) has changed radically since the first decade of the 21st century, and the formerly monolithic components of IBD, ulcerative colitis (UC), and Crohn's disease (CD) have undergone a fundamental convergence, with realization that there is likely an element of shared pathogenesis. The ground shift began with genomic revelation but with the current emergence of the innate immune system (InImS) as a key player, allowing for improved understanding of the associations between the immune underpinnings of IBD. Methods Using unique ferritin/fecal p87 (FERAD) or using colonoscopic effluent as denominator (FEREFF) and other ratios to test this hypothesis, we prospectively enrolled 2185 patients with increased risk of colorectal cancer, of whom 31 had UC and 18 CD, with 2136 controls and brought to bear in a convenient measure for the InImS, the FERAD ratio. The FERAD, FEREFF, and NLR ratios have been shown to be effective measures of the InImS in COVID-19 and various cancers. p87 is expressed in gut Paneth cells known to modulate the microbiome by secretion of alpha-defensins, a natural antibiotic. Other related parameters were also evaluated. Results There was no significant difference between the FERAD ratio in UC and CD. However, differences between IBD entities and controls were substantial. Conclusions InImS settings in IBD are similar between CD and UC. p87 tissue immunohistochemistry (IHC) is also shared. Other InImS markers, such as the absolute neutrophil/lymphocyte ratio, are also confluent between the two IBD forms.
Collapse
Affiliation(s)
- Martin Tobi
- Department of Research and Development, Detroit John D. Dingle VAMC, Detroit, MI 48201, USA
| | - Fadi Antaki
- Department of Research and Development, Detroit John D. Dingle VAMC, Detroit, MI 48201, USA
| | - MaryAnn Rambus
- Department of Research and Development, Detroit John D. Dingle VAMC, Detroit, MI 48201, USA
| | - Jason Hellman
- Department of Research and Development, Detroit John D. Dingle VAMC, Detroit, MI 48201, USA
| | - James Hatfield
- Department of Research and Development, Detroit John D. Dingle VAMC, Detroit, MI 48201, USA
| | - Suzanne Fligiel
- Department of Research and Development, Detroit John D. Dingle VAMC, Detroit, MI 48201, USA
| | - Benita McVicker
- Research Service, VA Nebraska-Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| |
Collapse
|
2
|
Wu J, Xue R, Fan Z, Li R, Wang X, Ye C, Chen S, Fang C, Zhang X, Luo Q. 16S rDNA sequencing combined with metabolomic probes to investigate the effects of Salmonella Pullorum on gut microbes and metabolites in broilers. Front Microbiol 2025; 16:1548782. [PMID: 40109970 PMCID: PMC11920158 DOI: 10.3389/fmicb.2025.1548782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Pullorum disease (PD) caused by Salmonella Pullorum (SP) results in high mortality in chicks and potential carriers in adult chickens, negatively affecting growth and egg production. This study identified SP infection in 100-day-old White Plymouth Rock hens by serum plate agglutination and fecal and anal swab polymerase chain reaction. SP-infected broilers were classified into positive (P) and negative (N) groups using hematoxylin-and-eosin staining, metabolome sequencing, and 16S rDNA to investigate the effects of SP infection on the metabolites and microorganisms in the cecum of broilers. Groups had different degrees of inflammatory cell infiltration in the cecum, spleen, liver, and lung tissues. The diversity of bacterial flora in the cecum of Groups P and N differed significantly (P < 0.05). o__Lactobacillales and o__Verrucomicrobiota were significantly higher in Group P than in Group N (P < 0.05). At the genus level, g__Akkermansia was significantly higher in Group N (P < 0.05). Metabolome sequencing of cecum contents in Groups P and N screened 77 differential metabolites at the secondary metabolite level. 11 metabolites, including 2,4-dimethylbenzaldehyde, 3a,6b,7b,12a-tetrahydroxy-5b-cholanoic acid, and LysoPG 19:1, were differentially expressed in Group P (P < 0.05). A combined analysis of 16S rDNA sequencing and cecal content metabolomics identified 28 genera significantly associated with 38 metabolites in the cecum (P < 0.05). Specific bacterial genera such as Corynebacterium and Roseobacter have particularly prominent effects on metabolites. These findings highlight the significant alterations in gut microbial composition and metabolic functions due to SP infection. The differential metabolites and bacterial taxa identified in this study may provide insights into the underlying mechanisms of PD pathogenesis and potential biomarkers for disease management.
