1
|
Rachmawati P, Susanto S, Christian YE. Impact of sterilization method on the system performance of lipid-based novel drug delivery. Int J Pharm 2025; 674:125486. [PMID: 40120779 DOI: 10.1016/j.ijpharm.2025.125486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Sterilization plays a crucial role in the safety and efficacy of lipid-based novel drug delivery systems (NDDS), particularly because of the high sensitivity of lipid components to various sterilization processes. This literature review investigates the impact of different sterilization methods, such as heat sterilization, filtration, radiation, as well as chemical and gas methods, on the physicochemical properties, stability, and therapeutic performance of lipid-based NDDS (LB-NDDS), including liposomes, microemulsions, nanoemulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC). Special emphasis is placed on lipid degradation, drug content, and particle size alterations, that may occur during sterilization. Overall, understanding the suitable sterilization technique for LB-NDDS is critical for maintaining the integrity of drug delivery systems integrity and achieving optimal therapeutic outcomes. The findings provide a comprehensive analysis of the current challenges and recent advancement (supercritical CO2, electron beam, and ozone) of sterilization techniques that align with the sensitive nature of LB-NDDS.
Collapse
Affiliation(s)
- Putriana Rachmawati
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia.
| | - Sharon Susanto
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia.
| | - Yulius Evan Christian
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta 14440, Indonesia.
| |
Collapse
|
2
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Tipnis N, Kastellorizios M, Legassey A, Papadimitrakopoulos F, Jain F, Burgess DJ. Sterilization of Drug-Loaded Composite Coatings for Implantable Glucose Biosensors. J Diabetes Sci Technol 2021; 15:646-654. [PMID: 31786953 PMCID: PMC8120053 DOI: 10.1177/1932296819890620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND An anti-inflammatory drug-loaded composite coating (dexamethasone-loaded poly (lactic-co-glycolic acid) [PLGA] microspheres/polyvinyl alcohol [PVA] hydrogel) was previously developed to counter the foreign body reaction to a fully implantable continuous glucose monitoring biosensor. The long-term sensor functionality was ensured in the presence of the drug-loaded composite coating thus facilitating better diabetes control and management. In order to advance such a drug-device combination product toward clinical testing, addressing sterilization remains a key step due to the heterogeneity of the product components. The main objective of this research was to investigate the effect of two terminal sterilization techniques: gamma radiation and ethylene oxide (EO) on the stability of the anti-inflammatory coatings as well as retention of the glucose sensing ability of the implantable sensor. METHOD The composite coatings, their individual components, and the glucose-sensing elements of the biosensor were subjected to low-temperature gamma radiation and EO cycles. Detailed characterization was conducted on all components before and after sterilization. RESULTS Exposure to gamma radiation affected dexamethasone crystallinity and glucose response linearity of the sensing element, whereas physical aging of microspheres in composite coatings was observed poststerilization with EO. Despite these effects, dexamethasone drug release from coatings was not significantly affected by either technique. CONCLUSION The research findings indicate that both sterilization techniques are feasible for the sterilization of the dexamethasone-loaded PLGA microspheres/PVA hydrogel composite coatings, while EO was preferred for the sterilization of the glucose-sensing element of the biosensor.
Collapse
Affiliation(s)
- Namita Tipnis
- Department of Pharmaceutical Sciences,
University of Connecticut, Storrs, CT, USA
| | - Michail Kastellorizios
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
- Current address: Department of
Pharmaceutical Sciences, University of North Texas Health Science Center, Fort
Worth, TX, USA
| | - Allen Legassey
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
| | - Fotios Papadimitrakopoulos
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
- Institute of Materials Science,
University of Connecticut, Storrs, CT, USA
| | - Faquir Jain
- Biorasis, Inc., UConn Technology
Incubation Program, Storrs, CT, USA
- Department of Electrical and Computer
Engineering, University of Connecticut, Storrs, CT, USA
| | - Diane J. Burgess
- Department of Pharmaceutical Sciences,
University of Connecticut, Storrs, CT, USA
- Diane J. Burgess, PhD, Department of
Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd, Storrs,
CT 06269, USA.
