1
|
Güzel-Akdemir Ö, Akdemir A. Urease inhibitors for the treatment of H. pylori. Expert Opin Ther Pat 2025; 35:17-30. [PMID: 39495126 DOI: 10.1080/13543776.2024.2423004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Helicobacter pylori infects almost half of the World population. Although many infected people are symptom free, the microorganism can still cause a variety of gastrointestinal disorders and gastric adenocarcinoma. It is considered a priority pathogen for the development of new antibiotics by the World Health Organisation (WHO). Many virulence factors of H. pylori have been described. This paper will on H. pylori Urease (HPU). AREA COVERED This paper will discuss the (patho)physiology and structure of HPU. In addition, urease inhibitors with known activity against the HPU or inhibitors that show H. pylori growth inhibition will be discussed. EXPERT OPINION Increase in selectivity, affinity and potency of HPU inhibitors can be achieved by the design of compounds that interact with distinct regions within the enzyme active site. Especially, covalent interactions seem promising as they clearly effect the dose requirement of the drug candidate.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Istanbul University, Faculty of Pharmacy, Beyazit/Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Istinye University, Sariyer/Istanbul, Turkey
| |
Collapse
|
2
|
Lim B, Kim KS, Ahn JY, Na K. Overcoming antibiotic resistance caused by genetic mutations of Helicobacter pylori with mucin adhesive polymer-based therapeutics. Biomaterials 2024; 308:122541. [PMID: 38547832 DOI: 10.1016/j.biomaterials.2024.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 05/03/2024]
Abstract
Herein, we describe the 3'-sialyllactose-polyethyleneimine-chlorine e6 conjugate (3PC), meticulously engineered to effectively target Helicobacter bacteria (H. pylori) within the gastric environment. The composition of 3PC comprises polyethyleneimine, a cationic polymer, 3'-sialyllactose, which exhibits a specific binding affinity for H. pylori surface proteins, and a photosensitizer capable of generating oxygen radicals in response to specific wavelengths. The distinctive feature of 3PC lies in its capacity to enhance interaction with the anionic mucus layer facilitated by electrostatic forces. This interaction results in prolonged residence within the intestinal environment. The extended vacation in the intestinal milieu overcomes inherent limitations that have historically impeded conventional antibiotics from efficiently reaching and targeting H. pylori. 3PC can be harnessed as a potent tool for antibacterial photodynamic therapy, and its versatility extends to addressing the challenges posed by various antibiotic-resistant strains. The exceptional efficacy of 3PC in enhancing intestinal residence time and eradicating H. pylori has been robustly substantiated in animal models, particularly in mice. In summary, 3PC is a formidable agent capable of eradicating H. pylori, irrespective of its antibiotic resistance status, by efficiently penetrating and selectively targeting the mucus layer within the gastric environment.
Collapse
Affiliation(s)
- Byoungjun Lim
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Ji Yong Ahn
- Department of Gastroenterology, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, Republic of Korea
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
3
|
Arrua EC, Sanchez SV, Trincado V, Hidalgo A, Quest AFG, Morales JO. Experimental design and optimization of a novel dual-release drug delivery system with therapeutic potential against infection with Helicobacter pylori. Colloids Surf B Biointerfaces 2022; 213:112403. [PMID: 35219219 DOI: 10.1016/j.colsurfb.2022.112403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
The objective of this study was to develop clarithromycin-loaded lipid nanocarriers and incorporate them into microcapsules for pH-specific localized release of clarithromycin in the Helicobacter pylori microenvironment in order to obtain a gastro-retentive and pH-sensitive formulation. A Plackett-Burman design was applied to identify the effect of 5 factors on 3 responses. Then, a central composite design was applied to estimate the most important factors leading to the best compromise between lower particle size, polydispersity index and particle size changes. The optimized clarithromycin-loaded nanocapsules were employed to generate microcapsules by different methodologies. Nanocarriers and microcapsules were characterized in vitro. Experimental design and conditions were optimized to obtain nanocapsules of around 100 nm by a modified phase inversion-based process. High particle size homogeneity and high stability were achieved. At 4 °C both optimized lipid nanocapsules were stable during at least 365 days, confirming stability under those conditions. Clarithromycin incorporation in the nanocarrier was effective. Both types of microcoating were evaluated regarding their pH sensitivity. Spray drying microcapsules exhibited similar and uncontrolled release profiles at pH 2 and 7.4. Alternatively, when microcoatings were generated using an Encapsulator, release was insignificant at pH 2, while at pH 7.4 release was triggered, and appeared more appropriate to formulate microcapsules that release nanocarriers under pH neutral Helicobacter pylori microenvironment conditions, thereby permitting effective drug delivery in infected locations. The release of clarithromycin from lipid nanocarrier loaded microcapsules was pH-sensitive suggesting that this could be an effective strategy for clarithromycin delivery to the Helicobacter pylori microenvironment. Clarithromycin nanocapsules with and without microcoating showed a high anti-Helicobacter pylori activity in vitro.
