1
|
Burge KY, Georgescu C, Zhong H, Wilson AP, Gunasekaran A, Yu Z, Franca A, Eckert JV, Wren JD, Chaaban H. Spatial transcriptomics delineates potential differences in intestinal phenotypes of cardiac and classical necrotizing enterocolitis. iScience 2025; 28:112166. [PMID: 40201118 PMCID: PMC11978348 DOI: 10.1016/j.isci.2025.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal gastrointestinal disease, often resulting in multi-organ failure and death. While classical NEC is strictly associated with prematurity, cardiac NEC is a subset of the disease occurring in infants with comorbid congenital heart disease. Despite similar symptomatology, the NEC subtypes vary slightly in presentation and may represent etiologically distinct diseases. We compared ileal spatial transcriptomes of patients with cardiac and classical NEC. Epithelial and immune cells cluster well by cell-type segment and NEC subtype. Differences in metabolism and immune cell activation functionally differentiate the cell-type makeup of the NEC subtypes. The classical NEC phenotype is defined by dysbiosis-induced inflammatory signaling and metabolic acidosis, while that of cardiac NEC involves reduced angiogenesis and endoplasmic reticulum stress-induced apoptosis. Despite subtype-associated clinical and demographic variability, spatial transcriptomics has substantiated pathway and network differences within immune and epithelial segments between cardiac and classical NEC.
Collapse
Affiliation(s)
- Kathryn Y. Burge
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P. Wilson
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Aarthi Gunasekaran
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Addison Franca
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeffrey V. Eckert
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Toikumo S, Davis C, Jinwala Z, Khan Y, Jennings M, Davis L, Sanchez-Roige S, Kember RL, Kranzler HR. Gene discovery and pleiotropic architecture of chronic pain in a genome-wide association study of >1.2 million individuals. RESEARCH SQUARE 2025:rs.3.rs-6173614. [PMID: 40297705 PMCID: PMC12036444 DOI: 10.21203/rs.3.rs-6173614/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Chronic pain is highly prevalent worldwide, and genome-wide association studies (GWAS) have identified a growing number of chronic pain loci. To further elucidate its genetic architecture, we leveraged data from 1,235,695 European ancestry individuals across three biobanks. In a meta-analytic GWAS, we identified 343 independent loci for chronic pain, 92 of which were new. Sex-specific meta-analyses revealed 115 independent loci (12 of which were new) for males (N = 583,066) and 12 loci (two of which were new) for females (N = 241,266). Multi-omics gene prioritization analyses highlighted 490 genes associated with chronic pain through their effects on brain- and blood-specific regulation. Loci associated with increased risk for chronic pain were also associated with increased risk for multiple other traits, with Mendelian randomization analyses showing that chronic pain was causally associated with psychiatric disorders, substance use disorders, and C-reactive protein levels. Chronic pain variants also exhibited pleiotropic associations with cortical area brain structures. This study expands our knowledge of the genetics of chronic pain and its pathogenesis, highlighting the importance of its pleiotropy with multiple disorders and elucidating its multi-omic pathophysiology.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Christal Davis
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Zeal Jinwala
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Yousef Khan
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Mariela Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Lea Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| |
Collapse
|
3
|
Toikumo S, Davis C, Jinwala Z, Khan Y, Jennings M, Davis L, Sanchez-Roige S, Kember RL, Kranzler HR. Gene discovery and pleiotropic architecture of Chronic Pain in a Genome-wide Association Study of >1.2 million Individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.28.25323112. [PMID: 40093235 PMCID: PMC11908286 DOI: 10.1101/2025.02.28.25323112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Chronic pain is highly prevalent worldwide, and genome-wide association studies (GWAS) have identified a growing number of chronic pain loci. To further elucidate its genetic architecture, we leveraged data from 1,235,695 European ancestry individuals across three biobanks. In a meta-analytic GWAS, we identified 343 independent loci for chronic pain, 92 of which were new. Sex-specific meta-analyses revealed 115 independent loci (12 of which were new) for males (N = 583,066) and 12 loci (two of which were new) for females (N = 241,266). Multi-omics gene prioritization analyses highlighted 490 genes associated with chronic pain through their effects on brain- and blood-specific regulation. Loci associated with increased risk for chronic pain were also associated with increased risk for multiple other traits, with Mendelian randomization analyses showing that chronic pain was causally associated with psychiatric disorders, substance use disorders, and C-reactive protein levels. Chronic pain variants also exhibited pleiotropic associations with cortical area brain structures. This study expands our knowledge of the genetics of chronic pain and its pathogenesis, highlighting the importance of its pleiotropy with multiple disorders and elucidating its multi-omic pathophysiology.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Christal Davis
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Zeal Jinwala
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Yousef Khan
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Mariela Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Lea Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA 19104, USA
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Philadelphia, PA 19104
| |
Collapse
|
