1
|
Volitaki C, Lewis A, Craig DQM, Buanz A. Electrospraying as a Means of Loading Itraconazole into Mesoporous Silica for Enhanced Dissolution. Pharmaceutics 2024; 16:1102. [PMID: 39204447 PMCID: PMC11359385 DOI: 10.3390/pharmaceutics16081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Mesoporous silica particles (MSPs) have been investigated as potential carriers to increase the apparent solubility and dissolution rate of poorly water-soluble drugs by physically stabilising the amorphous nature of the loaded drug. In preparing such systems, it is recognized that the loading method has a critical impact on the physical state and performance of the drug. To date, there has been very limited investigation into the use of electrospraying for loading drugs into mesoporous silica. In this study, we further explore the use of this approach, in particular as a means of producing amorphous and high drug-loaded MSPs; the study includes an investigation of the effect of drug loading and MSP concentration on the formulation performance and process. A comparison with rotary evaporation, a more widely utilised loading technique, was conducted to assess the relative effectiveness of electrospraying. The physical state of the drug in the formulations was assessed using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). The drug release profiles were determined by a comparative in vitro drug release test. Electrospraying successfully produced formulations containing amorphous drug even at a high drug loading. In contrast, while itraconazole was present in amorphous form at the lower drug-loaded formulations produced by rotary evaporation, the drug was in the crystalline state at the higher loadings. The percentage of drug released was enhanced up to ten times compared to that of pure itraconazole for all the formulations apart from the highest loaded (crystalline) formulation prepared by rotary evaporation. Supersaturation for at least six hours was maintained by the formulations loaded with up to 30 mg/mL itraconazole produced by electrospraying. Overall, the results of this study demonstrate that electrospraying is capable of producing amorphous drug-loaded MSPs at high loadings, with associated favourable release characteristics. A comparison with the standard rotary evaporation approach indicates that electrospraying may be more effective for the production of higher loadings of amorphous material.
Collapse
Affiliation(s)
- Charitini Volitaki
- School of Pharmacy, Faculty of Life Sciences, UCL, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Andrew Lewis
- Quotient Sciences, Mere Way, Ruddington, Nottingham NG11 6JS, UK
| | - Duncan Q. M. Craig
- Faculty of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Asma Buanz
- School of Pharmacy, Faculty of Life Sciences, UCL, 29-39 Brunswick Square, London WC1N 1AX, UK
- School of Science, Faculty of Engineering and Science, University of Greenwich, Gillingham ME4 4TB, UK
| |
Collapse
|
2
|
Collados CC, Huber C, Söllner J, Grass JP, Inayat A, Durdyyev R, Smith AS, Wisser D, Hartmann M, Thommes M. Assessment of Hydrophilicity/Hydrophobicity in Mesoporous Silica by Combining Adsorption, Liquid Intrusion, and Solid-State NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12853-12867. [PMID: 38861921 DOI: 10.1021/acs.langmuir.3c03516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
We have developed a comprehensive strategy for quantitatively assessing the hydrophilicity/hydrophobicity of nanoporous materials by combining advanced adsorption studies, novel liquid intrusion techniques, and solid-state NMR spectroscopy. For this, we have chosen a well-defined system of model materials, i.e., the highly ordered mesoporous silica molecular sieve SBA-15 in its pristine state and functionalized with different amounts of trimethylsilyl (TMS) groups, allowing one to accurately tailor the surface chemistry while maintaining the well-defined pore structure. For an absolute quantification of the trimethylsilyl group density, quantitative 1H solid-state NMR spectroscopy under magic angle spinning was employed. A full textural characterization of the materials was obtained by high-resolution argon 87 K adsorption, coupled with the application of dedicated methods based on nonlocal-density functional theory (NLDFT). Based on the known texture of the model materials, we developed a novel methodology allowing one to determine the effective contact angle of water adsorbed on the pore surfaces from complete wetting to nonwetting, constituting a powerful parameter for the characterization of the surface chemistry inside porous materials. The surface chemistry was found to vary from hydrophilic to hydrophobic as the TMS functionalization content was increased. For wetting and partially wetting surfaces, pore condensation of water is observed at pressures P smaller than the bulk saturation pressure p0 (i.e., at p/p0 < 1) and the effective contact angle of water on the pore walls could be derived from the water sorption isotherms. However, for nonwetting surfaces, pore condensation occurs at pressures above the saturation pressure (i.e., at p/p0 > 1). In this case, we investigated the pore filling of water (i.e., the vapor-liquid phase transition) by the application of a novel, liquid water intrusion/extrusion methodology, allowing one to derive the effective contact angle of water on the pore walls even in the case of nonwetting. Complementary molecular simulations provide density profiles of water on pristine and TMS-grafted silica surfaces (mimicking the tailored, functionalized experimental silica surfaces), which allow for a molecular view on the water adsorbate structure. Summarizing, we present a comprehensive and reliable methodology for quantitatively assessing the hydrophilicity/hydrophobicity of siliceous nanoporous materials, which has the potential to optimize applications in heterogeneous catalysis and separation (e.g., chromatography).
Collapse
Affiliation(s)
- Carlos Cuadrado Collados
- Institution of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Christoph Huber
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Jakob Söllner
- Institution of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Jan-Paul Grass
- Institute of Chemical Reaction Engineering (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Alexandra Inayat
- Institute of Chemical Reaction Engineering (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Rustam Durdyyev
- PULS Group, Institute for Theoretical Physics, Centre for Computational Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 4, Erlangen 91058, Germany
| | - Ana-Suncana Smith
- PULS Group, Institute for Theoretical Physics, Centre for Computational Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstraße 4, Erlangen 91058, Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| | - Matthias Thommes
- Institution of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, Erlangen 91058, Germany
| |
Collapse
|
3
|
Ogadah CU, Mrštná K, Matysová L, Müllertz A, Rades T, Niederquell A, Šklubalová Z, Vraníková B. Comparison of the liquisolid technique and co-milling for loading of a poorly soluble drug in inorganic porous excipients. Int J Pharm 2024; 650:123702. [PMID: 38086492 DOI: 10.1016/j.ijpharm.2023.123702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/18/2023]
Abstract
Drug loading into mesoporous carriers may help to improve the dissolution of poorly aqueous-soluble drugs. However, both preparation method and carrier properties influence loading efficiency and drug release. Accordingly, this study aimed to compare two preparation methods: formulation into liquisolid systems (LSS) and co-milling for their efficiency in loading the poorly soluble model drug cyclosporine A (CyA) into mesoporous magnesium aluminometasilicate Neusilin® US2 (NEU) or functionalized calcium carbonate (FCC). Scanning electron microscopy was used to visualize the morphology of the samples and evaluate the changes that occurred during the drug loading process. The solid-state characteristics and physical stability of the formulations, prepared at different drug concentrations, were determined using X-ray powder diffraction. In vitro release of the drug was evaluated in biorelevant media simulating intestinal fluid. The obtained results revealed improved drug release profiles of the formulations when compared to the milled (amorphous) CyA alone. The dissolution of CyA from LSS was faster in comparison to the co-milled formulations. Higher drug release was achieved from NEU than FCC formulations presumably due to the higher pore volume and larger surface area of NEU.
Collapse
Affiliation(s)
- Chiazor Ugo Ogadah
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - Ludmila Matysová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Andreas Niederquell
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Klingelbergstr. 50, 4056 Basel, Switzerland.
| | - Zdenka Šklubalová
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Barbora Vraníková
- Department of Pharmaceutical Technology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Oyadomari WY, Anthero GL, Silva MRDA, Porta LC, Oliveira V, Reid PF, Sant'Anna OA, Alves WA, Nani JV, Hayashi MAF. Evaluation of tumor growth remission in a murine model for subcutaneous solid tumors - Benefits of associating the antitumor agent crotamine with mesoporous nanosilica particles to achieve improved dosing frequency and efficacy. Int J Pharm 2023; 646:123420. [PMID: 37778514 DOI: 10.1016/j.ijpharm.2023.123420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Crotamine is a highly cationic polypeptide first isolated from South American rattlesnake venom, which exhibits affinity for acidic lysosomal vesicles and proliferating cells. This cationic nature is pivotal for its in vitro cytotoxicity and in vivo anticancer actions. This study aimed to enhance the antitumor efficacy of crotamine by associating it with the mesoporous SBA-15 silica, known for its controlled release of various chemical agents, including large proteins. This association aimed to mitigate the toxic effects while amplifying the pharmacological potency of several compounds. Comprehensive characterization, including transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis, confirmed the successful association of crotamine with the non-toxic SBA-15 nanoparticles. The TEM imaging revealed nanoparticles with a nearly spherical shape and variations in uniformity upon crotamine association. Furthermore, DLS showed a narrow unimodal size distribution, emphasizing the formation of small aggregates. Zeta potential measurements indicated a distinct shift from negative to positive values upon crotamine association, underscoring its effective adsorption onto SBA-15. Intraperitoneal or oral administration of crotamine:SBA-15 in a murine melanoma model suggested the potential to reduce the frequency of crotamine doses without compromising efficacy. Interestingly, while the oral route enhanced the antitumor efficacy of crotamine, pH-dependent release from SBA-15 was observed. Thus, associating crotamine with SBA-15 could reduce the overall required dose to inhibit solid tumor growth, bolstering the prospect of crotamine as a potent anticancer agent.