Collapse
Affiliation(s)
- Eva C Arrua
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile
| | - Sofía V Sanchez
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380492, Chile
| | - Valeria Trincado
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Chile
| | - Antonio Hidalgo
- Laboratory of Cellular Communication, Center for the study of Exercise, Metabolism and Cancer (CEMC), Program in Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile; Laboratory of Cellular Communication, Center for the study of Exercise, Metabolism and Cancer (CEMC), Program in Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Javier O Morales
- Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Universidad de Chile, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380492, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380492, Chile.
| |
Collapse
|
4
|
Lopes-de-Campos D, Leal Seabra C, Pinto RM, Adam Słowiński M, Sarmento B, Nunes C, Cristina L Martins M, Reis S. Targeting and Killing the Ever-Challenging Ulcer Bug. Int J Pharm 2022; 617:121582. [PMID: 35176334 DOI: 10.1016/j.ijpharm.2022.121582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
TreatingHelicobacter pylori(H. pylori) infections has been a never-ending challenge, which has contributed to the high incidence of gastric cancer. The antibiotics commonly used are not reaching the infection site in its active state and in a concentration high enough to effectively kill the bacteria. In this context, amoxicillin-loaded lipid nanoparticles with carefully chosen materials were developed, namely dioleoylphosphatidylethanolamine (DOPE) as a targeting agent and Tween®80 and linolenic acid as antimicrobial agents. This work shows the ability of these nanoparticles in (i) targeting the bacteria (imaging flow cytometry) and inhibiting their adhesion to MKN-74 cells (bacteria-gastric cells adhesion model); (ii) killing the bacteria even as an antibiotic-free strategy (time-kill kineticstudies, scanning electron microscopy, and bacterial membrane permeability studies); (iii)overcoming gastrointestinal features using a newly developedin vitroinfection model that includes both physical (epithelial cells and mucus) and the chemical (acid medium) barriers; and in (iv) being incorporated in a floating system that can increase the retention time at the stomach. Overall, this work presents an effective nanosystem to deal with the ulcer-bug. Besides, it also provides two innovative tools transferable to other fields-anin vitroinfection model and a floating system to incorporate nanoparticles.
Collapse
Affiliation(s)
- Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - Catarina Leal Seabra
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal; i3S - Instituto de Investigacao e Inovacao em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto de Engenharia Biomedica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - Mateusz Adam Słowiński
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigacao e Inovacao em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto de Engenharia Biomedica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; IINFACTS, Instituto de Investigacao e Formacao Avancada em Ciencias e Tecnologias da Saude, Instituto Universitario de Ciencias da Saude, Gandra, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal
| | - M Cristina L Martins
- i3S - Instituto de Investigacao e Inovacao em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto de Engenharia Biomedica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciencias Biomedicas Abel Salazar, Universidade do Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciencias Químicas, Faculdade de Farmacia, Universidade do Porto, Portugal.