4
|
Gonzales J, Gulbransen BD. The Physiology of Enteric Glia. Annu Rev Physiol 2025; 87:353-380. [PMID: 39546562 DOI: 10.1146/annurev-physiol-022724-105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Enteric glia are the partners of neurons in the enteric nervous system throughout the gastrointestinal tract. Roles fulfilled by enteric glia are diverse and contribute to maintaining intestinal homeostasis through interactions with neurons, immune cells, and the intestinal epithelium. Glial influences optimize physiological gut processes such as intestinal motility and epithelial barrier integrity through actions that regulate the microenvironment of the enteric nervous system, the activity of enteric neurons, intestinal epithelial functions, and immune response. Changes to glial phenotype in disease switch glial functions and contribute to intestinal inflammation, dysmotility, pain, neuroplasticity, and tumorigenesis. This review summarizes current concepts regarding the physiological roles of enteric glial cells and their potential contributions to gut disease. The discussion is focused on recent evidence that suggests important glial contributions to gastrointestinal health and pathophysiology.
Collapse
Affiliation(s)
- Jacques Gonzales
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
5
|
Kobayashi H, Iida T, Ochiai Y, Malagola E, Zhi X, White RA, Qian J, Wu F, Waterbury QT, Tu R, Zheng B, LaBella JS, Zamechek LB, Ogura A, Woods SL, Worthley DL, Enomoto A, Wang TC. Neuro-Mesenchymal Interaction Mediated by a β2-Adrenergic Nerve Growth Factor Feedforward Loop Promotes Colorectal Cancer Progression. Cancer Discov 2025; 15:202-226. [PMID: 39137067 PMCID: PMC11729495 DOI: 10.1158/2159-8290.cd-24-0287] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
SIGNIFICANCE Our work demonstrates that the bidirectional interplay between sympathetic nerves and NGF-expressing CAFs drives colorectal tumorigenesis. This study also offers novel mechanistic insights into catecholamine action in colorectal cancer. Inhibiting the neuro-mesenchymal interaction by TRK blockade could be a potential strategy for treating colorectal cancer.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Tadashi Iida
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Xiaofei Zhi
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruth A. White
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jin Qian
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Quin T. Waterbury
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Ruhong Tu
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Jonathan S. LaBella
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Leah B. Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
| | - Atsushi Ogura
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Susan L. Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Daniel L. Worthley
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
- Colonoscopy Clinic, Lutwyche, QLD, 4030, Australia
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
- Division of Molecular Pathology, Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Department of Medicine and Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
6
|
Benthal JT, May-Zhang AA, Southard-Smith EM. Meta-atlas of Juvenile and Adult Enteric Neuron scRNA-seq for Dataset Comparisons and Consensus on Transcriptomic Definitions of Enteric Neuron Subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621315. [PMID: 39574584 PMCID: PMC11580969 DOI: 10.1101/2024.10.31.621315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Background The enteric nervous system (ENS) is a complex network of interconnected ganglia within the gastrointestinal (GI) tract. Among its diverse functions, the ENS detects bowel luminal contents and coordinates the passing of stool. ENS defects predispose to GI motility disorders. Previously, distinct enteric neuron types were cataloged by dye-filling techniques, immunohistochemistry, retrograde labeling, and electrophysiology. Recent technical advances in single cell RNA-sequencing (scRNA-seq) have enabled transcriptional profiling of hundreds to millions of individual cells from the intestine. These data allow cell types to be resolved and compared to using their transcriptional profiles ("clusters") rather than relying on antibody labeling. As a result, greater diversity of enteric neuron types has been appreciated. Because each scRNA-seq study has relied on different methods for cell isolation and library generation, numbers of neuron clusters and cell types detected differs between analyses. Cell counts in each dataset are particularly important for characterization of rare cell types since small numbers of profiled cells may not sample rare cell types. Importantly, each dataset, depending on the isolation methods, may contain different proportions of cells that are not detected in other datasets. Aggregation of datasets can effectively increase the total number of cells being analyzed and can be helpful for confirming the presence of low-abundance neuron types that might be absent or observed infrequently in any single dataset. Results Here we briefly systematically review each Mus musculus single cell or single nucleus RNA-sequencing enteric nervous system dataset. We then reprocess and computationally integrate these select independent scRNA-seq enteric neuron datasets with the aim to identify new cell types, shared marker genes across juvenile to adult ages, dataset differences, and achieve some consensus on transcriptomic definitions of enteric neuronal subtypes. Conclusions Data aggregation generates a consensus view of enteric neuron types and improves resolution of rare neuron classes. This meta-atlas offers a deeper understanding of enteric neuron diversity and may prove useful to investigators aiming to define alterations among enteric neurons in disease states. Future studies face the challenge of connecting these deep transcriptional profiles for enteric neurons with historical classification systems.