Collapse
Affiliation(s)
- William Yoshio Oyadomari
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil; Departamento de Biofísica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil.
| | - Gabriel Lessa Anthero
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil.
| | - Marcos R de A Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Brazil.
| | - Lucas C Porta
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil.
| | - Vitor Oliveira
- Departamento de Biofísica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil.
| | | | | | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Brazil.
| | - João V Nani
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil.
| | - Mirian Akemi Furuie Hayashi
- Laboratory of Molecular Pharmacology, Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Brazil.
| |
Collapse
|
5
|
Heng X, Pan Y, Chen X, Pu L, Lu J, Li K, Tang K. Long-Term and Stable Dental Therapies via an In Situ Spontaneous Medicine Delivery System. ACS OMEGA 2023; 8:23936-23944. [PMID: 37426210 PMCID: PMC10324093 DOI: 10.1021/acsomega.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Chronic oral diseases are boring, long-term, and discomfort intense diseases, which endanger the physical and mental health of patients constantly. Traditional therapeutic methods based on medicines (including swallowing drugs, applying ointment, or injection in situ) bring much inconvenience and discomfort. A new method possessing accurate, long-term, stable, convenient, and comfortable features is in great need. In this study, we demonstrated a development of one spontaneous administration for the prevention and therapy on a series of oral diseases. By uniting dental resin and medicine-loaded mesoporous molecular sieve, nanoporous medical composite resin (NMCR) was synthesized by a simple physical mixing and light curing method. Physicochemical investigations of XRD, SEM, TEM, UV-vis, N2 adsorption, and biochemical experiments of antibacterial and pharmacodynamic evaluation on periodontitis treatment of SD rats were carried on to characterize an NMCR spontaneous medicine delivery system. Compared to existing pharmacotherapy and in situ treatments, NMCR can keep a quite long time of stable in situ medicine release during the whole therapeutic period. Taking the periodontitis treatment as an instance, the probing pocket depth value in a half-treatment time of 0.69 from NMCR@MINO was much lower than that of 1.34 from the present commercial Periocline ointment, showing an over two times effect.
Collapse
Affiliation(s)
- Xuan Heng
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yuhao Pan
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xinghui Chen
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liuyi Pu
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jiaping Lu
- Dental
Clinic of Xuhui District, Shanghai 200031, People’s
Republic of China
| | - Ka Li
- Institute
of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, People’s
Republic of China
| | - Kangjian Tang
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
6
|
Attallah AG, Prucnal S, Buttering M, Hirschmann E, Koehler N, Schulz SE, Wagner A, Liedke MO. Millisecond flash lamp curing for porosity generation in thin films. Sci Rep 2023; 13:7765. [PMID: 37173360 PMCID: PMC10181987 DOI: 10.1038/s41598-023-34748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Flash lamp annealing (FLA) with millisecond pulse durations is reported as a novel curing method for pore precursor's degradation in thin films. A case study on the curing of dielectric thin films is presented. FLA-cured films are being investigated by means of positron annihilation spectroscopy (PAS) and Fourier-transform infrared (FTIR) spectroscopy in order to quantify the nm-scale porosity and post-treatment chemistry, respectively. Results from positron annihilation reveal the onset of the formation of porous voids inside the samples at 6 ms flash treatment time. Moreover, parameter's adjustment (flash duration and energy density) allows for identifying the optimum conditions of effective curing. Within such a systematic investigation, positron results indicate that FLA is able to decompose the porogen (pore precursors) and to generate interconnected (open porosity) or isolated pore networks with self-sealed pores in a controllable way. Furthermore, FTIR results demonstrate the structural evolution after FLA, that help for setting the optimal annealing conditions whereby only a residual amount of porogen remains and at the same time a well-densified matrix, and a hydrophobic porous structures are created. Raman spectroscopy suggests that the curing-induced self-sealing layer developed at the film surface is a graphene oxide-like layer, which could serve as the outside sealing of the pore network from intrusions.
Collapse
Affiliation(s)
- Ahmed G Attallah
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
- Physics Department, Faculty of Science, Minia University, Minia, 61519, Egypt.
| | - Slawomir Prucnal
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Maik Buttering
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Eric Hirschmann
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Nicole Koehler
- Center for Microtechnologies, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Stefan E Schulz
- Center for Microtechnologies, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Andreas Wagner
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Maciej O Liedke
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.
| |
Collapse
|
7
|
Szentmihályi K, Klébert S, May Z, Bódis E, Mohai M, Trif L, Feczkó T, Károly Z. Immobilization of Metronidazole on Mesoporous Silica Materials. Pharmaceutics 2022; 14:2332. [PMID: 36365150 PMCID: PMC9699156 DOI: 10.3390/pharmaceutics14112332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 10/28/2024] Open
Abstract
Metronidazole (MTZ) is a widely used drug, but due to its many side effects, there is a growing trend today to use a minimum dose while maintaining high efficacy. One way to meet this demand is to reduce the size of the drug particles. A relatively new method of size reduction is attaching the drug molecules to a mesoporous carrier. In this paper, we studied the fixation of MTZ molecules on mesoporous silica carriers. The drug was immobilized on two mesoporous silica materials (Syloid, SBA-15) with the use of a variety of immersion techniques and solvents. The immobilized drug was subjected to physicochemical examinations (e.g., SEM, XPS, XRD, nitrogen uptake, DSC) and dissolution studies. A significantly higher immobilization was attained on SBA-15 than on a Syloid carrier. Among the processing parameters, the type of MTZ solvent had the highest influence on immobilization. Ultrasonic agitation had a lower but still significant impact, while the concentration of MTZ in the solution made no difference. Under optimal conditions, with the application of an ethyl acetate solution, the surface coverage on SBA-15 reached as much as 91%. The immobilized MTZ exhibited a ca. 10% faster dissolution rate as compared to the pure micron-sized drug particles.
Collapse
Affiliation(s)
| | - Szilvia Klébert
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang L, Tian C, Feng L, Wang X, Hou X. Effect of Morphology on the Drug Sustained‐Release Performance of HA/β‐TCP Composite. ChemistrySelect 2022. [DOI: 10.1002/slct.202202341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Li‐li Wang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 China
| | - Cheng‐yuan Tian
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 China
| | - Li‐na Feng
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xiu‐feng Wang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xu‐ri Hou
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 China
| |
Collapse
|
9
|
Zhu X, Du C, Mohsin A, Yin Q, Xu F, Liu Z, Wang Z, Zhuang Y, Chu J, Guo M, Tian X. An Efficient High-Throughput Screening of High Gentamicin-Producing Mutants Based on Titer Determination Using an Integrated Computer-Aided Vision Technology and Machine Learning. Anal Chem 2022; 94:11659-11669. [PMID: 35942642 DOI: 10.1021/acs.analchem.2c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "design-build-test-learn" (DBTL) cycle has been adopted in rational high-throughput screening to obtain high-yield industrial strains. However, the mismatch between build and test slows the DBTL cycle due to the lack of high-throughput analytical technologies. In this study, a highly efficient, accurate, and noninvasive detection method of gentamicin (GM) was developed, which can provide timely feedback for the high-throughput screening of high-yield strains. First, a self-made tool was established to obtain data sets in 24-well plates based on the color of the cells. Subsequently, the random forest (RF) algorithm was found to have the highest prediction accuracy with an R2 value of 0.98430 for the same batch. Finally, a stable genetically high-yield strain (998 U/mL) was successfully screened out from 3005 mutants, which was verified to improve the titer by 72.7% in a 5 L bioreactor. Moreover, the verified new data sets were updated on the model database in order to improve the learning ability of the DBTL cycle.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Congcong Du
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Qian Yin
- College of Biological & Medical Engineering, South-Central University for Nationalities, Minzu Road 182, Wuhan, Hubei 430070, China
| | - Feng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.,School of Biotechnology, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| |
Collapse
|
10
|
Almasri R, Schultz HB, Møller A, Bremmell KE, Garcia-Bennett A, Joyce P, Prestidge CA. Role of Silica Intrawall Microporosity on Abiraterone Acetate Solubilization and In Vivo Oral Absorption. Mol Pharm 2022; 19:1091-1103. [PMID: 35238208 DOI: 10.1021/acs.molpharmaceut.1c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SBA-15 mesoporous silica (MPS) has been widely used in oral drug delivery; however, it has not been utilized for solidifying lipid-based formulations, and the impact of their characteristic intrawall microporosity remains largely unexplored. Here, we derive the impact of the MPS microporosity on the in vitro solubilization and in vivo oral pharmacokinetics of the prostate cancer drug abiraterone acetate (AbA) when coencapsulated along with medium chain lipids into the pores. AbA in lipid (at 80% equilibrium solubility) was imbibed within a range of MPS particles (with comparable morphology and mesoporous structure but contrasting microporosity ranging from 0-247 m2/g), and their solid-state properties were characterized. Drug solubilization studies during in vitro lipolysis revealed that microporosity was the key factor in facilitating AbA solubilization by increasing the surface area available for drug-lipid diffusion. Interestingly, microporosity hindered hydrolysis of AbA to its active metabolite, abiraterone (Ab), under simulated intestinal conditions. This unique relationship between microporosity and AbA/Ab aqueous solubilization behavior was hypothesized to have significant implications on the subsequent bioavailability of the active metabolite. In vivo oral pharmacokinetics studies in male Sprague-Dawley rats revealed that MPS with moderate microporosity attained the highest relative bioavailability, while poor in vitro-in vivo correlations (IVIVC) existed between in vitro drug solubilization during lipolysis and in vivo AUC. Despite this, a reasonable IVIVC was established between the in vitro solubilization and in vivo Cmax, providing evidence for an association between silica microporosity and oral drug absorption.