Collapse
Affiliation(s)
- Jiongwen Wu
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Ruixiang Xue
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Zhexia Fan
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Ruina Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiaomeng Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Chutian Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Shuya Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Cheng Fang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Qingbin Luo
- College of Animal Science, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
3
|
Chao X, Fan Z, Wu J, Ye C, Wang X, Li R, Chen S, Zhang X, Fang C, Luo Q. Application of mRNA-Seq and Metagenomic Sequencing to Study Salmonella pullorum Infections in Chickens. Int J Mol Sci 2025; 26:1448. [PMID: 40003915 PMCID: PMC11855712 DOI: 10.3390/ijms26041448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The disease caused by Salmonella pullorum has been demonstrated to exert a deleterious effect on the performance of poultry, giving rise to elevated mortality and considerable economic losses within the breeding industry. However, there is a paucity of research investigating the relationship between cecal gene expression and different isomer and Salmonella pullorum infection, and research on the relationship between intestinal microbiota and Salmonella pullorum infection is also limited. In this study, mRNA-Seq and metagenomic sequencing were performed on the cecal tissues and fresh feces of individuals who tested positive (n = 4) and negative (n = 4) for Salmonella pullorum, with the aim of exploring the chickens infected with Salmonella pullorum from two perspectives: the gene transcription level and the microbial level. The mRNA sequencing results revealed 1560 differentially expressed genes (DEGs), of which 380 genes were found to be up-regulated and 1180 genes were down-regulated. A number of genes were reported to be associated with immunity, including AQP8, SLC26A3, CBS, IFI6, DDX60, IL8L1 and IL8L2. Furthermore, a total of 1047 differentially expressed alternative splicings (DEASs) were identified through alternative splicing analysis, including CBS, SLC6A9, ILDR2, OCRL, etc. The joint analysis of DEGs and DEASs revealed 70 genes that exhibited both differentially expressed alternative splicings and differential expression, including CTNND1, TPM1, SPPL2A, etc. The results of metagenomic sequencing demonstrated that the abundances of Bacteroides, Firmicutes, and Verrucobacteria underwent a significant alteration subsequent to the infection of Salmonella pullorum. In summary, the present study conducted a preliminary exploration of the genetic basis of chickens infected with Salmonella pullorum. TPM1 and SPPL2A were found to be differentially expressed by mRNA-Seq, and differences in alternative splicing events. Furthermore, metagenomic sequencing revealed significant changes in the microbial communities of Bacteroidetes, Firmicutes, and Verrucobacteria during infection with Salmonella pullorum.
Collapse
Affiliation(s)
- Xiaohuan Chao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
| | - Zhexia Fan
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiongwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chutian Ye
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaomeng Wang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ruina Li
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuya Chen
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cheng Fang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingbin Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China (X.Z.)
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Yang X, Zhou Y, Tan S, Tian X, Meng X, Li Y, Zhou B, Zhao G, Ge X, He C, Cheng W, Zhang Y, Zheng K, Yin K, Yu Y, Pan W. Alterations in gut microbiota contribute to cognitive deficits induced by chronic infection of Toxoplasma gondii. Brain Behav Immun 2024; 119:394-407. [PMID: 38608743 DOI: 10.1016/j.bbi.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic infection with Toxoplasma gondii (T. gondii) emerges as a risk factor for neurodegenerative diseases in animals and humans. However, the underlying mechanisms are largely unknown. We aimed to investigate whether gut microbiota and its metabolites play a role in T. gondii-induced cognitive deficits. We found that T. gondii infection induced cognitive deficits in mice, which was characterized by synaptic ultrastructure impairment and neuroinflammation in the hippocampus. Moreover, the infection led to gut microbiota dysbiosis, barrier integrity impairment, and inflammation in the colon. Interestingly, broad-spectrum antibiotic ablation of gut microbiota attenuated the adverse effects of the parasitic infection on the cognitive function in mice; cognitive deficits and hippocampal pathological changes were transferred from the infected mice to control mice by fecal microbiota transplantation. In addition, the abundance of butyrate-producing bacteria and the production of serum butyrate were decreased in infected mice. Interestingly, dietary supplementation of butyrate ameliorated T. gondii-induced cognitive impairment in mice. Notably, compared to the healthy controls, decreased butyrate production was observed in the serum of human subjects with high levels of anti-T. gondii IgG. Overall, this study demonstrates that gut microbiota is a key regulator of T. gondii-induced cognitive impairment.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shimin Tan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaokang Tian
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xianran Meng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yiling Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Beibei Zhou
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yumei Zhang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China.
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
5
|
Xin R. Inflammatory Gene Panel Guiding the Study of Genetics in Inflammatory Bowel Disease. Mol Diagn Ther 2024; 28:389-401. [PMID: 38635139 DOI: 10.1007/s40291-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Inflammatory bowel disease (IBD) is a complex disease that develops through a sequence of molecular events that are still poorly defined. This process is driven by a multitude of context-dependent genes that play different roles based on their environment. The complexity and multi-faceted nature of these genes make it difficult to study the genetic basis of IBD. The goal of this article is to review the key genes in the pathophysiology of IBD and highlight new technology that can be used in further research. This paper examines Nanostring RNA probe technology, which uses tissue analyzed without the use of enzymes, transcription, or amplification. Nanostring offers several panels of genes to test, including an inflammation panel of 234 genes. This article analyzes this panel and reviews the literature for each gene's effect in IBD for use as a framework to review the pathophysiology of the disease. The panel was narrowed to 26 genes with significant evidence of mechanistic potential in IBD, which were then categorized into specific areas of pathogenesis. These include gut barrier breakdown, inappropriate recognition of commensal bacteria, immune cell activation, proinflammatory cytokine release, and subsequent impairment of the anti-inflammatory response. The eventual goal of this paper is the creation of a customized panel of IBD genes that can be used to better understand the genetic mechanism of IBD and aid in the development of future therapies in IBD.