Collapse
Affiliation(s)
- Joseph T. Benthal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt University PhD Program in Human Genetics, Nashville, TN 37232
| | | | - E. Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
7
|
Avila JA, Benthal JT, Schafer JC, Southard-Smith EM. Single Cell Profiling in the Sox10 Dom/+ Hirschsprung Mouse Implicates Hoxa6 in Enteric Neuron Lineage Allocation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613729. [PMID: 39345473 PMCID: PMC11429920 DOI: 10.1101/2024.09.18.613729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background & Aims Enteric nervous system (ENS) development requires migration, proliferation, and appropriate neuronal diversification from progenitors to enable normal gastrointestinal (GI) motility. Sox10 deficit causes aganglionosis, modeling Hirschsprung disease, and disrupts ratios of postnatal enteric neurons in proximal ganglionated bowel. How Sox10 deficiency alters ratios of enteric neuron subtypes is unclear. Sox10's prominent expression in enteric neural crest-derived progenitors (ENCP) and lack of this gene in enteric neurons led us to examine Sox10 Dom effects ENS progenitors and early differentiating enteric neurons. Methods ENS progenitors, developing neurons, and enteric glia were isolated from Sox10 +/+ and Sox10 Dom/+ littermates for single-cell RNA sequencing (scRNA-seq). scRNA-seq data was processed to identify cell type-specific markers, differentially expressed genes, cell fate trajectories, and gene regulatory network activity between genotypes. Hybridization chain reaction (HCR) validated expression changes detected in scRNA-seq. Results scRNA-seq profiles revealed three neuronal lineages emerging from cycling progenitors via two transition pathways accompanied by elevated activity of Hox gene regulatory networks (GRN) as progenitors transition to neuronal fates. Sox10 Dom/+ scRNA-seq profiles exhibited a novel progenitor cluster, decreased abundance of cells in transitional states, and shifts in cell distributions between two neuronal trajectories. Hoxa6 was differentially expressed in the neuronal lineages impacted in Sox10 Dom/+ mutants and HCR identified altered Hoxa6 expression in early developing neurons of Sox10 Dom/+ ENS. Conclusions Sox10 Dom/+ mutation shifts enteric neuron types by altering neuronal trajectories during early ENS lineage segregation. Multiple neurogenic transcription factors are reduced in Sox10 Dom/+ scRNA-seq profiles including multiple Hox genes. This is the first report that implicates Hox genes in lineage diversification of enteric neurons.
Collapse
|
8
|
Chaverra M, Cheney AM, Scheel A, Miller A, George L, Schultz A, Henningsen K, Kominsky D, Walk H, Kennedy WR, Kaufmann H, Walk S, Copié V, Lefcort F. ELP1, the Gene Mutated in Familial Dysautonomia, Is Required for Normal Enteric Nervous System Development and Maintenance and for Gut Epithelium Homeostasis. J Neurosci 2024; 44:e2253232024. [PMID: 39138000 PMCID: PMC11391678 DOI: 10.1523/jneurosci.2253-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.
Collapse
Affiliation(s)
- Marta Chaverra
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alexandra M Cheney
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Alpha Scheel
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alessa Miller
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University, Billings, Montana 59101
| | - Anastasia Schultz
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Katelyn Henningsen
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Douglas Kominsky
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Heather Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - William R Kennedy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, New York 10016
| | - Seth Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Valérie Copié
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Frances Lefcort
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
9
|
Recinto SJ, Premachandran S, Mukherjee S, Allot A, MacDonald A, Yaqubi M, Gruenheid S, Trudeau LE, Stratton JA. Characterizing enteric neurons in dopamine transporter (DAT)-Cre reporter mice reveals dopaminergic subtypes with dual-transmitter content. Eur J Neurosci 2024; 59:2465-2482. [PMID: 38487941 DOI: 10.1111/ejn.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 05/22/2024]
Abstract
The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.