| |
Collapse
|
4
|
Rzepna M, Sadło J, Przybytniak G, Iuliano A. Impact of electron beam treatment on copolymers of polylactide and poly(trimethylene carbonate) in an air atmosphere. J Appl Polym Sci 2021. [DOI: 10.1002/app.50184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Magdalena Rzepna
- Centre for Radiation Research and Technology Institute of Nuclear Chemistry and Technology Warsaw Poland
| | - Jarosław Sadło
- Centre for Radiation Research and Technology Institute of Nuclear Chemistry and Technology Warsaw Poland
| | - Grażyna Przybytniak
- Centre for Radiation Research and Technology Institute of Nuclear Chemistry and Technology Warsaw Poland
| | - Anna Iuliano
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| |
Collapse
|
5
|
Co-delivery of glial cell-derived neurotrophic factor (GDNF) and tauroursodeoxycholic acid (TUDCA) from PLGA microspheres: potential combination therapy for retinal diseases. Drug Deliv Transl Res 2021; 11:566-580. [PMID: 33641047 DOI: 10.1007/s13346-021-00930-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Retinitis pigmentosa (RP) is a group of genetically diverse inherited disorders characterised by the progressive photoreceptors and pigment epithelial cell dysfunction leading to central vision impairment. Although important advances in the understanding of the pathophysiologic pathways involved in RP have been made, drug delivery for the treatment of ocular disorders affecting the posterior segment of the eye is still an unmet clinical need. In the present study, we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating two neuroprotectants agents (glial cell-line-derived neurotrophic factor-GDNF and Tauroursodeoxycholic acid-TUDCA) as a potential therapeutic tool for the treatment of RP. A solid-in-oil-in-water (S/O/W) emulsion solvent extraction-evaporation technique was employed for MS preparation. A combination of PLGA and vitamin E was used to create the microcarriers. The morphology, particle size, encapsulation efficiency and in vitro release profile of the MSs were studied. Encapsulation efficiencies of GDNF and TUDCA for the initial multiloaded MSs, prepared with methylene chloride (MC) as organic solvent and polyvinyl alcohol (PVA) solution in the external phase, were 28.53±0.36% and 45.65±8.01% respectively. Different technological parameters to optimise the formulation such as the incorporation of a water-soluble co-solvent ethanol (EtOH) in the internal organic phase, as well as NaCl concentration, and viscosity using a viscosizing agent (hydroxypropyl methylcellulose-HPMC) in the external aqueous phase were considered. EtOH incorporation and external phase viscosity of the emulsion were critical attributes for improving drug loading of both compounds. In such a way, when using a methylene chloride/EtOH ratio 75:25 into the inner organic phase and the viscosity agent HPMC (1% w/v) in the external aqueous phase, GDNF and TUDCA payloads resulted 48.86±1.49% and 78.58±10.40% respectively, and a decrease in the initial release of GDNF was observed (22.03±1.41% compared with 40.86±6.66% of the initial multi-loaded formulation). These optimised microparticles exhibited sustained in vitro releases over 91 days. These results suggest that the microencapsulation procedure optimised in this work presents a promising technological strategy for the development of multi-loaded intraocular drug delivery systems (IODDS).
Collapse
|
6
|
Study on Thermal Behavior of Some Biocompatible and Biodegradable Materials Based on Plasticized PLA, Chitosan, and Rosemary Ethanolic Extract. INT J POLYM SCI 2020. [DOI: 10.1155/2020/4269792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thermal characterization of some multifunctional environmentally friendly materials based on plasticized poly (lactic acid) (PLA)/chitosan (CS) and rosemary extract (R) previously obtained is presented. Differential scanning calorimetry (DSC) associated with other complex investigations such as chemiluminescence and coupled thermogravimetry (TG)/Fourier-transform infrared spectroscopy (FT-IR)/mass spectroscopy (MS) was performed in order to test both the thermal behavior and the biocomposition–property relationship. It was established that the rosemary ethanolic extract offers an efficient protection against thermoxidative degradation to the new developed plasticized PLA-based biocomposites which show good thermal properties, being suitable for both medical and food packaging applications.
Collapse
|
7
|
Effect of gamma- irradiation on fully aromatic high performance novel thermosets and study of their physico-chemical properties. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Dorati R, Conti B, Colzani B, Dondi D, Lazzaroni S, Modena T, Genta I. Ivermectin controlled release implants based on poly-D, l -lactide and poly-ε-caprolactone. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Bee SL, Hamid ZAA, Mariatti M, Yahaya BH, Lim K, Bee ST, Sin LT. Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1437547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Z. A. Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - M. Mariatti
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - B. H. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Keemi Lim
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Soo-Tueen Bee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| | - Lee Tin Sin
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| |
Collapse
|
10
|
Zhao Y, Sun N, Li Y, Cheng S, Jiang C, Lin S. Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour. Food Res Int 2017; 100:850-857. [DOI: 10.1016/j.foodres.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/01/2022]
|
11
|
de Oliveira AR, Mesquita PC, Machado PRL, Farias KJS, de Almeida YMB, Fernandes-Pedrosa MF, Cornélio AM, do Egito EST, da Silva-Júnior AA. Monitoring structural features, biocompatibility and biological efficacy of gamma-irradiated methotrexate-loaded spray-dried microparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:438-448. [PMID: 28866185 DOI: 10.1016/j.msec.2017.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 05/26/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022]
Abstract
In this study, biodegradable and biocompatible gamma irradiated poly-(dl-lactide-co-glycolide) (PLGA) spray-dried microparticles were prepared aiming to improve the efficacy of methotrexate (MTX). The experimental design included three formulations of microparticles containing distinct drug amount (9%, 18%, and 27% w/w) and three distinct gamma irradiation dose (15kGy, 25kGy, and 30kGy). The physicochemical and drug release properties of the microparticles supported their biocompatibility and biological efficacy studies in different cell lines. The irradiation induced slight changes in the spherical shape of the microparticles and the formation of free radicals was dependent on the drug loading. However, the amorphous character, particle size, drug loading, and drug release rate of the microparticles were preserved. The drug release data from all microparticles formulation were evaluated by using four drug kinetic models and by comparison of their similarity factor (f2). The gamma irradiation did not induce changes in the biocompatibility of PLGA microparticles and in the biological activity of the MTX-loaded microparticles. Finally, the spray-dried MTX-loaded PLGA microparticles enhanced the efficacy of the drug in the human cervical cancer cells (SiHa cell line). This study demonstrated the feasibility of the gamma irradiated spray dried PLGA microparticles for prolonged release of MTX, supporting a promising antitumor-drug delivery system for parenteral (subcutaneous) or pulmonary use.