Collapse
Affiliation(s)
- Ryan Xin
- Columbia University Irving Medical Center, 177 Fort Washington Avenue, New York, NY, 10032, USA.
| |
Collapse
|
6
|
Herren R, Geva-Zatorsky N. Spatial features of skip lesions in Crohn's disease. Trends Immunol 2024; 45:470-481. [PMID: 38782626 DOI: 10.1016/j.it.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Skip lesions are an enigmatic spatial feature characterizing Crohn's disease (CD). They comprise inflamed and adjacent non-inflamed tissue sections with a clear demarcation. Currently, spatial features of the human gastrointestinal (GI) system lack clarity regarding the organization of microbes, mucus, tissue, and host cells during inflammation. New technologies with multiplexing abilities and innovative approaches provide ways of examining the spatial organization of inflamed and non-inflamed tissues in CD, which may open new avenues for diagnosis, prognosis, and treatment. In this review, we present evidence of the relevance of spatial context in patients with CD and the methods and ideas recently published in studies of spatiality during inflammation. With this review, we aim to provide inspiration for further research to address existing gaps.
Collapse
Affiliation(s)
- Rachel Herren
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422 Haifa, Israel; CIFAR, MaRS Centre, West Tower 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
7
|
Bragazzi MC, Pianigiani F, Venere R, Ridola L. Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go? J Clin Med 2024; 13:2237. [PMID: 38673510 PMCID: PMC11050776 DOI: 10.3390/jcm13082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The association between Inflammatory Bowel Disease (IBD) and Spondyloarthritis (SpA) has been known for years, as has the concept that IBD is associated with an altered intestinal bacterial composition, a condition known as "dysbiosis". Recently, a state of intestinal dysbiosis has also been found in SpA. Dysbiosis in the field of IBD has been well characterized so far, as well as in SpA. The aim of this review is to summarize what is known to date and to emphasize the similarities between the microbiota conditions in these two diseases: particularly, an altered distribution in the gut of Enterobacteriaceae, Streptococcus, Haemophilus, Clostridium, Akkermansia, Ruminococcus, Faecalibacterium Prausnitzii, Bacteroides Vulgatus, Dialister Invisus, and Bifidubacterium Adolescentis is common to both IBD and SpA. At the same time, little is known about intestinal dysbiosis in IBD-related SpA. Only a single recent study has found an increase in Escherichia and Shigella abundances and a decrease in Firmicutes, Ruminococcaceae, and Faecalibacterium abundances in an IBD-related SpA group. Based on what has been discovered so far about the altered distribution of bacteria that unite both pathologies, it is appropriate to carry out further studies aiming to improve the understanding of IBD-related SpA for the purpose of developing new therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Ridola
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome, Polo Pontino, 04100 Rome, Italy; (M.C.B.); (F.P.); (R.V.)
| |
Collapse
|
8
|
Conn KA, Borsom EM, Cope EK. Implications of microbe-derived ɣ-aminobutyric acid (GABA) in gut and brain barrier integrity and GABAergic signaling in Alzheimer's disease. Gut Microbes 2024; 16:2371950. [PMID: 39008552 PMCID: PMC11253888 DOI: 10.1080/19490976.2024.2371950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
The gut microbial ecosystem communicates bidirectionally with the brain in what is known as the gut-microbiome-brain axis. Bidirectional signaling occurs through several pathways including signaling via the vagus nerve, circulation of microbial metabolites, and immune activation. Alterations in the gut microbiota are implicated in Alzheimer's disease (AD), a progressive neurodegenerative disease. Perturbations in gut microbial communities may affect pathways within the gut-microbiome-brain axis through altered production of microbial metabolites including ɣ-aminobutyric acid (GABA), the primary inhibitory mammalian neurotransmitter. GABA has been shown to act on gut integrity through modulation of gut mucins and tight junction proteins and may be involved in vagus nerve signal inhibition. The GABAergic signaling pathway has been shown to be dysregulated in AD, and may be responsive to interventions. Gut microbial production of GABA is of recent interest in neurological disorders, including AD. Bacteroides and Lactic Acid Bacteria (LAB), including Lactobacillus, are predominant producers of GABA. This review highlights how temporal alterations in gut microbial communities associated with AD may affect the GABAergic signaling pathway, intestinal barrier integrity, and AD-associated inflammation.