| |
Collapse
|
5
|
Qin Y, Lao YH, Wang H, Zhang J, Yi K, Chen Z, Han J, Song W, Tao Y, Li M. Combatting Helicobacter pylori with oral nanomedicines. J Mater Chem B 2021; 9:9826-9838. [PMID: 34854456 DOI: 10.1039/d1tb02038b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori (H. pylori) infection is considered to be the main cause of most digestive diseases,such as chronic active gastritis, gastroduodenal ulcers, or even gastric cancer. Oral medication is a transformative approach to treat H. pylori-induced infections. However, unlike intravenous administration, orally administrated drugs have to overcome various barriers before reaching the infected sites, which significantly limits the therapeutic efficacy. These challenges may be addressed by emerging nanomedicine that is equipped with nanotechnology approaches to enable efficient and effective targeted delivery of drugs. Herein, in this review, we first discuss the conventional therapy for the eradication of H. pylori. Through the introduction of the critical barriers of oral administration, the benefits of nanomedicine are highlighted. Recently-published examples of nanocarriers for combating H. pylori in terms of design, preparation, and antimicrobial mechanisms are then presented, followed by our perspective on potential future research directions of oral nanomedicines.
Collapse
Affiliation(s)
- Yuan Qin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhuanggui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
6
|
Talebi M, Hamidian E, Niasari-Naslaji F, Rahmani S, Hosseini FS, Boumi S, Montazer MN, Asadi M, Amanlou M. Synthesis, molecular docking, and biological evaluation of nitroimidazole derivatives as potent urease inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02727-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Luo M, Jia YY, Jing ZW, Li C, Zhou SY, Mei QB, Zhang BL. Construction and optimization of pH-sensitive nanoparticle delivery system containing PLGA and UCCs-2 for targeted treatment of Helicobacter pylori. Colloids Surf B Biointerfaces 2018; 164:11-19. [PMID: 29367052 DOI: 10.1016/j.colsurfb.2018.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/04/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
The acidic environment of the stomach is a threat to the curative effect of antimicrobial drugs for the eradication of Helicobacter pylori (H. pylori) in the infected area. The conventional clinical formulations of antibiotics have low specificity to H. pylori, which disrupts the normal balance of intestinal microbiomes. Therefore, oral drug delivery system with better stability at low pH as well as higher specificity to target H. pylori would provide more effective strategy to eradicate H. pylori and reduce the side effect of antibiotics. Based on the construction of UreI-mediated targeted drug delivery system developed by our group, in this work, using urea-modified UCCs-2 as targeting moiety to the UreI channel protein which is specifically expressed on H. pylori, pH-sensitive amoxicillin-loaded AMX-PLGA/UCCs-2 nanoparticles produced by UCCs-2 and PLGA for targeted treatment of H. pylori infection were established. The nanoparticles were prepared by double emulsion-solvent evaporation method. To achieve a promising drug delivery system with favorable pH-sensitive properties, we adopted an orthogonal design to obtain the optimal formulation. The results showed that the optimized AMX-PLGA/UCCs-2 nanoparticles were in a favorable pH sensitive manner and exhibited low cytotoxicity, higher specificity and better anti-H. pylori efficiency than amoxicillin and non-targeting AMX-PLGA/Cs nanoparticle both in vitro and in vivo, which can protect the antimicrobial drugs against acidic environment and deliver them to targeted eradicate H. pylori in the infected location. The cellular uptake mechanism showed that AMX-PLGA/UCCs-2 nanoparticles are an effective UreI-mediated targeted drug delivery system for anti-H. pylori treatment, which can also be used as promising nanocarriers for oral delivery of other therapeutic drugs to targeted treat H. pylori.