Collapse
Affiliation(s)
- Ruba Almasri
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Hayley B Schultz
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Amalie Møller
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kristen E Bremmell
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | | | - Paul Joyce
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Clive A Prestidge
- UniSA Clinical & Health Science, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
11
|
Lawson S, Rownaghi AA, Rezaei F. Combined Ibuprofen and Curcumin Delivery Using Mg-MOF-74 as a Single Nanocarrier. ACS APPLIED BIO MATERIALS 2022; 5:265-271. [PMID: 35014812 DOI: 10.1021/acsabm.1c01067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have been extensively used as drug delivery platforms because of their considerable textural properties and physiochemical tunability. However, most medicinal treatments often administer multiple therapeutic pharmaceuticals simultaneously and combined drug delivery over a single MOF carrier has not been extensively developed. As such, in this study we implemented Mg-MOF-74, which is known to have rapid pharmacokinetic properties, for the combined delivery of ibuprofen and curcumin to demonstrate the proof-of-concept for dual-drug delivery over this previously unexplored MOF. To this end, 30 wt % total drug loading of two drugs was impregnated at various ratios (25:5 ibuprofen-curcumin, 20:5 ibuprofen-curcumin, 15:15 ibuprofen-curcumin, 10:20 ibuprofen-curcumin, and 5:25 ibuprofen-curcumin), and the drug delivery performance of the materials was assessed from 0 to 24 h in phosphate-buffered saline (PBS) solution using high-performance liquid chromatography (HPLC). The experiments revealed that all five ratios of ibuprofen-curcumin loadings can effectively deliver both compounds; however, elevating the curcumin loading beyond 10 wt % decreases the drug loading efficiency for ibuprofen and can also inhibit ibuprofen release. Nevertheless, because Mg-MOF-74 was able to successfully deliver both compounds, this study serves as a promising proof-of-concept for dual-drug delivery from a single MOF carrier. In this regard, the work demonstrated herein expands the use of MOFs for drug delivery applications and can be used to supplement drug administration via orally ingested tablets.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
12
|
Manzano M. Chronology of Global Success: 20 Years of Prof Vallet-Regí Solving Questions. Pharmaceutics 2021; 13:pharmaceutics13122179. [PMID: 34959461 PMCID: PMC8708866 DOI: 10.3390/pharmaceutics13122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Twenty years ago, a group of bold scientists led by Prof Vallet-Regí suggested for the first time the use of mesoporous materials as potential drug delivery systems. Without knowing it; these pioneers unleashed the beast of creativity around the world because that original idea has been the inspiration of hundreds of scientific groups for the design of many versatile delivery systems based on mesoporous materials. Because the dream is not the destination, it is the journey, the present review aims to summarise the chain of events that catapulted a small and young research team from the grassroots of academia to the elite of the Biomedical Engineering field.
Collapse
Affiliation(s)
- Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain;
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-28034 Madrid, Spain
| |
Collapse
|
13
|
Álvarez E, González B, Lozano D, Doadrio AL, Colilla M, Izquierdo-Barba I. Nanoantibiotics Based in Mesoporous Silica Nanoparticles: New Formulations for Bacterial Infection Treatment. Pharmaceutics 2021; 13:2033. [PMID: 34959315 PMCID: PMC8703556 DOI: 10.3390/pharmaceutics13122033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the design of mesoporous silica nanoparticles for infection treatment. Written within a general context of contributions in the field, this manuscript highlights the major scientific achievements accomplished by professor Vallet-Regí's research group in the field of silica-based mesoporous materials for drug delivery. The aim is to bring out her pivotal role on the envisage of a new era of nanoantibiotics by using a deep knowledge on mesoporous materials as drug delivery systems and by applying cutting-edge technologies to design and engineer advanced nanoweapons to fight infection. This review has been divided in two main sections: the first part overviews the influence of the textural and chemical properties of silica-based mesoporous materials on the loading and release of antibiotic molecules, depending on the host-guest interactions. Furthermore, this section also remarks on the potential of molecular modelling in the design and comprehension of the performance of these release systems. The second part describes the more recent advances in the use of mesoporous silica nanoparticles as versatile nanoplatforms for the development of novel targeted and stimuli-responsive antimicrobial nanoformulations for future application in personalized infection therapies.
Collapse
Affiliation(s)
- Elena Álvarez
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Antonio L. Doadrio
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (E.Á.); (B.G.); (D.L.); (A.L.D.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| |
Collapse
|
14
|
Lawson S, Siemers A, Kostlenick J, Al-Naddaf Q, Newport K, Rownaghi AA, Rezaei F. Mixing Mg-MOF-74 with Zn-MOF-74: A Facile Pathway of Controlling the Pharmacokinetic Release Rate of Curcumin. ACS APPLIED BIO MATERIALS 2021; 4:6874-6880. [PMID: 35006987 DOI: 10.1021/acsabm.1c00585] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, metal-organic frameworks (MOFs) have been widely employed as potential drug-delivery platforms; however, most studies have focused on the initial aspects of material development and have made little progress toward using MOFs as a means of controlling the pharmacokinetic rate of drug delivery. Nevertheless, it was recently determined that MOFs with highly soluble metal centers impart faster pharmacokinetic properties, so it stands to reason that combining two MOFs with different metal center solubilities could be used to control the pharmacokinetic release rate. To this end, in this study we varied the ratio of Mg-MOF-74 and Zn-MOF-74 between 80:20, 60:40, 40:60, and 20:80 wt % Mg:Zn to control the pharmacokinetic release rate of 30 wt % curcumin. The drug loading was characterized by using Fourier transform infrared spectroscopy and N2 physisorption, where it was confirmed that curcumin was impregnated successfully. More importantly, the drug delivery experiments in phosphate buffered saline from 0 to 24 h at 37.4 °C revealed that increasing the Mg-MOF-74 concentration enhanced both the raw amount of curcumin delivered and the pharmacokinetic rate of drug delivery. Specifically looking at the rate of drug delivery, drug diffusion constants of 0.17, 0.23, 0.24, and 0.26 h1/2 were calculated for the 20:80, 40:60, 60:40, and 80:20 Mg-Zn-MOF-74 samples, respectively, which indicated the profound relationship between the Mg-MOF-74 loading and the rate of curcumin delivery. In this regard, this study successfully demonstrated a potential pathway of controlling the pharmacokinetic rate of drug release from MOFs which can be considered a promising advancement in pharmacological medicine.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Andrew Siemers
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Jason Kostlenick
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Qasim Al-Naddaf
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Kyle Newport
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
15
|
Alazzawi HF, Salih IK, Albayati TM. Drug delivery of amoxicillin molecule as a suggested treatment for covid-19 implementing functionalized mesoporous SBA-15 with aminopropyl groups. Drug Deliv 2021; 28:856-864. [PMID: 33928831 PMCID: PMC8812583 DOI: 10.1080/10717544.2021.1914778] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 is a novel coronavirus that was isolated and identified for the first time in Wuhan, China in 2019. Nowadays, it is a worldwide danger and the WHO named it a pandemic. In this investigation, a functionalization post-synthesis method was used to assess the ability of an adapted SBA-15 surface as a sorbent to load the drug from an aqueous medium. Different characterization approaches were used to determine the characterization of the substance before and after functionalization such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), nitrogen adsorption–desorption porosimetry (Brunauer–Emmett–Teller) BET surface area analysis, and thermal gravimetric analysis (TGA). Batch adsorption testing was carried out in a single adsorption device to find the impact of multiple variables on the drug amoxicillin charge output. The following parameters were studied: 0–72 hr. contact time, 20–120 mg/l initial concentration, and 20–250 mg of NH2-SBA-15 dose. The outcomes from such experiments revealed the strong influence and behavior of the amino-functional group to increase the drug's load. Drug delivery outcomes studies found that amoxicillin loading was directly related to NH2-SBA-15 contact time and dose, but indirectly related to primary concentration. It was observed that 80% of amoxicillin was loaded while the best release test results were 1 hour and 51%.