Collapse
Affiliation(s)
- Kathryn A. Conn
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Emily M. Borsom
- Center for Data-Driven Discovery for Biology, Allen Institute, Seattle, WA, USA
| | - Emily K. Cope
- Center for Applied Microbiome Sciences, The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
9
|
Li H, Ruan J, Huang J, Yang D, Yu H, Wu Y, Zhang Y, Wang T. Pomegranate ( Punica granatum L.) and Its Rich Ellagitannins as Potential Inhibitors in Ulcerative Colitis. Int J Mol Sci 2023; 24:17538. [PMID: 38139367 PMCID: PMC10744232 DOI: 10.3390/ijms242417538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Ulcerative colitis, an immune-mediated inflammatory disease of the gastrointestinal tract, places a significant financial burden on patients and the healthcare system. Recently, reviews of the pomegranate and the abundant medicinal applications of its ellagitannins, as well as its pharmacological action, phytochemicals, metabolism, and pharmacokinetics, have been completed. However, summaries on their anti-ulcerative colitis effects are lacking. Numerous preclinical animal investigations and clinical human trial reports demonstrated the specific therapeutic effects of pomegranate and the effect of its ellagitannins against ulcerative colitis. According to the literature collected by Sci-finder and PubMed databases over the past 20 years, this is the first review that has compiled references regarding how the rich ellagitannins found in pomegranate have altered the ulcerative colitis. It was suggested that the various parts of pomegranates and their rich ellagitannins (especially their primary components, punicalagin, and ellagic acid) can inhibit oxidant and inflammatory processes, regulate the intestinal barrier and flora, and provide an anti-ulcerative colitis resource through dietary management.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Jingya Ruan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Jiayan Huang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Dingshan Yang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Yuzheng Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
| | - Yi Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Tao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China; (H.L.); (J.R.); (J.H.); (H.Y.); (Y.W.)
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| |
Collapse
|
10
|
Guo J, Chen N, Tan F, Zhou J, Xiang H, Luo Y, Zhou Z. iTRAQ-based proteomic analysis of imiquimod in the treatment of ulcerative colitis. Am J Transl Res 2023; 15:4454-4466. [PMID: 37560232 PMCID: PMC10408506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE In this study, we explored the potential mechanisms and the signaling pathways involved in the treatment of Ulcerative Colitis (UC) with imiquimod (IMQ). METHODS The UC mouse model was established by treating C57BL/6J mice with 3% Dextran Sulfate Sodium (DSS). Then, the UC-related symptoms were examined. Disease Activity Index (DAI) was estimated based on weight loss, stool consistency, and occult bleeding or hematochezia. Histological changes were evaluated by Hematoxylin and Eosin (H&E) staining. Furthermore, we used multiplexed Isobaric Tagging for Relative and Absolute Protein Quantification (iTRAQ) technique coupled with high-throughput liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine the differentially expressed proteins (DEPs). RESULTS Administration of 3% DSS for 7 days induced acute colitis associated with diarrhea, hematochezia, weight loss, and colon shortening. However, after IMQ administration, almost all the above symptoms were improved by different degrees. Specifically, the DAI, histological disorder, and colon shortening were attenuated. In iTRAQ analysis, a total of 4170 proteins were identified with a high confidence (≥ 95% confidence). The numbers of DEPs between the normal and UC model mice, between the normal and the IMQ-treated therapy mice, as well as between the model and the therapy mice were 317, 253, and 209, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the DEPs involved in the complement and coagulation cascades were downregulated in IMQ-treated therapy group. CONCLUSIONS IMQ might ameliorate colitis by suppressing the complement and coagulation cascades pathway, which might serve as new therapeutic strategies for the treatment of patients with UC.
Collapse
Affiliation(s)
- Jinkun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Na Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Feifei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Julan Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Hongyu Xiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| | - Yu Luo
- Jingmen Hospital of Traditional Chinese MedicineJingmen 448001, Hubei, China
| | - Zhongyin Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System DiseaseWuhan 430060, Hubei, China
| |
Collapse
|
11
|
Bruder E, Espéli O. Escherichia coli bacteria associated with Crohn's disease persist within phagolysosomes. Curr Opin Microbiol 2022; 70:102206. [PMID: 36182819 DOI: 10.1016/j.mib.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023]
Abstract
Crohn's disease (CD) is characterized by an imbalance of intestinal microbiota and a colonization of subepithelial tissues by pathogen and pathobiont bacteria. Adherent invasive Escherichia coli (AIEC) strains recovered from CD lesions survive and multiply within macrophages. Persistence is one of the mechanisms deployed by AIEC to tolerate macrophages' attack. The challenging intracellular environment induces a heterogeneity in AIEC LF82 phenotype, including the presence of nongrowing bacteria. This could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections. In this article, we review the conditions leading to AIEC persistence, the relevance of this state for bacterial survival and disease's etiology, and its implication for therapeutic strategies.