Collapse
Affiliation(s)
- Min Luo
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Yang Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zi-Wei Jing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Mackie AR, Goycoolea FM, Menchicchi B, Caramella CM, Saporito F, Lee S, Stephansen K, Chronakis IS, Hiorth M, Adamczak M, Waldner M, Nielsen HM, Marcelloni L. Innovative Methods and Applications in Mucoadhesion Research. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600534] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/10/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Alan R. Mackie
- Institute of Food Research; Norwich Research Park Norwich NR4 7UA UK
- School of Food Science and Nutrition; University of Leeds; LS2 9JT Leeds UK
| | - Francisco M. Goycoolea
- School of Food Science and Nutrition; University of Leeds; LS2 9JT Leeds UK
- Institut für Biologie und Biotechnologie der Pflanzen; Westfälische Wilhelms-Universität Münster; Schlossgarten 3 48149 Münster Germany
| | - Bianca Menchicchi
- Department of Medicine 1; University of Erlangen-Nueremberg; Hartmanstrasse 14 91052 Erlangen Germany
- Nanotechnology Group; Department of Plant Biology and Biotechnology; University of Münster; Schlossgarten 3 48149 Münster Germany
| | | | - Francesca Saporito
- Department of Drug Sciences; University of Pavia; Via Taramelli, 12 27100 Pavia Italy
| | - Seunghwan Lee
- Department of Mechanical Engineering; Technical University of Denmark; Produktionstorvet 2800 Kgs Lyngby Copenhagen Denmark
| | - Karen Stephansen
- National Food Institute; Technical University of Denmark; Søltofts Plads, 2800 Kgs Lyngby Copenhagen Denmark
| | - Ioannis S. Chronakis
- National Food Institute; Technical University of Denmark; Søltofts Plads, 2800 Kgs Lyngby Copenhagen Denmark
| | - Marianne Hiorth
- School of Pharmacy; University of Oslo; Postboks 1068 Blindern 0316 OSLO Norway
| | - Malgorzata Adamczak
- School of Pharmacy; University of Oslo; Postboks 1068 Blindern 0316 OSLO Norway
| | - Max Waldner
- Medizinische Klinik 1; Ulmenweg 18 91054 Erlangen Germany
| | - Hanne Mørck Nielsen
- Department of Pharmacy; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luciano Marcelloni
- S.I.I.T. S.r.l Pharmaceutical & Health Food Supplements; Via Canova 5/7-20090 Trezzano S/N Milan Italy
| |
Collapse
|
9
|
Hassan STS, Šudomová M. The Development of Urease Inhibitors: What Opportunities Exist for Better Treatment of Helicobacter pylori Infection in Children? CHILDREN-BASEL 2017; 4:children4010002. [PMID: 28054971 PMCID: PMC5296663 DOI: 10.3390/children4010002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Stomach infection with Helicobacter pylori (H. pylori) causes severe gastroduodenal diseases in a large number of patients worldwide. The H. pylori infection breaks up in early childhood, persists lifelong if not treated, and is associated with chronic gastritis and an increased risk of peptic ulcers and gastric cancer. In recent years, the problem of drug-resistant strains has become a global concern that makes the treatment more complicated and the infection persistent at higher levels when the antibiotic treatment is stopped. Such problems have led to the development of new strategies to eradicate an H. pylori infection. Currently, one of the most important strategies for the treatment of H. pylori infection is the use of urease inhibitors. Despite the fact that large numbers of molecules have been shown to exert potent inhibitory activity against H. pylori urease, most of them were prevented from being used in vivo and in clinical trials due to their hydrolytic instability, toxicity, and appearance of undesirable side effects. Therefore, it is crucial to focus attention on the available opportunities for the development of urease inhibitors with suitable pharmacokinetics, high hydrolytic stability, and free toxicological profiles. In this commentary, we aim to afford an outline on the current status of the use of urease inhibitors in the treatment of an H. pylori infection, and to discuss the possibility of their development as effective drugs in clinical trials.
Collapse
Affiliation(s)
- Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 61242 Brno, Czech Republic.