Collapse
Affiliation(s)
- Haneen F Alazzawi
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical and Petroleum Industries Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology, Baghdad, Iraq
| |
Collapse
|
16
|
Hajiaghababaei L, Eslambolipour M, Badiei A, Ganjali MR, Ziarani GM. Controlled release of anticancer drug using o-phenylenediamine functionalized SBA-15 as a novel nanocarrier. CHEMICAL PAPERS 2021; 75:1841-1850. [DOI: 10.1007/s11696-020-01422-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
|
17
|
Lawson S, Newport K, Pederniera N, Rownaghi AA, Rezaei F. Curcumin Delivery on Metal-Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family. ACS APPLIED BIO MATERIALS 2021; 4:3423-3432. [PMID: 35014426 DOI: 10.1021/acsabm.1c00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic frameworks (MOFs) have gained considerable attention as drug delivery platforms over the past decade owing to their tunable physiochemical properties, biodiversity, and capability to encapsulate sizable active compound loadings. Nevertheless, many fundamental properties pertaining to MOFs' pharmacokinetic performances as drug carriers have been poorly investigated. One such property is the relationship between the MOF metal center solubility and drug release rate. In this study, we investigated this relationship within the M-MOF-74 family by impregnating 30 or 50 wt % curcumin on either Mg-, Ni-, Zn-, or Co-MOF-74. The drug delivery performance of the materials was assessed in phosphate buffered saline solution by high-performance liquid chromatography over a time period of 0-24 h. From these experiments, it was determined that the 30 wt % curcumin loading led to increased drug delivery and kinetics compared to the 50 wt % loading regardless of the metal center, as the lower drug concentration did not hinder diffusion from the MOF pores. As such, the optimal curcumin loading within the M-MOF-74 family was concluded to be greater than 30 wt % but less than 50 wt %. These experiments also revealed that using Mg-MOF-74 as a drug carrier produced a twofold enhancement in the release rate from 0.15 to 0.30 h1/2 compared to the other three metal centers, where Mg-MOF-74's improved pharmacokinetics were attributed to the increased group II Mg solubility compared to Ni, Co, or Zn transition metals. On the basis of these findings, it was concluded that to promote rapid pharmacokinetics, it is essential to use MOFs with more soluble metal centers to promote dissolution of the nanocarrier. While this study focused on M-MOF-74, we expect that this conclusion has implications to other crystallites as well.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Kyle Newport
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Neila Pederniera
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali Asghar Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
18
|
Batista H, Freitas JP, Abrunheiro A, Gonçalves T, Gil MH, Figueiredo M, Coimbra P. Electrospun composite fibers of PLA/PLGA blends and mesoporous silica nanoparticles for the controlled release of gentamicin sulfate. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1876053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Henrique Batista
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - João P. Freitas
- Department of Orthopaedics, CHUC, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandra Abrunheiro
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria H. Gil
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Margarida Figueiredo
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| | - Patrícia Coimbra
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
19
|
Aguilar-Colomer A, Colilla M, Izquierdo-Barba I, Jiménez-Jiménez C, Mahillo I, Esteband J, Vallet-Regí M. Impact of the antibiotic-cargo from MSNs on Gram-positive and Gram-negative bacterial biofilms. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2021; 311:110681. [PMID: 33137170 DOI: 10.1016/j.micromeso.2010.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are promising drug nanocarriers for infection treatment. Many investigations have focused on evaluating the capacity of MSNs to encapsulate antibiotics and release them in a controlled fashion. However, little attention has been paid to determine the antibiotic doses released from these nanosystems that are effective against biofilm during the entire release time. Herein, we report a systematic and quantitative study of the direct effect of the antibiotic-cargo released from MSNs on Gram-positive and Gram-negative bacterial biofilms. Levofloxacin (LVX), gentamicin (GM) and rifampin (RIF) were separately loaded into pure-silica and amino-modified MSNs. This accounts for the versatility of these nanosystems since they were able to load and release different antibiotic molecules of diverse chemical nature. Biological activity curves of the released antibiotic were determined for both bacterial strains, which allowed to calculate the active doses that are effective against bacterial biofilms. Furthermore, in vitro biocompatibility assays on osteoblast-like cells were carried out at different periods of times. Albeit a slight decrease in cell viability was observed at the very initial stage, due to the initial burst antibiotic release, the biocompatibility of these nanosystems is evidenced since a recovery of cell viability was achieved after 72 h of assay. Biological activity curves for GM released from MSNs exhibited sustained patterns and antibiotic doses in the 2-6 μg/mL range up to 100 h, which were not enough to eradicate biofilm. In the case of LVX and RIF first-order kinetics featuring an initial burst effect followed by a sustained release above the MIC up to 96 h were observed. Such doses reduced by 99.9% bacterial biofilm and remained active up to 72 h with no emergence of bacterial resistance. This pioneering research opens up promising expectations in the design of personalized MSNs-based nanotherapies to treat chronic bone infection.
Collapse
Affiliation(s)
- Anna Aguilar-Colomer
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Montserrat Colilla
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Isabel Izquierdo-Barba
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Carla Jiménez-Jiménez
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Ignacio Mahillo
- Unidad de Bioestadística y Epidemiología. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Jaime Esteband
- Unidad de Microbiología Clínica. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| |
Collapse
|
20
|
Amini M, Naderi R, Mahdavian M, Badiei A. Release of lanthanum cations loaded into piperazine-modified SBA-15 to inhibit the mild steel corrosion. MICROPOROUS AND MESOPOROUS MATERIALS 2021; 315:110908. [DOI: 10.1016/j.micromeso.2021.110908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
|
21
|
Inceoglu S, Botimer G, Maskiewicz VK. Novel microcomposite implant for the controlled delivery of antibiotics in the treatment of osteomyelitis following total joint replacement. J Orthop Res 2021; 39:365-375. [PMID: 33222231 DOI: 10.1002/jor.24919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 02/04/2023]
Abstract
The objective of this study was to develop a novel microcomposite implant to be used in the treatment of osteomyelitis following total joint arthroplasty, with the dual purpose of releasing high local concentrations of antibiotic to eradicate the infection while providing adequate mechanical strength to maintain the dynamic or static spacer. Vancomycin-loaded microcomposite implants were fabricated by incorporating drug-loaded microparticles comprised of mesoporous silica into commonly employed polymethylmethacrylate (PMMA) bone cement, to yield a final drug loading of 10% w/w. In vitro release kinetics at 37°C were monitored by reverse-phase high-performance liquid chromatography, and compared to the release kinetics of current therapy implants consisting of drug alone incorporated at 10% w/w directly into PMMA bone cement. Results demonstrated a sevenfold improvement in the elution profile of microcomposite systems over current therapy implants. In vivo delivery of vancomycin to bone from microcomposite implants (70% of payload) was significantly higher than that from current therapy implants (approx. 22% of payload) and maintained significantly higher bone concentrations for up to 2 weeks duration. The elastic modulus showed no statistical difference between microcomposite implants and current standard therapy implants before drug elution, and maintenance of acceptable strength of microcomposite implants postdrug elution. These results demonstrate that we have developed a novel microcomposite spacer that will release continuously high antibiotic concentrations over a prolonged period of time, offering the possibility to eliminate infection and avoid the emergence of new resistant bacterial strains, while maintaining the requisite mechanical properties for proper space maintenance and joint fixation.