Collapse
Affiliation(s)
- Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Shobina Premachandran
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Sriparna Mukherjee
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Alexis Allot
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Adam MacDonald
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Samantha Gruenheid
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Pharmacology and Physiology, Department of Neurosciences, Université de Montreal, Faculty of Medicine, SNC and CIRCA Research Groups, Montreal, Quebec, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| |
Collapse
|
10
|
Majd H, Cesiulis A, Samuel RM, Richter MN, Elder N, Guyer RA, Hao MM, Stamp LA, Goldstein AM, Fattahi F. A call for a unified and multimodal definition of cellular identity in the enteric nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575794. [PMID: 38293133 PMCID: PMC10827084 DOI: 10.1101/2024.01.15.575794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The enteric nervous system (ENS) is a tantalizing frontier in neuroscience. With the recent emergence of single cell transcriptomic technologies, this rare and poorly understood tissue has begun to be better characterized in recent years. A precise functional mapping of enteric neuron diversity is critical for understanding ENS biology and enteric neuropathies. Nonetheless, this pursuit has faced considerable technical challenges. By leveraging different methods to compare available primary mouse and human ENS datasets, we underscore the urgent need for careful identity annotation, achieved through the harmonization and advancements of wet lab and computational techniques. We took different approaches including differential gene expression, module scoring, co-expression and correlation analysis, unbiased biological function hierarchical clustering, data integration and label transfer to compare and contrast functional annotations of several independently reported ENS datasets. These analyses highlight substantial discrepancies stemming from an overreliance on transcriptomics data without adequate validation in tissues. To achieve a comprehensive understanding of enteric neuron identity and their functional context, it is imperative to expand tissue sources and incorporate innovative technologies such as multiplexed imaging, electrophysiology, spatial transcriptomics, as well as comprehensive profiling of epigenome, proteome, and metabolome. Harnessing human pluripotent stem cell (hPSC) models provides unique opportunities for delineating lineage trees of the human ENS, and offers unparalleled advantages, including their scalability and compatibility with genetic manipulation and unbiased screens. We encourage a paradigm shift in our comprehension of cellular complexity and function in the ENS by calling for large-scale collaborative efforts and research investments.
Collapse
Affiliation(s)
- Homa Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Andrius Cesiulis
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ryan M Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mikayla N Richter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Richard A Guyer
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Marlene M. Hao
- Department of Anatomy and Physiology, the University of Melbourne, Parkville, VIC, Australia
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, the University of Melbourne, Parkville, VIC, Australia
| | - Allan M Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, California, USA
- Lead contact
| |
Collapse
|
11
|
Che YH, Choi IY, Song CE, Park C, Lim SK, Kim JH, Sung SH, Park JH, Lee S, Kim YJ. Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion. Int J Stem Cells 2023; 16:269-280. [PMID: 37385635 PMCID: PMC10465334 DOI: 10.15283/ijsc23026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 07/01/2023] Open
Abstract
Background and Objectives The colonic epithelial layer is a complex structure consisting of multiple cell types that regulate various aspects of colonic physiology, yet the mechanisms underlying epithelial cell differentiation during development remain unclear. Organoids have emerged as a promising model for investigating organogenesis, but achieving organ-like cell configurations within colonic organoids is challenging. Here, we investigated the biological significance of peripheral neurons in the formation of colonic organoids. Methods and Results Colonic organoids were co-cultured with human embryonic stem cell (hESC)-derived peripheral neurons, resulting in the morphological maturation of columnar epithelial cells, as well as the presence of enterochromaffin cells. Substance P released from immature peripheral neurons played a critical role in the development of colonic epithelial cells. These findings highlight the vital role of inter-organ interactions in organoid development and provide insights into colonic epithelial cell differentiation mechanisms. Conclusions Our results suggest that the peripheral nervous system may have a significant role in the development of colonic epithelial cells, which could have important implications for future studies of organogenesis and disease modeling.