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6-Suchdol, Czech Republic.
| | - Miroslava Šudomová
- Museum of the Brno Region, Museum of Literature in Moravia, Porta Coeli 1001, 66602 Předklášteří, Czech Republic.
| |
Collapse
|
10
|
Jain SK, Haider T, Kumar A, Jain A. Lectin-Conjugated Clarithromycin and Acetohydroxamic Acid-Loaded PLGA Nanoparticles: a Novel Approach for Effective Treatment of H. pylori. AAPS PharmSciTech 2016; 17:1131-40. [PMID: 26566630 DOI: 10.1208/s12249-015-0443-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori infection remains challenging as it mainly colonized beneath the deep gastric mucosa and adheres to epithelial cells of the stomach. Concanavalin-A (Con-A)-conjugated gastro-retentive poly (lactic-co-glycolic acid) (PLGA) nanoparticles of acetohydroxamic acid (AHA) and clarithromycin (CLR) were prepared and evaluated under in vitro conditions. Solvent evaporation method was employed for preparation of nanoparticles and characterized for particle size distribution, surface morphology, percent drug entrapment, and in vitro drug release in simulated gastric fluid. Optimized nanoparticles were conjugated with Con-A and further characterized for Con-A conjugation efficiency and mucoadhesion and tested for in vitro anti-H. pylori activity. The conjugation with Con-A further sustained the drug release over a period of 8 h when compared to non-conjugated nanoparticles of AHA and CLR. In vitro anti H. pylori study confirmed that Con-A-conjugated nanoparticles containing both drugs, i.e., CLR and AHA, had shown maximum zone of inhibition compared to other formulations. In a nut shell, results suggest that the developed systems could be used for better therapeutic activity against H. pylori infection.
Collapse
|
11
|
Ping Y, Hu X, Yao Q, Hu Q, Amini S, Miserez A, Tang G. Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection. NANOSCALE 2016; 8:16486-98. [PMID: 27605059 DOI: 10.1039/c6nr05551f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present a bioinspired design strategy to engineer bacteria-targeting and membrane-disruptive nanoparticles for the effective antibiotic therapy of Helicobacter pylori (H. pylori) infection. Antibacterial nanoparticles were self-assembled from highly exfoliated montmorillonite (eMMT) and cationic linear polyethyleneimine (lPEI) via electrostatic interactions. eMMT functions as a bioinspired 'sticky' building block for anchoring antibacterial nanoparticles onto the bacterial cell surface via bacteria-secreted extracellular polymeric substances (EPS), whereas membrane-disruptive lPEI is able to efficiently lyse the bacterial outer membrane to allow topical transmembrane delivery of antibiotics into the intracellular cytoplasm. As a result, eMMT-lPEI nanoparticles intercalated with the antibiotic metronidazole (MTZ) not only efficiently target bacteria via EPS-mediated adhesion and kill bacteria in vitro, but also can effectively remain in the stomach where H. pylori reside, thereby serving as an efficient drug carrier for the direct on-site release of MTZ into the bacterial cytoplasm. Importantly, MTZ-intercalated eMMT-lPEI nanoparticles were able to efficiently eradicate H. pylori in vivo and to significantly improve H. pylori-associated gastric ulcers and the inflammatory response in a mouse model, and also showed superior therapeutic efficacy as compared to standard triple therapy. Our findings reveal that bacterial adhesion plays a critical role in promoting efficient antimicrobial delivery and also represent an original bioinspired targeting strategy via specific EPS-mediated adsorption. The bacteria-adhesive eMMT-lPEI nanoparticles with membrane-disruptive ability may constitute a promising drug carrier system for the efficacious targeted delivery of antibiotics in the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yuan Ping
- School of Materials Science and Engineering and Center for Biomimetic Sensor Science, Nanyang Technological University, Singapore 639798, Singapore.
| | | | | | | | | | | | | |
Collapse
|
12
|
Modification of drug delivery to improve antibiotic targeting to the stomach. Ther Deliv 2016; 6:741-62. [PMID: 26149788 DOI: 10.4155/tde.15.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The obstacles to the successful eradication of Helicobacter pylori infections include the presence of antibiotic-resistant bacteria and therapy requiring multiple drugs with complicated dosing schedules. Other obstacles include bacterial residence in an environment where high antibiotic concentrations are difficult to achieve. Biofilm production by the bacteria is an additional challenge to the effective treatment of this infection. Conventional oral formulations used in the treatment of this infection have a short gastric residence time, thus limiting the duration of exposure of drug to the bacteria. This review summarizes the current research in the development of gastroretentive formulations and the prospective future applications of this approach in the targeted delivery of drugs such as antibiotics to the stomach.