Collapse
Affiliation(s)
- Serkan Inceoglu
- Department of Orthopaedic Surgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Gary Botimer
- Department of Orthopaedic Surgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Victoria K Maskiewicz
- Department of Pharmaceutical Sciences, Loma Linda University School of Pharmacy, Loma Linda, California, USA
| |
Collapse
|
22
|
Aguilar-Colomer A, Colilla M, Izquierdo-Barba I, Jiménez-Jiménez C, Mahillo I, Esteband J, Vallet-Regí M. Impact of the antibiotic-cargo from MSNs on Gram-positive and Gram-negative bacterial biofilms. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2021; 311:110681. [PMID: 33137170 PMCID: PMC7116279 DOI: 10.1016/j.micromeso.2020.110681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are promising drug nanocarriers for infection treatment. Many investigations have focused on evaluating the capacity of MSNs to encapsulate antibiotics and release them in a controlled fashion. However, little attention has been paid to determine the antibiotic doses released from these nanosystems that are effective against biofilm during the entire release time. Herein, we report a systematic and quantitative study of the direct effect of the antibiotic-cargo released from MSNs on Gram-positive and Gram-negative bacterial biofilms. Levofloxacin (LVX), gentamicin (GM) and rifampin (RIF) were separately loaded into pure-silica and amino-modified MSNs. This accounts for the versatility of these nanosystems since they were able to load and release different antibiotic molecules of diverse chemical nature. Biological activity curves of the released antibiotic were determined for both bacterial strains, which allowed to calculate the active doses that are effective against bacterial biofilms. Furthermore, in vitro biocompatibility assays on osteoblast-like cells were carried out at different periods of times. Albeit a slight decrease in cell viability was observed at the very initial stage, due to the initial burst antibiotic release, the biocompatibility of these nanosystems is evidenced since a recovery of cell viability was achieved after 72 h of assay. Biological activity curves for GM released from MSNs exhibited sustained patterns and antibiotic doses in the 2-6 μg/mL range up to 100 h, which were not enough to eradicate biofilm. In the case of LVX and RIF first-order kinetics featuring an initial burst effect followed by a sustained release above the MIC up to 96 h were observed. Such doses reduced by 99.9% bacterial biofilm and remained active up to 72 h with no emergence of bacterial resistance. This pioneering research opens up promising expectations in the design of personalized MSNs-based nanotherapies to treat chronic bone infection.
Collapse
Affiliation(s)
- Anna Aguilar-Colomer
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Montserrat Colilla
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Isabel Izquierdo-Barba
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Carla Jiménez-Jiménez
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Ignacio Mahillo
- Unidad de Bioestadística y Epidemiología. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Jaime Esteband
- Unidad de Microbiología Clínica. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| |
Collapse
|
23
|
Ahmed K, Inamdar SN, Rohman N, Skelton AA. Acidity constant and DFT-based modelling of pH-responsive alendronate loading and releasing on propylamine-modified silica surface. Phys Chem Chem Phys 2021; 23:2015-2024. [DOI: 10.1039/d0cp04498a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A computational methodology that couples the acidity (Ka) and density functional theory (DFT) calculations has been developed to explain the pH-dependent drug loading on and releasing from mesoporous silica nanoparticles.
Collapse
Affiliation(s)
- Khalid Ahmed
- Department of Pharmaceutical Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | | | - Nashiour Rohman
- Department of Pharmaceutical Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| | - Adam A. Skelton
- Department of Pharmaceutical Sciences
- University of KwaZulu-Natal
- Durban 4000
- South Africa
| |
Collapse
|
24
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Hao L, Li X, Wang Y. Synthesis of mesoporous silicate molecular sieves by the aerosol-assisted method for loading and release of drug. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200650. [PMID: 33204450 PMCID: PMC7657891 DOI: 10.1098/rsos.200650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The mesoporous silicate molecular sieves were synthesized with polyether F127 as the template by the aerosol-assisted method for loading and release of ibuprofen (IBU). The synthesized samples were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and N2 adsorption-desorption isotherms. The drug IBU was applied as a model drug to investigate the drug release behaviour by ultraviolet spectrophotometry measurements. The investigation results demonstrate that mesoporous silicate molecular sieves by the aerosol-assisted method are spherical with a core-shell structure. As the drug carrier, it has good structural stability and can achieve drug controlled release which is expected. It exhibits safety to a certain degree. Therefore, the aerosol-assisted synthesis method provides a new idea for the synthesis of sustained-release drug carriers.
Collapse
Affiliation(s)
| | | | - Yang Wang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
26
|
Optimizing ibuprofen concentration for rapid pharmacokinetics on biocompatible zinc-based MOF-74 and UTSA-74. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111336. [PMID: 32919685 DOI: 10.1016/j.msec.2020.111336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/30/2020] [Indexed: 11/24/2022]
Abstract
Metal-organic frameworks (MOFs) have potential as drug carriers on the basis of their surface areas and pore volumes that allow for high loading and fast release. This study investigated two biocompatible MOFs - Zn MOF-74 and UTSA-74 - for ibuprofen delivery. The effect of drug loading was studied by impregnating the MOFs with 30, 50, and 80 wt% ibuprofen. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 physisorption. From SEM, the MOF structures were maintained at 30 wt% ibuprofen, however, became agglomerated at 50-80 wt% loading, as the drug deposited on the surface and adhered the particles to one another. In the physisorption measurements, the Zn MOF-74 samples decreased in surface area with ibuprofen loading, until they became zero at 80 wt%. In UTSA-74, the drug impregnation was less effective, as 35% of the original surface area was retained in the 80 wt% sample. On the basis of our drug release measurements, 50 wt% ibuprofen loading was found to be optimal on Zn MOF-74, as it gave rise to fast kinetics (k = 0.27 h-1/2) and high drug concentrations within the first 10 h. In UTSA-74, the fastest release rate was observed at 30 wt% loading (k = 0.22 h-1/2), as the poor impregnation efficiency blocked diffusion through the MOF pores at higher loading. Color changes of phosphate buffer saline (PBS) solutions at different time intervals also suggested that Zn MOF-74 decomposed during drug release, as it produced yellowing of the PBS solution. On the other hand, UTSA-74 did not discolor the PBS solution, and was concluded to not have dissolved during drug release. From these results, it was concluded that Zn MOF-74 was the superior drug carrier, as it could effectively deliver higher ibuprofen loadings and would dissolve in the process of drug release, thereby reducing its invasiveness in the human body.
Collapse
|
27
|
Mosqueira L, Barrioni BR, Martins T, Ocarino NDM, Serakides R, Pereira MDM. In vitro effects of the co-release of icariin and strontium from bioactive glass submicron spheres on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells. ACTA ACUST UNITED AC 2020; 15:055023. [PMID: 32375130 DOI: 10.1088/1748-605x/ab9095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteoporosis is a metabolic disease that affects bone tissue and is highly associated with bone fractures. Typical osteoporosis fracture treatments, such as bisphosphonates and hormone replacement, present important challenges because of their low bioavailability on the site of action. Options to overcome this issue are systems for the local release of therapeutic agents such as bioactive glasses containing therapeutic molecules and ions. These agents are released during the dissolution process, combining the drugs and ion therapeutic effects for osteoporosis treatment. Among the therapeutic agents that can be applied for bone repair are strontium (Sr) ion and phytopharmaceutical icariin, which have shown potential to promote healthy bone marrow stem cells osteogenic differentiation, increase bone formation and prevent bone loss. Submicron Sr-containing bioactive glass mesoporous spheres with sustained ion release capacity were obtained. Icariin was successfully incorporated into the particles, and the glass composition influenced the icariin incorporation efficiency and release rates. In this work, for the first time, Sr and icariin were incorporated into bioactive glass submicron mesoporous spheres and the in vitro effects of the therapeutic agents release were evaluated on the reduced osteogenic potential of rat osteoporotic bone marrow mesenchymal stem cells, and results showed an improvement on the reduced differentiation potential.
Collapse
Affiliation(s)
- Layla Mosqueira
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Chrzanowska A, Derylo-Marczewska A, Wasilewska M. Mesocellular Silica Foams (MCFs) with Tunable Pore Size as a Support for Lysozyme Immobilization: Adsorption Equilibrium and Kinetics, Biocomposite Properties. Int J Mol Sci 2020; 21:E5479. [PMID: 32751874 PMCID: PMC7432670 DOI: 10.3390/ijms21155479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of the porous structure of mesocellular silica foams (MCFs) on the lysozyme (LYS) adsorption capacity, as well as the rate, was studied to design the effective sorbent for potential applications as the carriers of biomolecules. The structural (N2 adsorption/desorption isotherms), textural (SEM, TEM), acid-base (potentiometric titration), adsorption properties, and thermal characteristics of the obtained lysozyme/silica composites were studied. The protein adsorption equilibrium and kinetics showed significant dependence on silica pore size. For instance, LYS adsorption uptake on MCF-6.4 support (pore diameter 6.4 nm) was about 0.29 g/g. The equilibrium loading amount of LYS on MCF-14.5 material (pore size 14.5 nm) increased to 0.55 g/g. However, when the pore diameter was larger than 14.5 nm, the LYS adsorption value systematically decreased with increasing pore size (e.g., for MCF-30.1 was only 0.27 g/g). The electrostatic attractive interactions between the positively charged lysozyme (at pH = 7.4) and the negatively charged silica played a significant role in the immobilization process. The differences in protein adsorption and surface morphology for the biocomposites of various pore sizes were found. The thermal behavior of the studied bio/systems was conducted by TG/DSC/FTIR/MS coupled method. It was found that the thermal degradation of lysozyme/silica composites was a double-stage process in the temperature range 165-420-830 °C.
