1
|
Yu J, Zhou L, Li G, Chen Z, Mudabbar MS, Li L, Tang X, Jiang M, Zhang G, Liu X. Targeting gut-immune-heart modulate cardiac remodeling after acute myocardial infarction. Life Sci 2025; 371:123606. [PMID: 40189194 DOI: 10.1016/j.lfs.2025.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The gut microbiota interacts with the host to regulate disease and health status. An increasing number of studies have recognized the bidirectional regulation between gut microbiota and immune cells, which plays a significant role in the etiology and prognosis of diseases. Gut microbiota is also a crucial regulatory factor in cardiovascular diseases. After acute myocardial infarction, myocardial and endothelial damage rapidly triggers an inflammatory response, activating the immune system and disrupting the gut microbiota ecology, thereby affecting cardiac remodeling after acute myocardial infarction and potentially leading to heart failure. We have elucidated the regulatory mechanisms of complex intercellular networks in the immune system during cardiac remodeling after acute myocardial infarction. Furthermore, this research examines the roles and mechanisms of gut microbiota, immune cells, and gut metabolites in relation to cardiac remodeling and heart failure after myocardial infarction. Finally, we discuss the potential of targeting gut immune cells as an effective approach to prevent and treat heart failure after acute myocardial infarction in the future, through methods such as dietary regulation, probiotic supplementation, and microbiota transplantation.
Collapse
Affiliation(s)
- Jinmei Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Lin Zhou
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guo Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zaiyi Chen
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Muhammad Saqib Mudabbar
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Le Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xinyi Tang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Mimi Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Guolan Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xing Liu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Lu P, Shen R, Yang J, Wu L, Wang R. Dynamic regulation and targeted interventions of macrophages in ischemia-reperfusion injury. J Adv Res 2025:S2090-1232(25)00298-X. [PMID: 40348125 DOI: 10.1016/j.jare.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Ischemia-Reperfusion Injury (IRI) is a complex pathophysiological process characterized by oxidative stress and inflammatory responses during tissue reperfusion, leading to severe organ dysfunction. Macrophages, as key immune cells, play a pivotal role in the pathogenesis of IRI, exhibiting dynamic functions that influence both tissue damage and repair. Despite extensive research, the precise mechanisms underlying macrophage-mediated IRI remain incompletely understood, necessitating a comprehensive review to explore their multifaceted roles and potential therapeutic targets. AIM OF REVIEW This review aims to elucidate the diverse roles of macrophages in IRI, focusing on their involvement in programmed cell death mechanisms, communication with other immune cells, and regulatory effects on key organs affected by IRI. The review also explores potential therapeutic strategies targeting macrophages to mitigate IRI-induced injury. Key Scientific Concepts of Review: This article reviews the multifaceted roles of macrophages in IRI and explores various modes of macrophage programmed cell death induced by IRI, including gasdermin D-mediated pyroptosis, lipid peroxidation-associated ferroptosis, PARP-1-mediated PAR-dependent cell death, PANoptosis regulated by the PANoptosome, and the formation of macrophage extracellular traps (METs) induced by both reactive oxygen species-dependent and -independent pathways. Additionally, it discusses intercellular communication between macrophages and other immune cells in IRI, focusing on the bidirectional regulatory effects between macrophages and neutrophils, as well as their synergistic role in resolving inflammation. Moreover, the regulatory mechanisms of macrophages in IRI affecting key organs, such as the brain, lung, heart, kidneys and liver, have been systematically summarized. Finally, innovative therapeutic strategies targeting macrophages, including precise approaches such as regulating cell polarization, inhibiting excessive METs formation, and utilizing nano-drug delivery systems, are thoroughly analyzed. This review provides a significant theoretical foundation for clinical translational research on IRI.