Collapse
Affiliation(s)
- Alice R de Oliveira
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Philippe C Mesquita
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Paula R L Machado
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Kleber J S Farias
- Department of Clinical Analysis and Toxicology, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Yêda M B de Almeida
- Department of Chemical Engineering, Federal University of Pernambuco, UFPE, 50740-521 Recife, PE, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Alianda M Cornélio
- Department of Morphology, Federal University of Rio Grande do Norte, UFRN, 59078-970 Natal, RN, Brazil
| | - Eryvaldo Sócrates T do Egito
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil
| | - Arnóbio A da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, 59012-570 Natal, RN, Brazil.
| |
Collapse
|
12
|
Ramos Yacasi GR, García López ML, Espina García M, Parra Coca A, Calpena Campmany AC. Influence of freeze-drying and γ-irradiation in preclinical studies of flurbiprofen polymeric nanoparticles for ocular delivery using d-(+)-trehalose and polyethylene glycol. Int J Nanomedicine 2016; 11:4093-106. [PMID: 27601897 PMCID: PMC5003565 DOI: 10.2147/ijn.s105606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study investigated the suspension of poly(ε-caprolactone) nanoparticles as an ocular delivery system for flurbiprofen (FB-PεCL-NPs) in order to overcome the associated problems, such as stability, sterility, tolerance, and efficacy, with two different FB-PεCL-NP formulations. The formulations were stabilized with poloxamer 188 (1.66% and 3.5%) and submitted individually for freeze-drying and γ-irradiation with polyethylene glycol 3350 (PEG3350) and d-(+)-trehalose (TRE). Both formulations satisfied criteria according to all physicochemical parameters required for ocular pharmaceuticals. The FB-PεCL-NP formulations showed non-Newtonian behavior and sustained drug release. Ex vivo permeation analysis using isolated ocular pig tissues suggested that the presence of PEG3350 results in a reduction of FB transcorneal permeation. Moreover, TRE improved the penetration of FB across the cornea, especially after γ-irradiation. In addition, both formulations did not show a significant affinity in increasing FB transscleral permeation. Both formulations were classified as nonirritating, safe products for ophthalmic administration according to hen’s egg test-chorioallantoic membrane and Draize eye test. Furthermore, an in vivo anti-inflammatory efficacy test showed that irradiated FB-PεCL-NPs prepared with PEG3350 (IR-NPsPEG) have longer anti-inflammatory effects than those presented with irradiated FB-PεCL-NPs prepared with TRE (IR-NPsTRE). IR-NPsPEG showed a suitable physical stability after an aqueous reconstitution over >30 days. This study concludes that both formulations meet the Goldman’s criteria and demonstrate how irradiated nanoparticles, with innovative permeation characteristics, could be used as a feasible alternative to a flurbiprofen solution for ocular application in clinical trials.
Collapse
Affiliation(s)
- Gladys Rosario Ramos Yacasi
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
| | - María Luisa García López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
| | - Marta Espina García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
| | - Alexander Parra Coca
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
| | - Ana Cristina Calpena Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Dorati R, Genta I, Colzani B, Modena T, Bruni G, Tripodo G, Conti B. Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres. AAPS PharmSciTech 2015; 16:1129-39. [PMID: 25700978 DOI: 10.1208/s12249-015-0305-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022] Open
Abstract
A stability study was performed on ivermectin (IVM)-loaded biodegradable microparticles intended for injection in dogs. The rational was to evaluate the performances upon irradiation of a drug, such as IVM, with a few criticalities with respect to its stability, and toxicity. The goal was to provide valuable information for pharmaceutical scientists and manufacturers working in the veterinary area. The microspheres based on poly(D,L-lactide) and poly-(ε-caprolactone) and loaded with IVM and with the addition of alpha-tocopherol (TCP) as antioxidant were prepared by the emulsion solvent evaporation method and sterilized by gamma irradiation. Microsphere characterization in term of size, shape, polymer, and IVM stability upon irradiation was performed. The results show that the type of polymer significantly affects microsphere characteristics and performances. Moreover, suitably stable formulations can be achieved only by TCP addition.