Collapse
Affiliation(s)
- Agnieszka Chrzanowska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (A.D.-M.); (M.W.)
| | | | | |
Collapse
|
29
|
Milošević MM, Milanović M, Stijepović I, Srdić VV, Antov MG. Evaluation of mesoporous silica and Nb-doped titanate as molecule carriers through adsorption/desorption study. PARTICULATE SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1080/02726351.2019.1573866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Maja M. Milošević
- Department of Applied and Engineering Chemistry, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Marija Milanović
- Department of Materials Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Stijepović
- Department of Materials Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Vladimir V. Srdić
- Department of Materials Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| | - Mirjana G. Antov
- Department of Applied and Engineering Chemistry, Faculty of Technology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
30
|
Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. NANOSCALE 2020; 12:11333-11363. [PMID: 32285073 DOI: 10.1039/d0nr00732c] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of advanced materials for heterogeneous catalytic applications requires fine control over the synthesis and structural parameters of the active site. Mesoporous silica materials have attracted increasing attention to be considered as an important class of nanostructured support materials in heterogeneous catalysis. Their large surface area, well-defined porous architecture and ability to incorporate metal atoms within the mesopores lead them to be a promising support material for designing a variety of different catalysts. In particular, SBA-15 mesoporous silica has its broad applicability in catalysis because of its comparatively thicker walls leading to higher thermal and mechanical stability. In this review article, various strategies to functionalize SBA-15 mesoporous silica have been reviewed with a view to evaluating its efficacy in different catalytic transformation reactions. Special attention has been given to the molecular engineering of the silica surface, within the framework and within the hexagonal mesoporous channels for anchoring metal oxides, single-site species and metal nanoparticles (NPs) serving as catalytically active sites.
Collapse
Affiliation(s)
- Priyanka Verma
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and School of Chemistry, University of Southampton, University Road, Highfield, Southampton, SO17 1 BJ, UK
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Robert Raja
- School of Chemistry, University of Southampton, University Road, Highfield, Southampton, SO17 1 BJ, UK
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan. and Units of Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
31
|
Baino F, Fiume E. 3D Printing of Hierarchical Scaffolds Based on Mesoporous Bioactive Glasses (MBGs)-Fundamentals and Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1688. [PMID: 32260374 PMCID: PMC7178684 DOI: 10.3390/ma13071688] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/23/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
The advent of mesoporous bioactive glasses (MBGs) in applied bio-sciences led to the birth of a new class of nanostructured materials combining triple functionality, that is, bone-bonding capability, drug delivery and therapeutic ion release. However, the development of hierarchical three-dimensional (3D) scaffolds based on MBGs may be difficult due to some inherent drawbacks of MBGs (e.g., high brittleness) and technological challenges related to their fabrication in a multiscale porous form. For example, MBG-based scaffolds produced by conventional porogen-assisted methods exhibit a very low mechanical strength, making them unsuitable for clinical applications. The application of additive manufacturing techniques significantly improved the processing of these materials, making it easier preserving the textural and functional properties of MBGs and allowing stronger scaffolds to be produced. This review provides an overview of the major aspects relevant to 3D printing of MBGs, including technological issues and potential applications of final products in medicine.
Collapse
Affiliation(s)
- Francesco Baino
- Applied Science and Technology Department, Institute of Materials Physics and Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | | |
Collapse
|
32
|
Bao L, Li X, Qi Y, Wang Z, Li J. PEG/SBA-15-containing acrylic bone cement with enhanced drug release. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2019.115379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Amini M, Naderi R, Mahdavian M, Badiei A. Effect of Piperazine Functionalization of Mesoporous Silica Type SBA-15 on the Loading Efficiency of 2-Mercaptobenzothiazole Corrosion Inhibitor. Ind Eng Chem Res 2020; 59:3394-3404. [DOI: 10.1021/acs.iecr.9b05261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Misagh Amini
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417466191, Iran
| | - Reza Naderi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran 1417466191, Iran
| | - Mohammad Mahdavian
- Surface Coatings and Corrosion Department, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran 1665618481, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran 1417466191, Iran
| |
Collapse
|
34
|
Roles of strontium and hierarchy structure on the in vitro biological response and drug release mechanism of the strontium-substituted bioactive glass microspheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110336. [DOI: 10.1016/j.msec.2019.110336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
35
|
Dalayi F, Hajiaghababaei L, Badiei A, Boorboor Azimi E, Ganjali MR, Mohammadi Ziarani G. Tris (2-aminoethyl) Amine Functionalized Nanoporous Silica SBA-15 as a Potential Drug Carrier for Citalopram. INTERNATIONAL JOURNAL OF BASIC SCIENCE IN MEDICINE 2019; 4:155-162. [DOI: 10.34172/ijbsm.2019.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Ordered nanoporous silica such as SBA-15 has a great potential for application in controlled drug release systems. Chemical modification of the silanol groups of SBA-15 allows better control over drug loading and release. Therefore, tris(2-aminoethyl) amine-functionalized mesoporous silica SBA-15 was evaluated as a potential carrier for the delivery of citalopram. Methods: Tris (2-aminoethyl) amine-functionalized SBA-15 was synthesized and characterized by various methods. Citalopram was loaded on the functionalized SBA-15 and drug release into simulated body fluid (SBF) solution and phosphate buffers was investigated. Results: The optimal condition for loading of the citalopram was obtained at pH = 9 after stirring for 5 minutes. The release profile of citalopram was monitored in phosphate buffers with three different pH values of 5, 7, and 8. A faster release rate at lower pH value was observed, suggesting a weaker interaction because of the protonation of the amino group of the functionalized SBA15. The average release rate of citalopram from each gram of functionalized SBA-15 was 12 µg h-1 in the SBF. Conclusion: The results showed that loading amount and release rate of citalopram depended on pH value and the release process showed a very slow release pattern. Therefore, tris (2-aminoethyl) amine-functionalized SBA-15 is a suitable carrier for controlled release of citalopram and has a great potential for disease therapy.
Collapse
Affiliation(s)
- Fatemeh Dalayi
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Leila Hajiaghababaei
- Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
36
|
Jafari M, Amiri A, Badiei A, Shayesteh A. Fluorene‐Functionalized, Dendrimer‐Modified SBA‐15: Detection of Iron(III) and Mercury (II) in Aqueous Media and Logic Gate Studies. ChemistrySelect 2019; 4:12559-12568. [DOI: 10.1002/slct.201901974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/28/2019] [Indexed: 11/10/2022]
Abstract
AbstractA novel silica‐based fluorescent sensor, (S‐DPP), was prepared via grafting of dimethyl 3,3′‐(propylazanediyl)(1Z,1′Z)‐bis(N‐(9H‐fluoren‐2‐yl)propanimidate) (DPP), onto the pore walls of SBA‐15 channels. DPP was prepared by growing of dendrimer (G= 0.5) onto the amino functionalized surface of SBA‐15, followed by anchoring of 2‐aminflourene via imine condensation. Synthesized materials were characterized using FT‐IR, PXRD, SEM, TEM, BET and TGA techniques. Fluorescence properties of the sensor were investigated in aqueous solution towards various metal ions. The signal quenching of sensor at λ=380 nm is based on complex formation between the S‐DPP and Fe3+ or Hg2+ ions, leading to the inhibition of reverse intramolecular charge transitions at the probe and appearance of new transitions at Mn+—S‐DPP complex. Furthermore, the limit of detection of both ions were calculated as 2.4 × 10−8 M and 6.3 × 10−8 M, respectively. A reversibility in fluorescence behavior of the probe was found in the presence of Cl−, and was demonstrated a circuit logic system with the Fe3+, Hg2+ and Cl− ions. Finally, density functional theory (DFT) and time‐dependent density functional theory (TDDFT) computational studies were performed in order to obtain a detailed electronic description of the quenching mechanism by Hg2+ and Fe3+ as well as studying the structure and bonding in the complexes.