Collapse
Affiliation(s)
- Emma Bruder
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, University PSL, Paris, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, University PSL, Paris, France.
| |
Collapse
|
12
|
Douadi C, Vazeille E, Chambon C, Hébraud M, Fargeas M, Dodel M, Coban D, Pereira B, Birer A, Sauvanet P, Buisson A, Barnich N. Anti-TNF Agents Restrict Adherent-invasive Escherichia coli Replication Within Macrophages Through Modulation of Chitinase 3-like 1 in Patients with Crohn's Disease. J Crohns Colitis 2022; 16:1140-1150. [PMID: 35022663 DOI: 10.1093/ecco-jcc/jjab236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The mechanism of action of anti-tumour necrosis factor [anti-TNF] agents could implicate macrophage modulation in Crohn's disease [CD]. As CD macrophages are defective in controlling CD-associated adherent-invasive Escherichia coli [AIEC], anti-TNF agents could limit AIEC replication within macrophages. We assessed the effect of anti-TNF agents on AIEC survival within monocyte-derived macrophages [MDMs] from CD patients and attempted to identify the proteins involved. METHODS Peripheral blood MDMs were obtained from 44 CD patients [22 with and 22 without anti-TNF agents]. MDMs were infected with reference strain AIEC-LF82. Proteomic analysis was performed before and 6 h after AIEC-LF82 infection. RESULTS AIEC-LF82 survival was lower in MDMs from CD patients receiving anti-TNF agents compared to those who did not [-73%, p = 0.006]. After AIEC-LF82 infection, the levels of CD82 [p = 0.007], ILF3 [Interleukin enhancer-binding factor 3; p = 0.001], FLOT-1 [Flotillin-1; p = 0.007] and CHI3L1 [Chitinase 3-like 1; p = 0.035] proteins were different within CD-MDMs depending on anti-TNF exposure. FLOT-1 [ϱ = -0.44; p = 0.038] and CHI3L1 [ϱ = 0.57, p = 0.006] levels were inversely and positively correlated with AIEC survival within MDMs from CD patients with or without anti-TNF, respectively. We observed a dose-dependent decrease of AIEC-LF82 survival after adjunction of anti-TNF within MDMs, inducing an increase of FLOT-1 and decrease of CHI3L1 mRNA levels. Neutralization of intra-macrophagic CHI3L1 protein using anti-CHI3L1 antibodies reduced AIEC survival within macrophages 6 h after infection [p < 0.05]. CONCLUSION Anti-TNF agents are able to restrict replication of pathobionts, such as AIEC, within macrophages by modulating FLOT-1 and CHI3L1 expression in CD patients.
Collapse
Affiliation(s)
- Clara Douadi
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| | - Emilie Vazeille
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique (PFEMcp), Saint-Genès-Champanelle, France.,Université Clermont Auvergne, INRAE, UMR Microbiologie Environnement digestif Santé (MEDiS), Saint-Genès-Champanelle, France
| | - Margot Fargeas
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| | - Marie Dodel
- Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Dilek Coban
- Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistic Unit, CHU Estaing, Clermont-Ferrand, France
| | - Aurélien Birer
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Centre National de Référence de la Résisitance aux antibiotiques, service de Bactériologie, CHU Gabriel-Montpied, Clermont-Ferrand, France
| | - Pierre Sauvanet
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Surgery and Oncology Digestive Department, CHU Estaing, Clermont-Ferrand, France
| | - Anthony Buisson
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France.,Gastroenterology Department, CHU Estaing, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), UMR 1071 Inserm/Université Clermont Auvergne, USC INRAE 2018, Clermont-Ferrand, France
| |
Collapse
|
13
|
Wang X, Yue H, Zhang H, Wan L, Ji S, Geng C. Preventive Effects of Long-Term Intake of Plant Oils With Different Linoleic Acid/Alpha-Linolenic Acid Ratios on Acute Colitis Mouse Model. Front Nutr 2022; 9:788775. [PMID: 35903457 PMCID: PMC9315388 DOI: 10.3389/fnut.2022.788775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the preventive effects of plant oils with different linoleic acid/alpha-linolenic acid (LA/ALA) ratios against colitis symptoms, and dysbiosis of gut microbiota in acute colitis mouse model.MethodsSixty male C57BL/6 mice were assigned into six groups (n = 10): three groups were fed low-fat diets with low, medium, and high LA/ALA ratios; and three groups were fed with high-fat diets with low, medium, and high LA/ALA ratios. After 3 months of diet, the mice were exposed to dextran sodium sulfate solution to induce acute colitis. The severity of colitis was estimated by disease activity index (DAI) and histopathological examination. 16S rRNA gene sequencing was used for the analysis of gut microbiota.ResultsPlant oils with a lower LA/ALA ratio showed higher alleviating effects on the symptoms of colitis, which were accompanied by the better prebiotic characteristics manifested as effectively inhibiting the abnormal expansion of phylum Proteobacteria and genus Escherichia-Shigella in the gut microbiota of colitis mouse models.ConclusionA potential IBD prevention strategy of reducing the LA/ALA ratio in the daily consumed plant oils was proposed in this study. Furthermore, based on the optimized LA/ALA ratio, this preventive effect might not be weakened by the high intake of plant oils.