Collapse
|
14
|
Elliott Donaghue I, Shoichet MS. Controlled release of bioactive PDGF-AA from a hydrogel/nanoparticle composite. Acta Biomater 2015; 25:35-42. [PMID: 26257128 DOI: 10.1016/j.actbio.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 12/23/2022]
Abstract
Polymer excipients, such as low molar mass poly(ethylene glycol) (PEG), have shown contradictory effects on protein stability when co-encapsulated in polymeric nanoparticles. To gain further insight into these effects, platelet-derived growth factor (PDGF-AA) was encapsulated in polymeric nanoparticles with vs. without PEG. PDGF-AA is a particularly compelling protein, as it has been demonstrated to promote cell survival and induce the oligodendrocyte differentiation of neural stem/progenitor cells (NSPCs) both in vitro and in vivo. Here we show, for the first time, the controlled release of bioactive PDGF-AA from an injectable nanoparticle/hydrogel drug delivery system (DDS). PDGF-AA was encapsulated, with high efficiency, in poly(lactide-co-glycolide) nanoparticles, and its release from the drug delivery system was followed over 21 d. Interestingly, the co-encapsulation of low molecular weight poly(ethylene glycol) increased the PDGF-AA loading but, unexpectedly, accelerated the aggregation of PDGF-AA, resulting in reduced activity and detection by enzyme-linked immunosorbent assay (ELISA). In the absence of PEG, released PDGF-AA remained bioactive as demonstrated with NSPC oligodendrocyte differentiation, similar to positive controls, and significantly different from untreated controls. This work presents a novel delivery method for differentiation factors, such as PDGF-AA, and provides insights into the contradictory effects reported in the literature of excipients, such as PEG, on the loading and release of proteins from polymeric nanoparticles. STATEMENT OF SIGNIFICANCE Previously, the polymer poly(ethylene glycol) (PEG) has been used in many biomaterials applications, from surface coatings to the encapsulation of proteins. In this work, we demonstrate that, unexpectedly, low molecular weight PEG has a deleterious effect on the release of the encapsulated protein platelet-derived growth factor AA (PDGF-AA). We also demonstrate release of bioactive PDGF-AA (in the absence of PEG). Specifically, we demonstrate the differentiation of neural stem and progenitor cells to oligodendrocytes, similar to what is observed with the addition of fresh PDGFAA. A differentiated oligodendrocyte population is a key strategy in central nervous system regeneration. This work is the first demonstration of controlled PDGF-AA release, and also brings new insights to the broader field of protein encapsulation.
Collapse
Affiliation(s)
- Irja Elliott Donaghue
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada; Department of Chemistry, University of Toronto, Canada.
| |
Collapse
|
15
|
Synthesis, characterization and application of titanium oxide nanocomposites for removal of radioactive cesium, cobalt and europium ions. J Colloid Interface Sci 2015; 450:17-25. [DOI: 10.1016/j.jcis.2015.02.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 11/20/2022]
|
16
|
Erdemli Ö, Keskin D, Tezcaner A. Influence of excipients on characteristics and release profiles of poly(ε-caprolactone) microspheres containing immunoglobulin G. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 48:391-9. [DOI: 10.1016/j.msec.2014.12.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/14/2014] [Accepted: 12/09/2014] [Indexed: 01/01/2023]
|
17
|
Critical attributes of formulation and of elaboration process of PLGA-protein microparticles. Int J Pharm 2015; 480:27-36. [PMID: 25578370 DOI: 10.1016/j.ijpharm.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 01/14/2023]
Abstract
Low drug loading, burst effect during release and drug inactivation account for the main drawbacks of protein microencapsulation in poly(d,l-lactic-co-glycolic) acid (PLGA) matrix by the water-in oil-in water (W/O/W) solvent evaporation method. Thus, the current study was set to invest the critical attributes of formulation and of elaboration process which determine protein loading into microparticles as well as its further release, using albumin as protein model. NaCl concentration in the external aqueous phase, poly(vinyl alcohol) (PVA) concentration and mostly viscosity of both the internal aqueous phase and the organic phase were critical attributes for improving drug loading, with polymer molecular weight and hydrophobicity likewise directly related to albumin loading. In such a way, when using 0.5% PVA as internal aqueous phase the highest albumin loading was achieved. Optimized microparticles exhibited a sustained in vitro release of albumin over 130 days. The influence of the microencapsulation process on albumin stability and biological activity was evaluated by carrying out cell proliferation assays on PC12 cells with albumin released from microparticles. Such assay demonstrated that the microencapsulation procedure optimized in this study did not affect the biological stability of the microencapsulated protein.
Collapse
|
18
|
Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation. J Funct Biomater 2015; 6:1-13. [PMID: 25569163 PMCID: PMC4384096 DOI: 10.3390/jfb6010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/24/2014] [Indexed: 11/23/2022] Open
Abstract
This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs.Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs.Tg g-CA-PLGA = 47.4 ± 0.2 °C). By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs.EEg-CA-PLGA = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs.