Collapse
Affiliation(s)
- Maryam Jafari
- School of Chemistry College of Science University of Tehran Tehran 1417614418 Iran
| | - Ahmad Amiri
- School of Chemistry College of Science University of Tehran Tehran 1417614418 Iran
| | - Alireza Badiei
- School of Chemistry College of Science University of Tehran Tehran 1417614418 Iran
| | - Alireza Shayesteh
- School of Chemistry College of Science University of Tehran Tehran 1417614418 Iran
| |
Collapse
|
37
|
Zhai QZ, Li XD. Immobilization and sustained release of cefalexin on MCF nano-mesoporous material. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1615936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Qing-Zhou Zhai
- Research Center for Nanotechnology, South Campus, Changchun University of Science and Technology , Changchun , Jilin Province , P. R. China
| | - Xiao-Dong Li
- Department of Basic Science, Jilin Jianzhu University , Changchun , P. R. China
| |
Collapse
|
38
|
Pan N, Qin J, Fan Y, Li Z, Song B. Long time release of water soluble drug from hydrophilic nanofibrous material. J Appl Polym Sci 2019. [DOI: 10.1002/app.47922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nan Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationCollege of Chemistry and Materials Science, Northwest University Xi'an 710069 Shaanxi People's Republic of China
| | - Juanrong Qin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationCollege of Chemistry and Materials Science, Northwest University Xi'an 710069 Shaanxi People's Republic of China
| | - Yuwei Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationCollege of Chemistry and Materials Science, Northwest University Xi'an 710069 Shaanxi People's Republic of China
| | - Zeke Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationCollege of Chemistry and Materials Science, Northwest University Xi'an 710069 Shaanxi People's Republic of China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of EducationCollege of Chemistry and Materials Science, Northwest University Xi'an 710069 Shaanxi People's Republic of China
| |
Collapse
|
39
|
Hashim Ali K, Mohsin Ansari M, Ali Shah F, Ud Din F, Abdul Basit M, Kim JK, Zeb A. Enhanced dissolution of valsartan-vanillin binary co-amorphous system loaded in mesoporous silica particles. J Microencapsul 2019; 36:10-20. [DOI: 10.1080/02652048.2019.1579265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Khan Hashim Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Abdul Basit
- Department of Materials Science and Engineering, Institute of Space Technology, Islamabad, Pakistan
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
40
|
Šuleková M, Váhovská L, Hudák A, Žid L, Zeleňák V. A Study of 5-Fluorouracil Desorption from Mesoporous Silica by RP-UHPLC. Molecules 2019; 24:E1317. [PMID: 30987237 PMCID: PMC6479690 DOI: 10.3390/molecules24071317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/04/2023] Open
Abstract
In cancer treatment, the safe delivery of the drug to the target tissue is an important task. 5-fluorouracil (5-FU), the well-known anticancer drug, was encapsulated into the pores of unmodified mesoporous silica SBA-15, as well as silica modified with 3-aminopropyl and cyclohexyl groups. The drug release studies were performed in two different media, in a simulated gastric fluid (pH = 2) and in a simulated body fluid (pH = 7) by RP-UHPLC. The simple and rapid RP-UHPLC method for quantitative determination of 5-fluorouracil released from unmodified and modified mesoporous silica SBA-15 was established on ODS Hypersil C18 column (150 × 4.6 mm, 5 µm) eluted with mobile phase consisted of methanol: phosphate buffer in volume ratio of 3:97 (v/v). Separation was achieved by isocratic elution. The flow rate was kept at 1 mL/min, the injection volume was set at 20 µL and the column oven temperature was maintained at 25 °C. The effluent was monitored at 268 nm. This paper provides information about the quantitative determination of the released 5-FU from silica. It was found out that larger amount of the drug was released in neutral pH in comparison with the acidic medium. In addition, surface functionalisation of silica SBA-15 influences the release properties of the drug.
Collapse
Affiliation(s)
- Monika Šuleková
- Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia.
| | - Lucia Váhovská
- Department of Chemistry, Biochemistry and Biophysics, Institute of Biochemistry, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia.
| | - Alexander Hudák
- Department of Chemistry, Biochemistry and Biophysics, Institute of Pharmaceutical Chemistry, The University of Veterinary Medicine and Pharmacy in Košice, 041 81 Košice, Slovakia.
| | - Lukáš Žid
- Department of Inorganic Chemistry, Faculty of Sciences, P. J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia.
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Sciences, P. J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia.
| |
Collapse
|
41
|
Abstract
Since the second half of the 20th century, bioceramics are used for bone repair and regeneration. Inspired by bones and teeth, and aimed at mimicking their structure and composition, several artificial bioceramics were developed for biomedical applications. And nowadays, in the 21st century, with the increasing prominence of nanoscience and nanotechnology, certain bioceramics are being used to build smart drug delivery systems, among other applications. This minireview will mainly describe both tendencies through the research work carried out by the research team of María Vallet-Regí.
Collapse
Affiliation(s)
- María Vallet-Regí
- Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12,
Plaza Ramón y Cajal s/n, E-28040, Madrid, Spain; and Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid,
Spain
| |
Collapse
|
42
|
Flynn J, Mallen S, Durack E, O'Connor PM, Hudson SP. Mesoporous matrices for the delivery of the broad spectrum bacteriocin, nisin A. J Colloid Interface Sci 2019; 537:396-406. [DOI: 10.1016/j.jcis.2018.11.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/04/2018] [Accepted: 11/10/2018] [Indexed: 12/31/2022]
|
43
|
Real-time cell analysis of the cytotoxicity of a pH-responsive drug-delivery matrix based on mesoporous silica materials functionalized with ferrocenecarboxylic acid. Anal Chim Acta 2019; 1051:138-146. [DOI: 10.1016/j.aca.2018.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
|
44
|
Farzan M, Roth R, Québatte G, Schoelkopf J, Huwyler J, Puchkov M. Loading of Porous Functionalized Calcium Carbonate Microparticles: Distribution Analysis with Focused Ion Beam Electron Microscopy and Mercury Porosimetry. Pharmaceutics 2019; 11:E32. [PMID: 30650593 PMCID: PMC6358859 DOI: 10.3390/pharmaceutics11010032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/17/2022] Open
Abstract
Accurate analysis of intraparticle distribution of substances within porous drug carriers is important to optimize loading and subsequent processing. Mercury intrusion porosimetry, a common technique used for characterization of porous materials, assumes cylindrical pore geometry, which may lead to misinterpretation. Therefore, imaging techniques such as focused ion beam scanning electron microscopy (FIB-SEM) help to better interpret these results. The purpose of this study was to investigate the differences between mercury intrusion and scanning electron microscopy and to identify the limitations of each method. Porous microparticles, functionalized calcium carbonate, were loaded with bovine serum albumin and dipalmitoylphosphatidylcholine (DPPC) by solvent evaporation and results of the pore size distribution obtained by both methods were compared. The internal structure of the novel pharmaceutical excipient, functionalized calcium carbonate, was revealed for the first time. Our results demonstrated that image analysis provides a closer representation of the material distribution since it was possible to discriminate between blocked and filled pores. The physical nature of the loaded substances is critical for the deposition within the pores of functionalized calcium carbonate. We conclude, that a combination of mercury intrusion porosimetry and focused ion beam scanning electron microscopy allows for a reliable analysis of sub-micron porous structures of particulate drug carriers.
Collapse
Affiliation(s)
- Maryam Farzan
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Roger Roth
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Gabriela Québatte
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Joachim Schoelkopf
- Fundamental research, Omya International AG, 4665 Oftringen, Switzerland.