Collapse
Affiliation(s)
- Young Hyun Che
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - In Young Choi
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chan Eui Song
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Chulsoon Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Seung Kwon Lim
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jeong Hee Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Su Haeng Sung
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jae Hoon Park
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sun Lee
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| |
Collapse
|
12
|
Bubeck M, Becker C, Patankar JV. Guardians of the gut: influence of the enteric nervous system on the intestinal epithelial barrier. Front Med (Lausanne) 2023; 10:1228938. [PMID: 37692784 PMCID: PMC10485265 DOI: 10.3389/fmed.2023.1228938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
The intestinal mucosal surface forms one of the largest areas of the body, which is in direct contact with the environment. Co-ordinated sensory functions of immune, epithelial, and neuronal cells ensure the timely detection of noxious queues and potential pathogens and elicit proportional responses to mitigate the threats and maintain homeostasis. Such tuning and maintenance of the epithelial barrier is constantly ongoing during homeostasis and its derangement can become a gateway for systemic consequences. Although efforts in understanding the gatekeeping functions of immune cells have led the way, increasing number of studies point to a crucial role of the enteric nervous system in fine-tuning and maintaining this delicate homeostasis. The identification of immune regulatory functions of enteric neuropeptides and glial-derived factors is still in its infancy, but has already yielded several intriguing insights into their important contribution to the tight control of the mucosal barrier. In this review, we will first introduce the reader to the current understanding of the architecture of the enteric nervous system and the epithelial barrier. Next, we discuss the key discoveries and cellular pathways and mediators that have emerged as links between the enteric nervous, immune, and epithelial systems and how their coordinated actions defend against intestinal infectious and inflammatory diseases. Through this review, the readers will gain a sound understanding of the current neuro-immune-epithelial mechanisms ensuring intestinal barrier integrity and maintenance of intestinal homeostasis.
Collapse
Affiliation(s)
- Marvin Bubeck
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jay V. Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
13
|
Le Berre C, Naveilhan P, Rolli-Derkinderen M. Enteric glia at center stage of inflammatory bowel disease. Neurosci Lett 2023; 809:137315. [PMID: 37257681 DOI: 10.1016/j.neulet.2023.137315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Although our understanding of the pathophysiology of inflammatory bowel disease (IBD) is increasing, the expanding body of knowledge does not simplify the equation but rather reveals diverse, interconnected, and complex mechanisms in IBD. In addition to immune overactivation, defects in intestinal epithelial barrier (IEB) functioning, dysbiosis, and structural and functional abnormalities of the enteric nervous system are emerging as new elements contributing to the development of IBD. In addition to molecular changes in IBD, enteric glia from patients with Crohn's disease (CD) exhibits the inability to strengthen the IEB; these defects are not observed in patients with ulcerative colitis. In addition, there is a growing body of work describing that enteric glia interacts with not only enterocytes and enteric neurons but also other local cellular neighbours. Thus, because of their functions as connectors and regulators of immune cells, IEB, and microbiota, enteric glia could be the keystone of digestive homeostasis that is lacking in patients with CD.
Collapse
Affiliation(s)
- Catherine Le Berre
- Hépato-Gastro-Entérologie et Assistance Nutritionnelle, Inserm CIC 1413, Institut des Maladies de l'Appareil Digestif (IMAD), CHU Nantes, 1 place Alexis Ricordeau, F-44000 Nantes, France; Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Philippe Naveilhan
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France.
| |
Collapse
|
14
|
Bagyánszki M, Bódi N. Key elements determining the intestinal region-specific environment of enteric neurons in type 1 diabetes. World J Gastroenterol 2023; 29:2704-2716. [PMID: 37274063 PMCID: PMC10237112 DOI: 10.3748/wjg.v29.i18.2704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Diabetes, as a metabolic disorder, is accompanied with several gastrointestinal (GI) symptoms, like abdominal pain, gastroparesis, diarrhoea or constipation. Serious and complex enteric nervous system damage is confirmed in the background of these diabetic motility complaints. The anatomical length of the GI tract, as well as genetic, developmental, structural and functional differences between its segments contribute to the distinct, intestinal region-specific effects of hyperglycemia. These observations support and highlight the importance of a regional approach in diabetes-related enteric neuropathy. Intestinal large and microvessels are essential for the blood supply of enteric ganglia. Bidirectional morpho-functional linkage exists between enteric neurons and enteroglia, however, there is also a reciprocal communication between enteric neurons and immune cells on which intestinal microbial composition has crucial influence. From this point of view, it is more appropriate to say that enteric neurons partake in multidirectional communication and interact with these key players of the intestinal wall. These interplays may differ from segment to segment, thus, the microenvironment of enteric neurons could be considered strictly regional. The goal of this review is to summarize the main tissue components and molecular factors, such as enteric glia cells, interstitial cells of Cajal, gut vasculature, intestinal epithelium, gut microbiota, immune cells, enteroendocrine cells, pro-oxidants, antioxidant molecules and extracellular matrix, which create and determine a gut region-dependent neuronal environment in diabetes.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
15
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|