Collapse
|
13
|
Ramanathan R, Jiang Y, Read B, Golan-Paz S, Woodrow KA. Biophysical characterization of small molecule antiviral-loaded nanolipogels for HIV-1 chemoprophylaxis and topical mucosal application. Acta Biomater 2016; 36:122-31. [PMID: 26947382 PMCID: PMC5678975 DOI: 10.1016/j.actbio.2016.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/20/2016] [Accepted: 02/22/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Nanocarriers are versatile vehicles for drug delivery, and emerging as platforms to formulate and deliver multiple classes of antiretroviral (ARV) drugs in a single system. Here we describe the fabrication of hydrogel-core and lipid-shell nanoparticles (nanolipogels) for the controlled loading and topical, vaginal delivery of maraviroc (MVC) and tenofovir disoproxil fumarate (TDF), two ARV drugs with different mechanisms of action that are used in the treatment of HIV. The nanolipogel platform was used to successfully formulate MVC and TDF, which produced ARV drug-loaded nanolipogels that were characterized for their physical properties and antiviral activity against HIV-1 BaL in cell culture. We also show that administration of these drug carriers topically to the vaginal mucosa in a murine model leads to antiviral activity against HIV-1 BaL in cervicovaginal lavages. Our results suggest that nanolipogel carriers are promising for the encapsulation and delivery of hydrophilic small molecule ARV drugs, and may expand the nanocarrier systems being investigated for HIV prevention or treatment. STATEMENT OF SIGNIFICANCE Topical, mucosal intervention of HIV is a leading strategy in the efforts to curb the spread of viral infection. A significant research thrust in the field has been to characterize different dosage forms for formulation of physicochemically diverse antiretroviral drugs. Nanocarriers have been used to formulate and deliver small molecule and protein drugs for a range of applications, including ARV drugs for HIV treatment. The broad significance of our work includes evaluation of lipid-shell, hydrogel-core nanoparticles for formulation and topical, vaginal delivery of two water-soluble antiretroviral drugs. We have characterized these nanocarriers for their physical properties and their biological activity against HIV-1 infection in vitro, and demonstrated the ability to deliver drug-loaded nanocarriers in vivo.
Collapse
Affiliation(s)
- R Ramanathan
- 3720 15th Ave NE, Foege Hall, Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Y Jiang
- 3720 15th Ave NE, Foege Hall, Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - B Read
- 3720 15th Ave NE, Foege Hall, Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - S Golan-Paz
- 3720 15th Ave NE, Foege Hall, Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - K A Woodrow
- 3720 15th Ave NE, Foege Hall, Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Jing ZW, Jia YY, Wan N, Luo M, Huan ML, Kang TB, Zhou SY, Zhang BL. Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to Helicobacter pylori. Biomaterials 2016; 84:276-285. [DOI: 10.1016/j.biomaterials.2016.01.045] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
|
15
|
Lopes D, Nunes C, Martins MCL, Sarmento B, Reis S. Eradication of Helicobacter pylori: Past, present and future. J Control Release 2014; 189:169-86. [PMID: 24969353 DOI: 10.1016/j.jconrel.2014.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is the major cause of chronic gastritis and peptic ulcers. Since the classification as a group 1 carcinogenic by International Agency for Research on Cancer, the importance of the complete H. pylori eradication has obtained a novel meaning. Hence, several studies have been made in order to deepen the knowledge in therapy strategies. However, the current therapy presents unsatisfactory eradication rates due to the lack of therapeutic compliance, antibiotic resistance, the degradation of antibiotics at gastric pH and their insufficient residence time in the stomach. Novel approaches have been made in order to overcome these limitations. The purpose of this review is to provide an overview about the current therapy and its limitations, while highlighting the possibility of using micro- and nanotechnology to develop gastric drug delivery systems, overcoming these difficulties in the future.