Collapse
Affiliation(s)
- Ping Lu
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China
| | - Ruotong Shen
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China
| | - Jingjing Yang
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China
| | - Longlong Wu
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China.
| | - Rong Wang
- The Gastroenterology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan 030012, China.
| |
Collapse
|
3
|
Liu Z, Xu J, Que T, Que S, Valenti L, Zheng S. Molecular Mechanisms of Ischemia/Reperfusion Injury and Graft Dysfunction in Liver Transplantation: Insights from Multi-Omics Studies in Rodent Animal Models. Int J Biol Sci 2025; 21:2135-2154. [PMID: 40083684 PMCID: PMC11900806 DOI: 10.7150/ijbs.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
Rodent ischemia-reperfusion injury (IRI) and liver transplantation (LT) models play crucial roles in mimicking graft injury and immune rejection, developing therapeutic approaches, and evaluating the efficacy of treatments. The application of integrated multi-omics data and advanced omics techniques like single-cell RNA sequencing in rodent models has expanded researchers' perspectives on pathophysiological processes in LT settings. This review summarizes key molecules and pathways associated with reperfusion injury and prognosis in LT models, highlighting the potential of omics data in understanding and improving transplant outcomes. In addition, we highlight the current challenges and future approaches for the application of omics data in rodent LT models. Cross-species validation with human data will improve therapeutic potential. Finally, further applications combining advanced single-cell, spatial omics technologies and machine learning algorithms will help to identify the key regulatory networks in specific cell populations underlying poor outcomes after LT.
Collapse
Affiliation(s)
- Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan Hospital (Hangzhou), Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Que
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Precision Medicine, Biological Resource Center Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Shusen Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan Hospital (Hangzhou), Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Zhu Z, Zuo S, Zhu Z, Wang C, Du Y, Chen F. THSWD upregulates the LTF/AMPK/mTOR/Becn1 axis and promotes lysosomal autophagy in hepatocellular carcinoma cells by regulating gut flora and metabolic reprogramming. Int Immunopharmacol 2025; 148:114091. [PMID: 39826450 DOI: 10.1016/j.intimp.2025.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
THSWD has the effect of reducing inflammation, improving microcirculation, and regulating immune status in patients with hepatocellular carcinoma. Regardless of its clear therapeutic effect, the underlying mechanism of action against hepatocellular carcinoma is not clear. To identify critical gut microbiota and its associated metabolites related to THSWD inhibition against hepatocellular carcinoma progression, we assessed the microbe-dependent anti-hepatocellular carcinoma effects of THSWD through 16 s rRNA gene sequencing, fecal microbial transplantation and antibiotic treatment. Metabolic analyses, transcriptomic analyses, and molecular experiments were performed to explore how THSWD modulates the gut microbiota against hepatocellular carcinoma progression. As confirmed by in vivo and in vitro assays, THSWD reduced tumour growth rate and promoted apoptosis in hepatocellular carcinoma cells in hepatocellular carcinoma model mice, and liver and kidney indexes were detected and confirmed the safety of THSWD. Transcriptomic analysis revealed that the targets of THSWD were significantly enriched in multiple lysosomal autophagy signalling pathways, suggesting that lysosomal autophagy is probably associated with THSWD's therapeutic effect. Based on the integrated data analysis, THSWD delays hepatocellular carcinoma progression by increasing the intestinal microbiota Duncaniella and augmenting the metabolite glabrol, and the joint analysis of metabolic and genomic data suggests that this metabolite is associated with lysosomal autophagy, and cellular experiments confirmed that the The differential metabolite glabrol induces apoptosis in hepatocellular carcinoma cells by triggering the lysosomal autophagy-mediated apoptosis signalling pathway. Supplementation with glabrol metabolites up regulates the LTF/AMPK/mTOR/Beclin1 axis and promotes hepatocellular carcinoma cells with lysosomal autophagy and induced apoptosis in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Shiqi Zuo
- Department of Pathology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Chen Wang
- Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yangfeng Du
- Changde Hospital, Xiangya School of Medicine, Central South University, 415000 Changde, China.