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
45
|
Laurenti M, Lamberti A, Genchi GG, Roppolo I, Canavese G, Vitale-Brovarone C, Ciofani G, Cauda V. Graphene Oxide Finely Tunes the Bioactivity and Drug Delivery of Mesoporous ZnO Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:449-456. [PMID: 30525399 DOI: 10.1021/acsami.8b20728] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesoporous zinc oxide (ZnO) scaffolds coated with drop-cast graphene oxide (GO) flakes are proposed to be a novel bilayer system featuring bioactivity, biocompatibility, and promising loading/release properties for controlled drug-delivery systems. The high-surface-area ZnO scaffolds show clear apatite deposition, but their particular surface chemistry and topography prevent the formation of a continuous coating, resulting in micrometric crystalline apatite aggregates after 28 days in simulated body fluid (SBF). When gentamicin sulfate (GS) is considered as a model molecule, pure ZnO scaffolds also show functional GS loading efficiency, with fast in vitro release kinetics driven by a simple diffusion mechanism. Strikingly, the bioactivity and GS delivery properties of mesoporous ZnO are efficiently triggered by drop-casting GO flakes atop the mesoporous scaffold surface. The resulting ZnO@GO bilayer scaffolds show the formation of a uniform apatite coating after 28 days in SBF and demonstrate a biocompatible behavior, supporting the culture of SaOS-2 osteoblast-like cells. Moreover, the GO coating also leads to a barrier-layer effect, preventing fast GS release, particularly in the short time range. This barrier effect, coupled with the existence of nanopores within the GO structure, sieves drug molecules from the mesoporous ZnO matrix and allows for a delayed release of the GS molecule. We, thus, demonstrated a new-generation ZnO@GO bilayer system as effective multifunctional and biocompatible scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Marco Laurenti
- Department of Applied Science and Technology , Politecnico di Torino , C.so Duca degli Abruzzi 24 , 10129 Turin , Italy
| | - Andrea Lamberti
- Department of Applied Science and Technology , Politecnico di Torino , C.so Duca degli Abruzzi 24 , 10129 Turin , Italy
| | - Giada Graziana Genchi
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces , Viale Rinaldo Piaggio 34 , 56025 Pontedera , Pisa , Italy
| | - Ignazio Roppolo
- Department of Applied Science and Technology , Politecnico di Torino , C.so Duca degli Abruzzi 24 , 10129 Turin , Italy
| | - Giancarlo Canavese
- Department of Applied Science and Technology , Politecnico di Torino , C.so Duca degli Abruzzi 24 , 10129 Turin , Italy
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology , Politecnico di Torino , C.so Duca degli Abruzzi 24 , 10129 Turin , Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces , Viale Rinaldo Piaggio 34 , 56025 Pontedera , Pisa , Italy
- Department of Mechanical and Aerospace Engineering , Politecnico di Torino , C.so Duca degli Abruzzi 24 , 10129 Turin , Italy
| | - Valentina Cauda
- Department of Applied Science and Technology , Politecnico di Torino , C.so Duca degli Abruzzi 24 , 10129 Turin , Italy
| |
Collapse
|
46
|
Zhang Y, Xing Y, Xian M, Shuang S, Dong C. Folate-targeting and bovine serum albumin-gated mesoporous silica nanoparticles as a redox-responsive carrier for epirubicin release. NEW J CHEM 2019. [DOI: 10.1039/c8nj05476b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A targeted DDS with covalently conjugated BSA and folate for GSH-triggered drug release and recognition of FR-positive cancer cells.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yang Xing
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Ming Xian
- Department of chemistry
- Washington State University
- Pullman
- USA
| | - Shaomin Shuang
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Chuan Dong
- Institute of Environmental Science, and School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
47
|
Bustos‐Terrones V, Serratos IN, Vargas R, Landeros‐Rivera BC, Bustos‐Terrones YA, Soto Estrada AM, Vicente Escobar JO, Romero Romo MA, Uruchurtu J, Menchaca C, Esparza Schulz JM, Domínguez A. SBA15-Fluconazole as a Protective Approach Against Mild Steel Corrosion: Synthesis, Characterization, and Computational Studies. ChemistryOpen 2018; 7:984-994. [PMID: 30524924 PMCID: PMC6276104 DOI: 10.1002/open.201800201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
A SBA15-Fluconazole composite (SBA15-Flu) was prepared to formulate a self-healing coating for mild steel. The composite was obtained by dispersing SBA15 in a methanolic solution containing Fluconazole (Flu). The materials were characterized by using different techniques. Electrochemical impedance spectroscopy (EIS) was used for protective behavior evaluation of the coatings on mild steel substrates in an electrolytic solution prepared from sodium chloride and ammonium sulfate. The EIS results indicate that the inhibitor trapped in the SiO2 matrix is released when it comes into contact the aggressive solution, thus protecting the metal. To understand the inhibitor release mechanism, docking studies were used to model the SBA15-Flu complex, which allowed us to further determine polar and non-polar contributions to the binding free energy. An analysis of the electron density within the quantum theory of atoms in molecules and the non-covalent interaction index frameworks were also carried out for the most favorable models of SBA15-Flu. The results indicate that the liberation rate of the Flu molecules is mainly determined by the formation of strong O-H⋅⋅⋅O, O-H⋅⋅⋅N, and O-H⋅⋅⋅F hydrogen bonds.
Collapse
Affiliation(s)
- Victoria Bustos‐Terrones
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| | - Iris N. Serratos
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| | - Rubicelia Vargas
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| | - Bruno C. Landeros‐Rivera
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| | - Yaneth A. Bustos‐Terrones
- División de Estudios de Posgrado e Investigación—Ingeniería AmbientalInstituto Tecnológico de CuliacánJuan de Dios Batiz 310, Col. Guadalupe, CuliacánSinaloa C.P.80220Mexico
| | - Ana M. Soto Estrada
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| | - Jonathan O. Vicente Escobar
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| | - Mario A. Romero Romo
- Área Ingeniería de MaterialesUniversidad Autónoma Metropolitana-AzcapotzalcoAv. San Pablo 180, Col. ReynosaCiudad de México, C.P.02200Mexico
| | - Jorge Uruchurtu
- Universidad Autónoma del Estado de MorelosCentro de Investigación en Ingeniería y Ciencias AplicadasAv. Universidad 1009, Col. Chamilpa, CuernavacaMorelos C.P.60010Mexico
| | - Carmina Menchaca
- Universidad Autónoma del Estado de MorelosCentro de Investigación en Ingeniería y Ciencias AplicadasAv. Universidad 1009, Col. Chamilpa, CuernavacaMorelos C.P.60010Mexico
| | - Juan M. Esparza Schulz
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| | - Armando Domínguez
- Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaSan Rafael Atlixco 186, Col. VicentinaCiudad de México, C.P.09340Mexico
| |
Collapse
|
48
|
Abstract
Bone infection represents greatest challenge in public health care with serious social and economic implications. The efforts of the scientific community are focused in the development of innovative and advanced biomaterials with anti-infective properties related to their non-fouling, bactericidal and/or antibiofilm capabilities. This chapter aims at thoroughly surveying the different approaches based on silica mesoporous materials (SMMs) for bone infection management. Bacteria repelling surfaces by zwitterionization process, bactericidal effect by implantable devices with antimicrobial local delivery agents and antibiofilm effect by more sophisticated systems based on targeted nanocarriers will be considered.
Collapse
Affiliation(s)
- María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Montserrat Colilla
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Isabel Izquierdo-Barba
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
49
|
Yu DG, Li JJ, Williams GR, Zhao M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J Control Release 2018; 292:91-110. [PMID: 30118788 DOI: 10.1016/j.jconrel.2018.08.016] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 12/20/2022]
Abstract
The development of oral dosage forms for poorly water-soluble active pharmaceutical ingredients (APIs) is a persistent challenge. A range of methods has been explored to address this issue, and amorphous solid dispersions (ASDs) have received increasing attention. ASDs are typically prepared by starting with a liquid precursor (a solution or melt) and applying energy for solidification. Many techniques can be used, with the emergence of electrospinning as a potent option in recent years. This method uses electrical energy to induce changes from liquid to solid. Through the direct applications of electrical energy, electrospinning can generate nanofiber-based ASDs from drug-loaded solutions, melts and melt-solutions. The technique can also be combined with other approaches using the application of mechanical, thermal or other energy sources. Electrospinning has numerous advantages over other approaches to produce ASDs. These advantages include extremely rapid drying speeds, ease of implentation, compatibility with a wide range of active ingredients (including those which are thermally labile), and the generation of products with large surface areas and high porosity. Furthermore, this technique exhibits the potential to create so-called 'fifth-generation' ASDs with nanostructured architectures, such as core/shell or Janus systems and their combinations. These advanced systems can improve dissolution behaviour and provide programmable drug release profiles. Additionally, the fiber components and their spatial distributions can be precisely controlled. Electrospun fiber-based ASDs can maintain an incorporated active ingredient in the amorphous physical form for prolonged periods of time because of their homogeneous drug distribution within the polymer matrix (typically they comprise solid solutions), and ability to inhibit molecular motion. These ASDs can be utilised to generate oral dosage forms for poorly water-soluble drugs, resulting in linear or multiple-phase release of one or more APIs. Electrospun ASDs can also be exploited as templates for manipulating molecular self-assembly, offering a bridge between ASDs and other types of dosage forms. This review addresses the development, advantages and pharmaceutical applications of electrospinning for producing polymeric ASDs. Material preparation and analysis procedures are considered. The mechanisms through which performance has been improved are also discussed.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiao-Jiao Li
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Min Zhao
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
50
|
Song B, Hu G. Lotus Leaf-Inspired Bone Cement Particles with Ultrahigh Drug Encapsulation Capacity. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| | - Gaoli Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi 710069, People’s Republic of China
| |
Collapse
|