Collapse
Affiliation(s)
- Daniela Lopes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Cláudia Nunes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IINFACTS - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Superior de Ciências da Saúde-Norte, Gandra-PRD, Portugal
| | - Salette Reis
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
16
|
Jain AK, Jain SK. Development and characterization of nanolipobeads-based dual drug delivery system forH. Pyloritargeting. J Drug Target 2013; 21:593-603. [DOI: 10.3109/1061186x.2013.784978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Wang Y, Tang N, Meng L, Zhang P, Xu K, Jiang N, Zhang H, Ou N, Wu D, Chen A, Zhang X, Shi R. Safety and tolerability of bismuthyl ecabet suspension, a novel anti-ulcer agent, following single and multiple oral dose administration in healthy Chinese subjects. Clin Drug Investig 2012; 32:247-252. [PMID: 22299715 DOI: 10.2165/11599110-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bismuthyl ecabet is a combination of sulfodehydroabietic acid and bismuth, which forms a new type of salt that is useful in treating peptic ulcers and gastritis. OBJECTIVE This study was designed to assess the safety and tolerability of bismuthyl ecabet suspension in healthy Chinese subjects. METHODS For the study 77 volunteers were randomized into single- or multiple-dose groups for oral administration of bismuthyl ecabet 200-1600 mg once daily or 1200 mg twice daily for 7 days. Safety and tolerability were assessed by adverse events, physical examination and serum biochemistry. RESULTS In both the single- and multiple-dose studies, no severe adverse events were observed in any of the volunteers. The main adverse events caused by the drug in single-dose groups were an increase in serum alanine transaminase (ALT), γ-glutamyl transpeptidase, blood urea nitrogen, total bilirubin and skin rash. The numbers of adverse events judged to be possibly related to the drug were 2/18 in the 400 mg, 2/18 in the 800 mg, 1/8 in the 1200 mg, and none in the 200 or 1600 mg dose groups. In the multiple-dose studies, an increased serum ALT and aspartate transaminase (AST) was found in one subject after 7 days of administration of the drug. All serum biochemistry returned to normal levels and skin rash resolved after 7 days without any special treatment. CONCLUSION Bismuthyl ecabet was shown to be safe and well tolerated in healthy Chinese subjects. The oral dosing regimen selected for subsequent phase II/III clinical trials was 800 mg twice daily.
Collapse
Affiliation(s)
- Yongqing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Maham A, Tang Z, Wu H, Wang J, Lin Y. Protein-based nanomedicine platforms for drug delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:1706-1721. [PMID: 19572330 DOI: 10.1002/smll.200801602] [Citation(s) in RCA: 358] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Protein-based nanomedicine platforms for drug delivery comprise naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug-delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug-delivery systems, including the ferritin/apoferritin protein cage, plant-derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms, including various protein cages, microspheres, nanoparticles, hydrogels, films, minirods, and minipellets. The protein cage is the most newly developed biomaterial for drug delivery and therapeutic applications. The uniform size, multifunctionality, and biodegradability push it to the frontier of drug delivery. In this Review, the recent strategic development of drug delivery is discussed with emphasis on polymer-based, especially protein-based, nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein-based drug-delivery system.