Collapse
Affiliation(s)
- Xianshu Wang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Hao Yue
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Haonan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Shandong Academy of Agricultural Science, Jinan, China
| | - Lei Wan
- Department of Endocrine and Metabolic Diseases, Affiliated Hospital of Wei Fang Medical University, Weifang, China
| | - Shuxia Ji
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chong Geng
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chong Geng,
| |
Collapse
|
14
|
Biological Clock and Inflammatory Bowel Disease Review: From the Standpoint of the Intestinal Barrier. Gastroenterol Res Pract 2022; 2022:2939921. [PMID: 35320972 PMCID: PMC8938076 DOI: 10.1155/2022/2939921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Inflammatory bowel disease is a group of chronic, recurrent, nonspecific inflammatory diseases of the intestine that severely affect the quality of life of patients. The pathogenesis of this disease is caused by complex and interactive neural networks composed of factors such as genetic susceptibility, external environment, immune disorders, and intestinal barrier dysfunction. It is well known that there is a strong link between environmental stressors (also known as circadian clocks) that can influence circadian changes and inflammatory bowel disease. Among them, the biological clock is involved in the pathogenesis of inflammatory bowel disease by affecting the function of the intestinal barrier. Therefore, this review is aimed at systematically summarizing the latest research progress on the role of the circadian clock in the pathogenesis of inflammatory bowel disease by affecting intestinal barrier functions (intestinal mechanical barrier, intestinal immune barrier, intestinal microecological barrier, and intestinal chemical barrier) and the potential clinical value of clock genes in the management of inflammatory bowel disease, for the application of circadian clock therapy in the management of inflammatory bowel disease and then the benefit to the majority of patients.
Collapse
|
15
|
Jacobsen GE, Fernández I, Quintero MA, Santander AM, Pignac-Kobinger J, Damas OM, Deshpande AR, Kerman DH, Ban Y, Gao Z, Silva TC, Wang L, Beecham AH, McCauley JL, Burgueño JF, Abreu MT. Lamina Propria Phagocyte Profiling Reveals Targetable Signaling Pathways in Refractory Inflammatory Bowel Disease. GASTRO HEP ADVANCES 2022; 1:380-392. [PMID: 36061955 PMCID: PMC9438737 DOI: 10.1016/j.gastha.2022.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Gillian E. Jacobsen
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Medical Scientist Training Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Irina Fernández
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Maria A. Quintero
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ana M. Santander
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Judith Pignac-Kobinger
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Oriana M. Damas
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Amar R. Deshpande
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - David H. Kerman
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Zhen Gao
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Tiago C. Silva
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
| | - Lily Wang
- Division of Biostatistics, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Ashley H. Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan F. Burgueño
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Maria T. Abreu
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
16
|
Campillo-Gimenez L, Rios-Covian D, Rivera-Nieves J, Kiyono H, Chu H, Ernst PB. Microbial-Driven Immunological Memory and Its Potential Role in Microbiome Editing for the Prevention of Colorectal Cancer. Front Cell Infect Microbiol 2021; 11:752304. [PMID: 34869061 PMCID: PMC8633303 DOI: 10.3389/fcimb.2021.752304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last several years, many advances have been made in understanding the role of bacteria in the pathogenesis of gastrointestinal cancers. Beginning with Helicobacter pylori being recognized as the first bacterial carcinogen and the causative agent of most gastric cancers, more recent studies have examined the role of enteric microbes in colorectal cancer. In the digestive tract, these communities are numerous and have a complex interrelationship with local immune/inflammatory responses that impact the health of the host. As modifying the microbiome in the stomach has decreased the risk of gastric cancer, modifying the distal microbiome may decrease the risk of colorectal cancers. To date, very few studies have considered the notion that mucosal lymphocyte-dependent immune memory may confound attempts to change the microbial components in these communities. The goal of this review is to consider some of the factors impacting host-microbial interactions that affect colorectal cancer and raise questions about how immune memory responses to the local microbial consortium affect any attempt to modify the composition of the intestinal microbiome.