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
5
|
Pan J, Lin Y, Liu X, Zhang X, Liang T, Bai X. Harnessing amino acid pathways to influence myeloid cell function in tumor immunity. Mol Med 2025; 31:44. [PMID: 39905317 PMCID: PMC11796060 DOI: 10.1186/s10020-025-01099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Amino acids are pivotal regulators of immune cell metabolism, signaling pathways, and gene expression. In myeloid cells, these processes underlie their functional plasticity, enabling shifts between pro-inflammatory, anti-inflammatory, pro-tumor, and anti-tumor activities. Within the tumor microenvironment, amino acid metabolism plays a crucial role in mediating the immunosuppressive functions of myeloid cells, contributing to tumor progression. This review delves into the mechanisms by which specific amino acids-glutamine, serine, arginine, and tryptophan-regulate myeloid cell function and polarization. Furthermore, we explore the therapeutic potential of targeting amino acid metabolism to enhance anti-tumor immunity, offering insights into novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Jiongli Pan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Lin
- Health Science Center, Ningbo University, Ningbo, China
| | - Xinyuan Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Zhao Y, Zhao S, Liu S, Ye W, Chen WD. Kupffer cells, the limelight in the liver regeneration. Int Immunopharmacol 2025; 146:113808. [PMID: 39673997 DOI: 10.1016/j.intimp.2024.113808] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Kupffer cells are pivotal in initiating hepatocyte proliferation and establishing connections between different cell types during liver regeneration following partial hepatectomy. As resident macrophages within the liver, Kupffer cells collaborate with hepatocytes and non-parenchymal cells to release various inflammatory mediators that promote hepatocyte proliferation through induction signals like STAT3 phosphorylation. Additionally, the regeneration and replenishment of Kupffer cells themselves are integral components of liver regeneration. The supplementation of the Kupffer cell pool primarily occurs through two pathways: one involves local proliferation of Kupffer cells in their original location, while the other entails infiltration of circulating monocytes into the liver, followed by acquiring Kupffer cell phenotypes under the combined influence of multiple inducing factors. Extensive research has focused on intercellular crosstalk among various types of liver cells during liver regeneration, highlighting the crucial role played by Kupffer cells. This article aims to introduce Kupffer cells and their involvement in liver regeneration, as well as discuss the steady-state balance of Kupffer cell pools during this process.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shiwei Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China; Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
7
|
Liu Y, Hu P, Cheng H, Xu F, Ye Y. The impact of glycolysis on ischemic stroke: from molecular mechanisms to clinical applications. Front Neurol 2025; 16:1514394. [PMID: 39926015 PMCID: PMC11802445 DOI: 10.3389/fneur.2025.1514394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025] Open
Abstract
Ischemic stroke (IS), a leading cause of disability and mortality worldwide, remains a significant challenge due to its complex pathogenesis. Glycolysis, a central metabolic pathway, plays a critical role in bridging the gap between metabolic dysfunction and neurological impairment. During ischemic conditions, glycolysis replaces oxidative phosphorylation as the primary energy source for brain tissue. However, in the ischemia-reperfusion state, neuronal cells show a particular reliance on aerobic glycolysis. Immune cells, such as monocytes, also contribute to atheromatous plaque formation and thrombi through increased aerobic glycolysis. Given glycolysis's involvement in various pathological stages of IS, it offers the potential for improved diagnosis, treatment, and prevention. This review comprehensively explores the role of glycolysis in different phases of IS, addresses existing controversies, and discusses its diagnostic and therapeutic applications. By elucidating the intricate relationship between glycolysis and IS, this review aims to provide novel insights for future research and clinical advancements.
Collapse
Affiliation(s)
- Yingquan Liu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Peijia Hu
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hongliang Cheng
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Fangyuan Xu
- The First Clinical College of Anhui University of Chinese Medicine, Hefei, China
| | - Yu Ye
- Graduate School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
8
|
Yang Z, Wu L, Hou P, Zhang X, Jiang P, Li M. Prognosis Analysis of Rat Liver Transplantation Under Direct Vision of Single Operator. Transplant Proc 2024; 56:1904-1912. [PMID: 39242317 DOI: 10.1016/j.transproceed.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE This study aims to investigate the impact of surgical experimental variables on the prognosis of orthotopic liver transplantation (OLT) in rats, with the goal of enhancing the efficacy of modeling techniques. METHODS Using Kamada's "two-cuff method" of rat orthotopic liver transplantation, 76 pairs of SD-Wistar rats were performed orthotopic liver transplantation from March to September 2023. Thirteen experimental factors during the perioperative period and the survival time of recipient rats were collected and recorded. To explore the surgical factors affecting the prognosis of rat liver transplantation and summarize the surgical techniques. RESULTS The success rate of orthotopic liver transplantation in SD-Wistar rats was 68.4%, with 24 recipients surviving within 3-7 days and 28 recipients surviving more than 1 week. Donor liver perfusion, recipient blood loss, recipient liver blood expulsion, anhepatic phase, suprahepatic inferior vena cava anastomosis time and anesthesia recovery time are related to the survival of recipient rats after liver transplantation. Donor liver perfusion, eliminating blood in recipient liver and intraoperative blood loss of recipient are surgical factors affecting the prognosis of liver transplantation in rats. The survival time of recipient rats with liver perfusion through abdominal aorta, eliminating blood in recipient liver was relatively prolonged after operation. CONCLUSION Under the condition of reasonable control of the anhepatic phase, the perfusion method of the donor liver, whether to eliminate blood in recipient liver, and intraoperative blood loss of recipient are important surgical factors affecting the prognosis of liver transplantation in rats.