Collapse
Affiliation(s)
- Aihui Maham
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | |
Collapse
|
19
|
Bardonnet PL, Faivre V, Pugh WJ, Piffaretti JC, Falson F. Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. J Control Release 2006; 111:1-18. [PMID: 16403588 DOI: 10.1016/j.jconrel.2005.10.031] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 10/31/2005] [Indexed: 01/03/2023]
Abstract
The challenge to develop efficient gastroretentive dosage forms began about 20 years ago, following the discovery of Helicobacter pylori by Warren and Marshall. In order to understand the real difficulty of increasing the gastric residence time of a dosage form, we have first summarized the important physiologic parameters, which act upon the gastric residence time. Afterwards, we have reviewed the different drug delivery systems designed until now, i.e. high-density, intragastric floating, expandable, superporous hydrogel, mucoadhesive and magnetic systems. Finally, we have focused on gastroretentive dosage forms especially designed against H. pylori, including specific targeting systems against this bacterium.
Collapse
Affiliation(s)
- P L Bardonnet
- Laboratoire de Pharmacie Galénique Industrielle, EA 3741, ISPB, Université Claude Bernard, Lyon I, 8 av. Rockefeller, 69373 Lyon, France
| | | | | | | | | |
Collapse
|
20
|
Troutier AL, Véron L, Delair T, Pichot C, Ladavière C. New insights into self-organization of a model lipid mixture and quantification of its adsorption on spherical polymer particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:9901-10. [PMID: 16229507 DOI: 10.1021/la050796l] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The adsorption of lipids onto spherical polymer colloids led to original assemblies presenting structural characteristics adjustable with the lipid formulation. The model system selected for this work involved sulfate-charged poly(styrene) submicrometer particles and zwitterionic/cationic lipid mixtures composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP). According to the theoretical packing parameter calculations and whatever the DPPC/DPTAP ratio, the two lipids self-assembled in aqueous media to spontaneously form vesicles. A phase transition investigation of these DPPC/DPTAP vesicles using differential scanning calorimetry revealed particular thermotropic behaviors, especially for the equimolar formulation where very strong interactions occurred between DPPC and DPTAP. Furthermore, the coating of the lipids around particles was monitored versus DPPC/DPTAP ratio by means of numerous appropriate techniques. First, a thermogravimetric analysis, providing decomposition profiles of lipid/polymer particle assemblies with temperature, was atypically carried out for such nanostructures. Then, 1H NMR spectroscopy enabled the exact DPPC/DPTAP molar ratios adsorbed on particles to be determined by differentiating both lipids. Subsequently, it also pointed out the major role of electrostatic interactions as driving forces in the assembly elaboration process. In addition to these findings, quantitative information has been collected and correlated with chemical lipid assays and permitted the statement of a lipid bilayer coverage for the assemblies prepared in water, in agreement with quasi-elastic light scattering data.
Collapse
Affiliation(s)
- Anne-Lise Troutier
- UMR 2714 CNRS/bioMérieux, Systèmes Macromoléculaires et Physiopathologie Humaine, ENSL, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
21
|
Abstract
The efficacy of established Helicobacter pylori regimes needs to be reviewed. In view of drug resistance, side effects, and compliance and expense of therapy, treatment failure is increasing and second-line treatment strategies need to be developed. A simulation model suggested by the Cochrane review group showed that H. pylori eradication is cost-effective for duodenal and gastric ulcer long-term. The duration of eradication therapy continues to be controversial. In Europe and other parts of the world, 7-day triple regimes are used, whereas guidelines from the United States recommend 10-14 days of therapy. Antibiotic resistance is a major factor affecting the outcome of eradication therapy. New modified eradication regimes involve substitution of antibiotics used in conjunction with other drugs. The newer generation fluoroquinolones have shown some promise as part of an eradication regimen. Quadruple therapy (bismuth, proton pump inhibitor [PPI] and two antibiotics and sequential treatment [PPI with three antibiotics]) are promising first-line treatments. Novel agents have been tried, but with disappointing results. New drugs and administration forms have been reported but their efficacy needs confirmation.
Collapse
Affiliation(s)
- Peter Bytzer
- Department of Medical Gastroenterology, Glostrup University Hospital, DK-2600 Glostrup, Denmark.
| | | |
Collapse
|