Collapse
Affiliation(s)
- Laure Campillo-Gimenez
- Department of Pathology, University of California San Diego, San Diego, CA, United States
| | - David Rios-Covian
- Department of Pathology, University of California San Diego, San Diego, CA, United States
| | - Jesus Rivera-Nieves
- Department of Medicine, Division of Gastroenterology, University of California San Diego, San Diego, CA, United States
- San Diego Veterans Affairs (VA) Medical Center, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, Division of Gastroenterology, University of California San Diego, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
| | - Peter B. Ernst
- Department of Pathology, University of California San Diego, San Diego, CA, United States
- San Diego Veterans Affairs (VA) Medical Center, San Diego, CA, United States
- CU-UCSD, Center for Mucosal Immunology, Allergy and Vaccine Development, University of California San Diego, San Diego, CA, United States
- Division of Comparative Pathology and Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
17
|
Zhang Y, Liu W, Zhang D, Yang Y, Wang X, Li L. Fermented and Germinated Processing Improved the Protective Effects of Foxtail Millet Whole Grain Against Dextran Sulfate Sodium-Induced Acute Ulcerative Colitis and Gut Microbiota Dysbiosis in C57BL/6 Mice. Front Nutr 2021; 8:694936. [PMID: 34395495 PMCID: PMC8358663 DOI: 10.3389/fnut.2021.694936] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of foxtail millet whole grain flours obtained through different processing methods on alleviating symptoms and gut microbiota dysbiosis in a dextran sulfate sodium (DSS)-induced murine colitis model. Sixty C57BL/6 mice were divided into six groups (n = 10 in each group), including one control group (CTRL) without DSS treatment and five DSS-treated groups receiving one of the following diets: AIN-93M standard diet (93MD), whole grain foxtail millet flour (FM), fermented (F-FM), germinated (G-FM), and fermented-germinated foxtail millet flour (FG-FM). A comparison of the disease activity index (DAI) demonstrated that foxtail millet whole grain-based diets could alleviate the symptoms of enteritis to varying degrees. In addition, 16S rRNA gene sequencing revealed that FG-FM almost completely alleviated DSS-induced dysbiosis. Mice on the FG-FM diet also had the lowest plasma IL-6 levels and claudin2 expression levels in the colon, indicating reduced systemic inflammation and improved gut barrier function. This study suggested that foxtail millet whole grain is an attractive choice for the intervention of IBD and gut microbiota dysbiosis, and its prebiotic properties are highly affected by the processing methods.
Collapse
Affiliation(s)
- Yuhan Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China.,Qilu Hospital, Shandong University, Jinan, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Di Zhang
- Qilu Hospital, Shandong University, Jinan, China
| | - Yanbing Yang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xianshu Wang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
18
|
Li N, Koester ST, Lachance DM, Dutta M, Cui JY, Dey N. Microbiome-encoded bile acid metabolism modulates colonic transit times. iScience 2021; 24:102508. [PMID: 34142026 PMCID: PMC8188381 DOI: 10.1016/j.isci.2021.102508] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/08/2021] [Accepted: 04/18/2021] [Indexed: 12/17/2022] Open
Abstract
Gut motility is regulated by the microbiome via mechanisms that include bile acid metabolism. To localize the effects of microbiome-generated bile acids, we colonized gnotobiotic mice with different synthetic gut bacterial communities that were metabolically phenotyped using a functional in vitro screen. Using two different marker-based assays of gut transit, we inferred that bile acids exert effects on colonic transit. We validated this using an intra-colonic bile acid infusion assay and determined that these effects were dependent upon signaling via the bile acid receptor, TGR5. The intra-colonic bile acid infusion experiments further revealed sex-biased bile acid-specific effects on colonic transit, with lithocholic acid having the largest pro-motility effect. Transcriptional responses of the enteric nervous system (ENS) were stereotypic, regional, and observed in response to different microbiota, their associated bile acid profiles, and even to a single diet ingredient, evidencing exquisite sensitivity of the ENS to environmental perturbations.
Collapse
Affiliation(s)
- Naisi Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean T. Koester
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel M. Lachance
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Services, University of Washington, Seattle, WA, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Services, University of Washington, Seattle, WA, USA
| | - Neelendu Dey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Microbiome Research Initiative, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Ding J, Zhou H, Luo L, Xiao L, Yang K, Yang L, Zheng Y, Xu K, He C, Han C, Luo H, Qin C, Akinyemi FT, Gu C, Zhou Z, Huang Q, Meng H. Heritable Gut Microbiome Associated with Salmonella enterica Serovar Pullorum Infection in Chickens. mSystems 2021; 6:e01192-20. [PMID: 33402350 PMCID: PMC7786134 DOI: 10.1128/msystems.01192-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Pullorum disease is one of the most common diarrhea-related diseases caused by Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (S Pullorum); it negatively affects the poultry industry. However, limited studies have explored the association between the gut microbiota and S Pullorum infection in chickens. In the present study, we performed a microbiome comparison and a microbiome genome-wide association study (mGWAS) to investigate the association among the host genetics, the gut microbiota, and pullorum disease in chickens. We found that S Pullorum infection in chickens could alter the abundance of 39 bacterial genera (P < 0.05). The altered structure and composition of the gut microbiota were also detected in the offspring. mGWAS results revealed host genetic variants to be prominently associated with gut microbial diversity and individual microbes. The pathogens Pelomonas and Brevundimonas, which had a high abundance in positive parent chickens and their offspring, were significantly associated with several genetic mutations in immunity-related genes, such as TGIF1, TTLL12, and CCR7 This finding explained why Pelomonas and Brevundimonas were heritable in S Pullorum-infected chickens. The heritable gut microbes and identified genetic variants could provide references for the selection of resistant chickens and the elimination of pullorum disease.IMPORTANCE The present study investigated the association among the host genome, the gut microbiome, and S Pullorum infection in chickens. The results suggested that the gut microbial structure is altered in S Pullorum-infected chickens. The diversity and abundance of the gut microbiota remarkably differed between the offspring coming from S Pullorum-positive and S Pullorum-negative chickens. Heritable gut microbiota were detected in the offspring. Moreover, host genetic variants were associated with microbial diversity and individual gut microbes. The pathogens Pelomonas and Brevundimonas, which exhibited a high heritability in S Pullorum-positive parents and their offspring, were associated with several genetic mutations in immunity-related genes.