Collapse
|
19
|
Dorati R, Genta I, Colzani B, Tripodo G, Conti B. Preliminary investigation on the design of biodegradable microparticles for ivermectin delivery: set up of formulation parameters. Drug Dev Ind Pharm 2014; 41:1182-92. [PMID: 24994001 DOI: 10.3109/03639045.2014.935395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim was to design sterile biodegradable microparticulate drug delivery systems based on poly(dl-lactide) (PLA) and poly(ε-caprolactone) (PCL) and containing ivermectin (IVM), an antiparasitic drug, for subcutaneous administration in dogs. The drug delivery system should: (i) ensure a full 12-month protection upon single dose administration; (ii) be safe with particular attention regarding IVM dosage and its release, in order to prevent over dosage side effects. This preliminary work involves: polymer selection, evaluation of the effects of γ-irradiation on the polymers and IVM, investigation and set up of suitable microparticle preparation process and parameters, IVM-loaded microparticles in vitro release evaluation. Results of gel permeation chromatography analysis on the irradiated polymers and IVM mixtures showed that combination of IVM with the antioxidant α-tocopherol (TCP) reduces the damage extent induced by irradiation treatment, independently on the polymer type. Solvent evaporation process was successfully used for the preparation of PLA microparticles and appropriately modified; it was recognized as suitable for the preparation of PCL microparticles. Good process yields were achieved ranging from 76.08% to 94.72%; encapsulation efficiency was between 85.76% and 91.25%, independently from the polymer used. The type of polymer and the consequent preparation process parameters affected microparticle size that was bigger for PCL microparticles (480-800 µm) and solvent residual that was >500 ppm for PLA microparticles. In vitro release test showed significantly faster IVM release rates from PCL microparticles, with respect to PLA microparticles, suggesting that a combination of the polymers could be used to obtain the suitable drug release rate.
Collapse
Affiliation(s)
- Rosella Dorati
- Department of Drug Sciences, University of Pavia , Pavia , Italy
| | | | | | | | | |
Collapse
|
20
|
Characteristics and release profiles of MPEG-PCL-MPEG microspheres containing immunoglobulin G. Colloids Surf B Biointerfaces 2014; 117:487-96. [DOI: 10.1016/j.colsurfb.2014.01.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 01/09/2023]
|
21
|
Tawfeek HM. Evaluation of PEG and mPEG-co-(PGA-co-PDL) microparticles loaded with sodium diclofenac. Saudi Pharm J 2013; 21:387-97. [PMID: 24227959 PMCID: PMC3824949 DOI: 10.1016/j.jsps.2012.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to synthesize and evaluate novel biodegradable polyesters namely; poly(ethylene glycol)-Poly(glycerol adipate-co-ω-pentadecalactone), PEG-PGA-co-PDL-PEG, and poly(ethylene glycol methyl ether)-Poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL-PEGme as an alternative sustained release carrier for lung delivery compared with non-PEG containing polymer PGA-co-PDL. The co-polymers were synthesized through lipase catalysis ring opening polymerization reaction and characterized using GPC, FT-IR, (1)H-NMR and surface contact angle. Furthermore, microparticles containing a model hydrophilic drug, sodium diclofenac, were prepared via spray drying from a modified single emulsion and characterized for their encapsulation efficiency, geometrical particle size, zeta potential, tapped density, primary aerodynamic diameter, amorphous nature, morphology, in vitro release and the aerosolization performance. Microparticles fabricated from mPEG-co-polymer can be targeted to the lung periphery with an optimum in vitro deposition. Furthermore, a significantly higher in vitro release (p > 0.05, ANOVA/Dunnett's) was observed with the PEG and mPEG-co-polymers compared to PGA-co-PDL. In addition, these co-polymers have a good safety profile upon testing on human bronchial epithelial, 16HBE14o- cell lines.
Collapse
Affiliation(s)
- Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
22
|
Functionalized PLGA-doped zirconium oxide ceramics for bone tissue regeneration. Biomed Microdevices 2013; 15:1055-66. [DOI: 10.1007/s10544-013-9797-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Gamma irradiation of active self-healing PLGA microspheres for efficient aqueous encapsulation of vaccine antigens. Pharm Res 2013; 30:1768-78. [PMID: 23515830 DOI: 10.1007/s11095-013-1019-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/01/2013] [Indexed: 01/20/2023]
Abstract
PURPOSE To investigate the effect of γ-irradiation of poly(lactic-co-glycolic acid) (PLGA)/Al(OH)₃/0 or 5 wt% diethyl phthalate (DEP) microspheres for active self-healing encapsulation of vaccine antigens. METHODS Microspheres were irradiated with ⁶⁰Co at 2.5 and 1.8 MRad and 0.37 and 0.20 MRad/h. Encapsulation of tetanus toxoid (TT) was achieved by mixing Al(OH)₃-PLGA microspheres with TT solution at 10-38°C. Electron paramagnetic resonance (EPR) spectroscopy was used to examine free radical formation. Glass transition temperature (T(g)) and molecular weight of PLGA was measured by differential scanning calorimetry and gel permeation chromatography, respectively. Loading and release of TT were examined by modified Bradford, amino acid analysis, and ELISA assays. RESULTS EPR spectroscopy results indicated absence of free radicals in PLGA microspheres after γ-irradiation. Antigen-sorbing capacity, encapsulation efficiency, and T(g) of the polymer were also not adversely affected. When DEP-loaded microspheres were irradiated at 0.2 MRad/h, some PLGA pores healed during irradiation and PLGA healing during encapsulation was suppressed. The molecular weight of PLGA was slightly reduced when DEP-loaded microspheres were irradiated at the same dose rate. At the 0.37 MRad/h dose rate, these trends were not observed and the full immunoreactivity of TT was preserved during encapsulation and 1-month release. Gamma irradiation slightly increased TT initial burst release. The small increase in total irradiation dose from 1.8 to 2.5 MRad had insignificant effect on the polymer and microspheres properties analyzed. CONCLUSIONS Gamma irradiation is a plausible approach to provide a terminally sterilized, self-healing encapsulation PLGA excipient for vaccine delivery.