Collapse
Affiliation(s)
- Zhiqi Yang
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China; Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Lang Wu
- Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Peibo Hou
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Xining Zhang
- Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Peng Jiang
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Minghao Li
- Third Clinical Medical College of Ningxia Medical University, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China; Hepatobiliary Surgery Department of Ningxia Hui Autonomous Region People's Hospital, Yin Chuan, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
9
|
Pi Y, Zuo H, Wang Y, Zheng W, Zhou H, Deng L, Song H. Oleanolic acid alleviating ischemia-reperfusion injury in rat severe steatotic liver via KEAP1/NRF2/ARE. Int Immunopharmacol 2024; 138:112617. [PMID: 38972213 DOI: 10.1016/j.intimp.2024.112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Severe steatosis in donor livers is contraindicated for transplantation due to the high risk of ischemia-reperfusion injury (IRI). Although Ho-1 gene-modified bone marrow mesenchymal stem cells (HO-1/BMMSCs) can mitigate IRI, the role of gut microbiota and metabolites in this protection remains unclear. This study aimed to explore how gut microbiota and metabolites contribute to HO-1/BMMSCs-mediated protection against IRI in severe steatotic livers. Using rat models and cellular models (IAR20 and THLE-2 cells) of steatotic liver IRI, this study revealed that ischemia-reperfusion led to significant liver and intestinal damage, heightened immune responses, impaired liver function, and altered gut microbiota and metabolite profiles in rats with severe steatosis, which were partially reversed by HO-1/BMMSCs transplantation. Integrated microbiome and metabolome analyses identified gut microbial metabolite oleanolic acid as a potential protective agent against IRI. Experimental validation showed that oleanolic acid administration alone alleviated IRI and inhibited ferroptosis in both rat and cellular models. Network pharmacology and molecular docking implicated KEAP1/NRF2 pathway as a potential target of oleanolic acid. Indeed, OA experimentally upregulated NRF2 activity, which underlies its inhibition of ferroptosis and protection against IRI. The gut microbial metabolite OA protects against IRI in severe steatotic liver by promoting NRF2 expression and activity, thereby inhibiting ferroptosis.
Collapse
Affiliation(s)
- Yilin Pi
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Huaiwen Zuo
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Yuxin Wang
- School of Medicine, Nankai University, Tianjin 300071, PR China.
| | - Weiping Zheng
- Department of Liver Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; NHC Key Laboratory of Critical Care Medicine, Tianjin 300192, PR China.
| | - Huiyuan Zhou
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Lamei Deng
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, PR China.
| | - Hongli Song
- Department of Liver Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, PR China; Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, PR China.
| |
Collapse
|
10
|
Li D, Gao S. The interplay between T lymphocytes and macrophages in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2024; 479:1925-1936. [PMID: 37540399 DOI: 10.1007/s11010-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Acute myocardial infarction is one of the most important causes of death in the world, causing a huge health and economic burden to the world. It is still a ticklish problem how to effectively prevent reperfusion injury while recovering the blood flow of ischemic myocardium. During the process of myocardial ischemia/reperfusion injury (MI/RI), the modulation of immune cells plays an important role. Monocyte/macrophage, neutrophils and endothelial cells initiate the inflammatory response and induce the release of various inflammatory cytokines, resulting in increased vascular permeability, tissue edema and damage. Meanwhile, T cells were recruited to impaired myocardium and release pro-inflammatory and anti-inflammatory cytokines. T cells and macrophages play important roles in keeping cardiac homeostasis and orchestrate tissue repair. T cells differentiation and macrophages polarization precisely regulates the tissue microenvironment in MI/RI, and shows cross action, but the mechanism is unclear. To identify potential intervention targets and propose ideas for treatment and prevention of MI/RI, this review explores the crosstalk between T lymphocytes and macrophages in MI/RI.