Collapse
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lingxiao Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lu Xiao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Kaixuan Yang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chuan He
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chao Qin
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fisayo T Akinyemi
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Caiju Gu
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Zhenxiang Zhou
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - Qizhong Huang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Science, Shanghai, People's Republic of China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020; 12:E1434. [PMID: 32429195 PMCID: PMC7285036 DOI: 10.3390/nu12051434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.
Collapse
Affiliation(s)
- Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Jiayu Ye
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Hansika Dadlani
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
- Department of Medicine, University of British Columbia, Okanagan campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
21
|
Burgueño JF, Reich A, Hazime H, Quintero MA, Fernandez I, Fritsch J, Santander AM, Brito N, Damas OM, Deshpande A, Kerman DH, Zhang L, Gao Z, Ban Y, Wang L, Pignac-Kobinger J, Abreu MT. Expression of SARS-CoV-2 Entry Molecules ACE2 and TMPRSS2 in the Gut of Patients With IBD. Inflamm Bowel Dis 2020; 26:797-808. [PMID: 32333601 PMCID: PMC7188157 DOI: 10.1093/ibd/izaa085] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) have intestinal inflammation and are treated with immune-modulating medications. In the face of the coronavirus disease-19 pandemic, we do not know whether patients with IBD will be more susceptible to infection or disease. We hypothesized that the viral entry molecules angiotensin I converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are expressed in the intestine. We further hypothesized that their expression could be affected by inflammation or medication usage. METHODS We examined the expression of Ace2 and Tmprss2 by quantitative polymerase chain reacion in animal models of IBD. Publicly available data from organoids and mucosal biopsies from patients with IBD were examined for expression of ACE2 and TMPRSS2. We conducted RNA sequencing for CD11b-enriched cells and peripheral and lamina propria T-cells from well-annotated patient samples. RESULTS ACE2 and TMPRSS2 were abundantly expressed in the ileum and colon and had high expression in intestinal epithelial cells. In animal models, inflammation led to downregulation of epithelial Ace2. Expression of ACE2 and TMPRSS2 was not increased in samples from patients with compared with those of control patients. In CD11b-enriched cells but not T-cells, the level of expression of ACE2 and TMPRSS2 in the mucosa was comparable to other functional mucosal genes and was not affected by inflammation. Anti-tumor necrosis factor drugs, vedolizumab, ustekinumab, and steroids were linked to significantly lower expression of ACE2 in CD11b-enriched cells. CONCLUSIONS The viral entry molecules ACE2 and TMPRSS2 are expressed in the ileum and colon. Patients with IBD do not have higher expression during inflammation; medical therapy is associated with lower levels of ACE2. These data provide reassurance for patients with IBD.
Collapse
Affiliation(s)
- Juan F Burgueño
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrian Reich
- Center for Computational Biology and Bioinformatics, The Scripps Research Institute-Florida, Jupiter, Florida, USA
| | - Hajar Hazime
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria A Quintero
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Irina Fernandez
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julia Fritsch
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ana M Santander
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nivis Brito
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Oriana M Damas
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Amar Deshpande
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - David H Kerman
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lanyu Zhang
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Zhen Gao
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Yuguang Ban
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lily Wang
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Judith Pignac-Kobinger
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Maria T Abreu
- Division of Gastroenterology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
22
|
Kaestner KH. Tracking Dysbiosis Where It Matters. Cell Mol Gastroenterol Hepatol 2019; 9:547-548. [PMID: 31866400 PMCID: PMC7078459 DOI: 10.1016/j.jcmgh.2019.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/10/2022]
Affiliation(s)
- Klaus H. Kaestner
- Correspondence Address correspondence to: Klaus H. Kaestner, PhD, MS, University of Pennsylvania, Perelman School of Medicine, Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Philadelphia, Pennsylvania 19104. fax: (215) 573-5892.
| |
Collapse
|