Collapse
|
24
|
Checa-Casalengua P, Jiang C, Bravo-Osuna I, Tucker BA, Molina-Martínez IT, Young MJ, Herrero-Vanrell R. Preservation of biological activity of glial cell line-derived neurotrophic factor (GDNF) after microencapsulation and sterilization by gamma irradiation. Int J Pharm 2012; 436:545-54. [PMID: 22828071 DOI: 10.1016/j.ijpharm.2012.07.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/25/2022]
Abstract
A main issue in controlled delivery of biotechnological products from injectable biodegradable microspheres is to preserve their integrity and functional activity after the microencapsulation process and final sterilization. The present experimental work tested different technological approaches to maintain the biological activity of an encapsulated biotechnological product within PLGA [poly (lactic-co-glycolic acid)] microspheres (MS) after their sterilization by gamma irradiation. GDNF (glial cell line-derived neurotrophic factor), useful in the treatment of several neurodegenerative diseases, was chosen as a labile model protein. In the particular case of optic nerve degeneration, GDNF has been demonstrated to improve the damaged retinal ganglion cells (RGC) survival. GDNF was encapsulated in its molecular state by the water-in-oil-in-water (W/O/W) technique or as solid according to the solid-in-oil-in-water (S/O/W) method. Based on the S/O/W technique, GDNF was included in the PLGA microspheres alone (S/O/W 1) or in combination with an antioxidant (vitamin E, Vit E) (S/O/W 2). Microspheres were sterilized by gamma-irradiation (dose of 25 kGy) at room and low (-78 °C) temperatures. Functional activity of GDNF released from the different microspheres was evaluated both before and after sterilization in their potential target cells (retinal cells). Although none of the systems proposed achieved with the goal of totally retain the structural stability of the GDNF-dimer, the protein released from the S/O/W 2 microspheres was clearly the most biologically active, showing significantly less retinal cell death than that released from either W/O/W or S/O/W 1 particles, even in low amounts of the neurotrophic factor. According to the results presented in this work, the biological activity of biotechnological products after microencapsulation and sterilization can be further preserved by the inclusion of the active molecule in its solid state in combination with antioxidants and using low temperature (-78 °C) during gamma irradiation exposure.
Collapse
Affiliation(s)
- P Checa-Casalengua
- Dep. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Avd. Complutense s/n, Complutense University, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Dorati R, Colonna C, Tomasi C, Bruni G, Genta I, Modena T, Conti B. Long-term effect of gamma irradiation on the functional properties and cytocompatibility of multiblock co-polymer films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:2223-40. [PMID: 22152647 DOI: 10.1163/156856211x613915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of this work was to investigate the long-term effect of gamma-irradiation treatment on the functional properties of PEG-PDLLA and PEG-PLGA films and to evaluate the cytocompatibility of sterilized samples. Chemical and thermal properties, and cytocompatibility of sterilized films were detected for samples at time zero and after storage at 5 ± 3°C for 60 days. An in vitro degradation study was carried out on polymer samples to examine the effect of sterilization on the degradation performances of co-polymer films. Incubated samples were characterized in terms of film surface structure (SEM), chemical (GPC) and thermal (DSC) properties. The study performed on films upon gamma sterilization showed no significant changes of the PEG-PDLLA and PEG-PLGA film structure, while GPC analysis highlighted that the effect of gamma irradiation was dependent on the Mw and composition of polymers. DSC traces suggested more pronounced gamma-ray effects on the PEG-PLGA multiblock co-polymer. During the stability study important changes in terms of structure surface, thermal properties and cytocompatibility were observed and investigated. Data collected during the in vitro degradation study emphasized the need to know and investigate the degradation performances and behaviour of polymer or polymer systems (as DDS, scaffolds and bandage) treated with gamma rays.