Collapse
Affiliation(s)
- Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
11
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
12
|
Xu J, Xu H, Guo X, Zhao H, Wang J, Li J, He J, Huang H, Huang C, Zhao C, Li Y, Zhou Y, Peng Y, Nie Y. Pretreatment with an antibiotics cocktail enhances the protective effect of probiotics by regulating SCFA metabolism and Th1/Th2/Th17 cell immune responses. BMC Microbiol 2024; 24:91. [PMID: 38500062 PMCID: PMC10946100 DOI: 10.1186/s12866-024-03251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Probiotics are a potentially effective therapy for inflammatory bowel disease (IBD); IBD is linked to impaired gut microbiota and intestinal immunity. However, the utilization of an antibiotic cocktail (Abx) prior to the probiotic intervention remains controversial. This study aims to identify the effect of Abx pretreatment from dextran sulfate sodium (DSS)-induced colitis and to evaluate whether Abx pretreatment has an enhanced effect on the protection of Clostridium butyricum Miyairi588 (CBM) from colitis. RESULTS The inflammation, dysbiosis, and dysfunction of gut microbiota as well as T cell response were both enhanced by Abx pretreatment. Additionally, CBM significantly alleviated the DSS-induced colitis and impaired gut epithelial barrier, and Abx pretreatment could enhance these protective effects. Furthermore, CBM increased the benefit bacteria abundance and short-chain fatty acids (SCFAs) level with Abx pretreatment. CBM intervention after Abx pretreatment regulated the imbalance of cytokines and transcription factors, which corresponded to lower infiltration of Th1 and Th17 cells, and increased Th2 cells. CONCLUSIONS Abx pretreatment reinforced the function of CBM in ameliorating inflammation and barrier damage by increasing beneficial taxa, eliminating pathogens, and inducing a protective Th2 cell response. This study reveals a link between Abx pretreatment, microbiota, and immune response changes in colitis, which provides a reference for the further application of Abx pretreatment before microbiota-based intervention.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianhong Li
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jie He
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Zhang L, Gong X, Tan J, Zhang R, Li M, Liu C, Wu C, Li X. Lactobacillus reuteri mitigates hepatic ischemia/reperfusion injury by modulating gut microbiota and metabolism through the Nrf2/HO-1 signaling. Biol Direct 2024; 19:23. [PMID: 38500127 PMCID: PMC10946149 DOI: 10.1186/s13062-024-00462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND This study seeks to investigate the impacts of Lactobacillus reuteri (L. reuteri) on hepatic ischemia-reperfusion (I/R) injury and uncover the mechanisms involved. METHODS Mice in the I/R groups were orally administered low and high doses of L.reuteri (L.reuteri-low and L. reuteri-hi; 1 × 1010 CFU/d and 1 × 1011 CFU/d), for 4 weeks prior to surgery. Following this, mice in the model group were treated with an Nrf2 inhibitor (ML-385), palmitoylcarnitine, or a combination of both. RESULTS After treatment with L. reuteri, mice exhibited reduced levels of serum aminotransferase (ALT), aspartate aminotransferase (AST), and myeloperoxidase (MPO) activity, as well as a lower Suzuki score and apoptosis rate. L. reuteri effectively reversed the I/R-induced decrease in Bcl2 expression, and the significant increases in the levels of Bax, cleaved-Caspase3, p-p65/p65, p-IκB/IκB, p-p38/p38, p-JNK/JNK, and p-ERK/ERK. Furthermore, the administration of L. reuteri markedly reduced the inflammatory response and oxidative stress triggered by I/R. This treatment also facilitated the activation of the Nrf2/HO-1 pathway. L. reuteri effectively counteracted the decrease in levels of beneficial gut microbiota species (such as Blautia, Lachnospiraceae NK4A136, and Muribaculum) and metabolites (including palmitoylcarnitine) induced by I/R. Likewise, the introduction of exogenous palmitoylcarnitine demonstrated a beneficial impact in mitigating hepatic injury induced by I/R. However, when ML-385 was administered prior to palmitoylcarnitine treatment, the previously observed effects were reversed. CONCLUSION L. reuteri exerts protective effects against I/R-induced hepatic injury, and its mechanism may be related to the promotion of probiotic enrichment, differential metabolite homeostasis, and the Nrf2/HO-1 pathway, laying the foundation for future clinical applications.