Collapse
Affiliation(s)
- R Dorati
- a Department of Drug Sciences , University of Pavia , Viale Taramelli 12 , 27100 , Pavia , Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Cilurzo F, Puoci F, Selmin F, Iemma F, Minghetti P. Pyrogallic acid-PLGA conjugate as new biodegradable material suitable for final sterilization by irradiation. POLYM ADVAN TECHNOL 2011. [DOI: 10.1002/pat.1746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Mohanan D, Gander B, Kündig TM, Johansen P. Encapsulation of antigen in poly(D,L-lactide-co-glycolide) microspheres protects from harmful effects of γ-irradiation as assessed in mice. Eur J Pharm Biopharm 2011; 80:274-81. [PMID: 22024408 DOI: 10.1016/j.ejpb.2011.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 01/16/2023]
Abstract
During the last two decades, synthetic polymers such as poly(lactide-co-glycolide) (PLGA) have been investigated for the development of nano- or microparticles as adjuvants or antigen vehicles. To enable transfer of this technology to human settings, the issue of sterilisation is of central importance. Since most polymers are heat-sensitive, sterilisation of polymeric microspheres for parenteral administration is assured either by costly and laborious aseptical preparation or the more preferred γ-irradiation. Many studies have investigated the effect of γ-irradiation on various physiochemical properties of the microspheres, but investigations on immunological effects are rare. We prepared poly(lactide-co-glycolide) (PLGA) microspheres containing ovalbumin (OVA) and tested the effect of γ-irradiation on the various immunological properties in mice. For reference, OVA was γ-irradiated and tested equivalently. The ability of encapsulated or non-encapsulated OVA to trigger activation of dendritic cells (DCs) was not affected by irradiation. However, while γ-irradiation of free OVA strongly influenced the antigen presentation, encapsulated OVA was not affected by irradiation. γ-Irradiation of OVA also reduced the immunogenicity in mice with regard to OVA-specific IgG1 production. In contrast, the antibody and the T-cell responses in mice immunised with PLGA-encapsulated OVA were similar irrespective of the γ-irradiation status. Hence, encapsulation of antigen into PLGA microspheres protects antigen from the potential detrimental effect of γ-irradiation leading to inactivation or altered immunogenicity. Sterilisation by γ-irradiation therefore enables a cost-effective production of PLGA-based antigen-delivery systems as compared to the more laborious and expensive aseptical production of such vaccines.
Collapse
Affiliation(s)
- Deepa Mohanan
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
28
|
Jain S, Malyala P, Pallaoro M, Giuliani M, Petersen H, O'hagan DT, Singh M. A Two-Stage Strategy for Sterilization of Poly(lactide-co-glycolide) Particles by γ-Irradiation Does Not Impair Their Potency for Vaccine Delivery. J Pharm Sci 2011; 100:646-54. [DOI: 10.1002/jps.22306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds. Polym Degrad Stab 2010. [DOI: 10.1016/j.polymdegradstab.2009.11.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Dorati R, Genta I, Tomasi C, Modena T, Colonna C, Pavanetto F, Perugini P, Conti B. Polyethylenglycol-co-poly-D,L-lactide copolymer based microspheres: preparation, characterization and delivery of a model protein. J Microencapsul 2009; 25:330-8. [PMID: 18465305 DOI: 10.1080/02652040801996763] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To prepare and characterize polyethylenglycol-co-poly-D,L-lactide (PEG-D,L-PLA) multiblock copolymer microspheres containing ovalbumin. Microsphere batches made of Poly-D,L-lactide (PLA) homopolymers were prepared in order to evaluate how the presence of PEG segments into PEG-D,L-PLA copolymer could affect the behaviour of microspheres as carrier of protein drugs. METHODS The PEG-D,L-PLA and PLA microspheres, loaded with the model protein ovalbumin, were prepared using double emulsion solvent evaporation method. The effect of PEG segments in the microparticles matrix, on the morphology, size distribution, encapsulation efficiency and release behaviour was studied. RESULTS According to the results, PEG-D,L-PLA microspheres were more hydrophilic than PLA microparticles and with lower glass transition temperature. The surface of PEG-D,L-PLA microspheres was not as smooth as that of PLA microparticles, the mean diameter of PEG-D,L-PLA microparticles was bigger than that of PLA microspheres. Protein release from the microspheres was affected by the morphological structure of PEG-D,L-PLA microspheres and properties of PEG-D,L-PLA copolymer. This study suggests that PEG-D,L-PLA multiblock copolymer may be used as carrier in protein delivery systems for different purposes.
Collapse
Affiliation(s)
- R Dorati
- Department of Pharmaceutical Chemistry, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of ionizing radiation sterilization on microparticulate drug delivery systems based on poly-α-hydroxyacids: an overview. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50017-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Dorati R, Colonna C, Tomasi C, Genta I, Modena T, Faucitano A, Buttafava A, Conti B. gamma-irradiation of PEGd,lPLA and PEG-PLGA multiblock copolymers: II. effect of oxygen and EPR investigation. AAPS PharmSciTech 2008; 9:1110-8. [PMID: 18987978 DOI: 10.1208/s12249-008-9150-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/25/2008] [Indexed: 11/30/2022] Open
Abstract
The purpose of this research was to evaluate how the presence of oxygen can affect irradiation-induced degradation reactions of PEGd,lPLA and PEG-PLGA multiblock copolymers submitted to gamma irradiation and to investigate the radiolytic behavior of the polymers. PEGd,lPLA, PEG-PLGA, PLA, and PLGA were irradiated by using a (60)Co irradiation source in air and under vacuum at 25 kGy total dose. Mw and Mn were evaluated by gel permeation chromatography. The stability study was carried out on three samples sets: (a) polymer samples irradiated and stored in air, (b) polymer samples irradiated and stored under vacuum, and (c) polymer samples irradiated under vacuum and stored in air. The thermal and radiolytic behavior was investigated by differential scanning calorimetry and electron paramagnetic resonance (EPR), respectively. Samples irradiated in air showed remarkable Mw and Mn reduction and Tg value reduction due to radiation-induced chain scission reactions. Higher stability was observed for samples irradiated and stored under vacuum. EPR spectra showed that the presence of PEG units in multiblock copolymer chains leads to: (a) decrease of the radiolytic yield of radicals and (b) decrease of the radical trapping efficiency and faster radical decay rates. It can be concluded that the presence of oxygen during the irradiation process and the storage phase significantly increases the entity of irradiation-induced damage.