Collapse
Affiliation(s)
- Leiyi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaoxiang Gong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Juan Tan
- Research Associate Department of Pathology, The Xiangya Third Hospital, Central South University, 410013, Changsha, China
| | - Rongsen Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Mingxia Li
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, 430061, Wuhan, China
| | - Cong Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Chenhao Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China
| | - Xiaojing Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, No. 139 Renmin Middle Road, Furong District, 410011, Changsha, China.
| |
Collapse
|
14
|
Yang Y, Eguchi A, Wan X, Mori C, Hashimoto K. Depression-like phenotypes in mice with hepatic ischemia/reperfusion injury: A role of gut-microbiota-liver-brain axis via vagus nerve. J Affect Disord 2024; 345:157-167. [PMID: 37879416 DOI: 10.1016/j.jad.2023.10.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Depression is a frequent symptom in patients with chronic liver disease; however, the mechanisms underlying this association remain unclear. Dysbiosis of gut microbiota plays a critical role in depression through the gut-brain axis via the vagus nerve. In this study, we investigated whether the gut-microbiota-liver-brain axis plays a role in depression-like phenotypes in mice with hepatic ischemia/reperfusion (HI/R) injury via the vagus nerve. Behavioral tests for depression-like behaviors were performed 7 days after sham or HI/R injury surgery. Mice with HI/R injury exhibited splenomegaly, systemic inflammation, depression-like behaviors, reduced expression of synaptic proteins in the prefrontal cortex (PFC), abnormal composition of gut microbiota, and altered blood metabolites and lipids. Furthermore, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Moreover, subdiaphragmatic vagotomy significantly blocked these changes in mice with HI/R injury. Notably, depression-like phenotypes in mice with HI/R injury were ameliorated after subsequent single injection of the new antidepressant arketamine. The current findings suggest that HI/R injury induces depression-like phenotypes in mice through the gut-microbiota-liver-brain axis via the subdiaphragmatic vagus nerve. Furthermore, arketamine may have therapeutic potential in the treatment of depression in patients with chronic liver disease.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
15
|
Heo MJ, Suh JH, Poulsen KL, Ju C, Kim KH. Updates on the Immune Cell Basis of Hepatic Ischemia-Reperfusion Injury. Mol Cells 2023; 46:527-534. [PMID: 37691258 PMCID: PMC10495686 DOI: 10.14348/molcells.2023.0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) is the main cause of organ dysfunction and failure after liver surgeries including organ transplantation. The mechanism of liver IRI is complex and numerous signals are involved but cellular metabolic disturbances, oxidative stress, and inflammation are considered the major contributors to liver IRI. In addition, the activation of inflammatory signals exacerbates liver IRI by recruiting macrophages, dendritic cells, and neutrophils, and activating NK cells, NKT cells, and cytotoxic T cells. Technological advances enable us to understand the role of specific immune cells during liver IRI. Accordingly, therapeutic strategies to prevent or treat liver IRI have been proposed but no definitive and effective therapies exist yet. This review summarizes the current update on the immune cell functions and discusses therapeutic potentials in liver IRI. A better understanding of this complex and highly dynamic process may allow for the development of innovative therapeutic approaches and optimize patient outcomes.
Collapse
Affiliation(s)
- Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kyle L. Poulsen
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Cynthia Ju
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
16
|
Zhang Q, Zhou SN, Fu JM, Chen LJ, Fang YX, Xu ZY, Xu HK, Yuan Y, Huang YQ, Zhang N, Li YF, Xiang C. Interferon-γ priming enhances the therapeutic effects of menstrual blood-derived stromal cells in a mouse liver ischemia-reperfusion model. World J Stem Cells 2023; 15:876-896. [PMID: 37900937 PMCID: PMC10600742 DOI: 10.4252/wjsc.v15.i9.876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been used in liver transplantation and have certain effects in alleviating liver ischemia-reperfusion injury (IRI) and regulating immune rejection. However, some studies have indicated that the effects of MSCs are not very significant. Therefore, approaches that enable MSCs to exert significant and stable therapeutic effects are worth further study. AIM To enhance the therapeutic potential of human menstrual blood-derived stromal cells (MenSCs) in the mouse liver ischemia-reperfusion (I/R) model via interferon-γ (IFN-γ) priming. METHODS Apoptosis was analyzed by flow cytometry to evaluate the safety of IFN-γ priming, and indoleamine 2,3-dioxygenase (IDO) levels were measured by quantitative real-time reverse transcription polymerase chain reaction, western blotting, and ELISA to evaluate the efficacy of IFN-γ priming. In vivo, the liver I/R model was established in male C57/BL mice, hematoxylin and eosin and TUNEL staining was performed and serum liver enzyme levels were measured to assess the degree of liver injury, and regulatory T cell (Treg) numbers in spleens were determined by flow cytometry to assess immune tolerance potential. Metabolomics analysis was conducted to elucidate the potential mechanism underlying the regulatory effects of primed MenSCs. In vitro, we established a hypoxia/reoxygenation (H/R) model and analyzed apoptosis by flow cytometry to investigate the mechanism through which primed MenSCs inhibit apoptosis. Transmission electron microscopy, western blotting, and immunofluorescence were used to analyze autophagy levels. RESULTS IFN-γ-primed MenSCs secreted higher levels of IDO, attenuated liver injury, and increased Treg numbers in the mouse spleens to greater degrees than untreated MenSCs. Metabolomics and autophagy analyses proved that primed MenSCs more strongly induced autophagy in the mouse livers. In the H/R model, autophagy inhibitors increased the level of H/R-induced apoptosis, indicating that autophagy exerted protective effects. In addition, primed MenSCs decreased the level of H/R-induced apoptosis via IDO and autophagy. Further rescue experiments proved that IDO enhanced the protective autophagy by inhibiting the mammalian target of rapamycin (mTOR) pathway and activating the AMPK pathway. CONCLUSION IFN-γ-primed MenSCs exerted better therapeutic effects in the liver I/R model by secreting higher IDO levels. MenSCs and IDO activated the AMPK-mTOR-autophagy axis to reduce IRI, and IDO increased Treg numbers in the spleen and enhanced the MenSC-mediated induction of immune tolerance. Our study suggests that IFN-γ-primed MenSCs may be a novel and superior MSC product for liver transplantation in the future.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Si-Ning Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Jia-Min Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Li-Jun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yang-Xin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Zhen-Yu Xu
- Innovative Precision Medicine Group, Shulan Hospital, Hangzhou 311215, Zhejiang Province, China
| | - Hui-Kang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yu-Qi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Fei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, Zhejiang Province, China
| | - Charlie Xiang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
17
|
Li L, Cheng SQ, Sun YQ, Yu JB, Huang XX, Dong YF, Ji J, Zhang XY, Hu G, Sun XL. Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize neutrophils after ischemic stroke. Cell Rep 2023; 42:112617. [PMID: 37285269 DOI: 10.1016/j.celrep.2023.112617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Neutrophil aggregation and clearance are important factors affecting neuroinflammatory injury during acute ischemic stroke. Emerging evidence suggests that energy metabolism is essential for microglial functions, especially microglial phagocytosis, which determines the degree of brain injury. Here, we demonstrate that Resolvin D1 (RvD1), a lipid mediator derived from docosahexaenic acid (DHA), promotes the phagocytosis of neutrophils by microglia, thereby reducing neutrophil accumulation in the brain and alleviating neuroinflammation in the ischemic brain. Further studies reveal that RvD1 reprograms energy metabolism from glycolysis to oxidative phosphorylation (OXPHOS), providing sufficient energy for microglial phagocytosis. Moreover, RvD1 enhances microglial glutamine uptake and stimulates glutaminolysis to support OXPHOS to boost ATP production depending on adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Overall, our results reveal that RvD1 reprograms energy metabolism to promote the microglial phagocytosis of neutrophils after ischemic stroke. These findings may guide perspectives for stroke therapy from modulating microglial immunometabolism.
Collapse
Affiliation(s)
- Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|