Collapse
|
33
|
Cai C, Mao S, Germershaus O, Schaper A, Rytting E, Chen D, Kissel T. Influence of morphology and drug distribution on the release process of FITC-dextran-loaded microspheres prepared with different types of PLGA. J Microencapsul 2008; 26:334-45. [DOI: 10.1080/02652040802354707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Dorati R, Colonna C, Serra M, Genta I, Modena T, Pavanetto F, Perugini P, Conti B. gamma-Irradiation of PEGd,lPLA and PEG-PLGA multiblock copolymers. I. Effect of irradiation doses. AAPS PharmSciTech 2008; 9:718-25. [PMID: 18528761 DOI: 10.1208/s12249-008-9103-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/29/2008] [Indexed: 11/30/2022] Open
Abstract
To evaluate the effects of different gamma irradiation doses on PEGd,lPLA and PEG-PLGA multiblock copolymers. The behaviour of the multiblock copolymers to irradiation was compared to that of PLA, PLGA polymers. PEGd,lPLA, PEG-PLGA, PLA and PLGA polymers were irradiated by using a (60)Co irradiation source at 5, 15, 25 and 50 kGy total dose. Characterization was performed on all samples before and after irradiation, by nuclear magnetic resonance (NMR), infrared absorption spectrophotometry (FTIR) and gel permeation chromatography (GPC). The effect of gamma irradiation on polymer stability was also evaluated. Results of NMR and FTIR suggest an increase in -OH and -COOH groups, attributed to scission reactions induced by irradiation treatment. Data of GPC analysis showed that the weight average molecular weight (Mw) of polymer samples decreased with increasing irradiation dose. The extent of Mw degradation expressed as percentage of Mw reduction was more prominent for polymers with high molecular weight as PEGd,lPLA and PLA. The dominant effect of gamma-irradiation on both polymer samples was chain scission. The multiblock copolymer PEGd,lPLA presented higher sensitivity to irradiation treatment with respect to PLA, likely due to the presence of PEG in the matrix. The effect of gamma irradiation continues over a much longer period of time after gamma irradiation has been performed. It is suggested that the material reacts with oxygen to form peroxyl free radicals, which may further undergo degradation reactions during storage after irradiation.
Collapse
|
35
|
Desai KGH, Mallery SR, Schwendeman SP. Effect of formulation parameters on 2-methoxyestradiol release from injectable cylindrical poly(DL-lactide-co-glycolide) implants. Eur J Pharm Biopharm 2008; 70:187-98. [PMID: 18472254 DOI: 10.1016/j.ejpb.2008.03.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
Abstract
The objective of this study was to investigate the potential of various formulation strategies to achieve 1-month continuous (improved) release of the novel anti-cancer drug, 2-methoxyestradiol (2-ME), from injectable cylindrical poly(DL-lactide-co-glycolide) (PLGA) implants. PLGA implants were prepared by a solvent extrusion method. PLGA 50:50 (M(w)=51 kDa, end group=lauryl ester) (PLGA-lauryl ester) implants loaded with 3-30 wt% 2-ME exhibited a pronounced lag phase (i.e., corresponding to induction time to polymer mass loss) and triphasic release profile. Incorporation of 5 wt% hydroxypropyl-beta-cyclodextrin (HP-beta-CD) (approximately 57% release after 28 days) or Pluronic F127 (approximately 42% release after 28 days) in PLGA-lauryl ester implants reduced the lag-phase and improved the drug release moderately over a period of 28 days. The formation and the incorporation of a 2-ME/polyethylene glycol (PEG) 8000 solid dispersion in PLGA-lauryl ester implants further increased drug release (approximately 21% and 73% release after 1 and 28 days, respectively), attributable to improved drug solubility/dissolution, higher matrix porosity, and accelerated polymer degradation. Blending of PLGA 50:50 (M(w)=24 kDa, end group=COOH) (PLGA-COOH) with the PLGA-lauryl ester also provided moderate enhancement of 2-ME release over a period of 28 days. PLGA-COOH (M(w)=24 kDa) implants with 3-5% w/w pore-forming MgCO(3) exhibited the most desirable drug release among all the formulations tested, and, demonstrated 1-month slow and continuous in vitro release of approximately 80% 2-ME after a minimal initial burst. Hence, these formulation approaches provide several possible avenues to improve release rates of the hydrophobic drug, 2-ME, from PLGA for future application in regional anti-cancer therapy.
Collapse
Affiliation(s)
- Kashappa Goud H Desai
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
36
|
Ražem D, Katušin-Ražem B. The effects of irradiation on controlled drug delivery/controlled drug release systems. Radiat Phys Chem Oxf Engl 1993 2008. [DOI: 10.1016/j.radphyschem.2007.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
|
38
|
Wei G, Jin Q, Giannobile WV, Ma PX. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release 2006; 112:103-10. [PMID: 16516328 PMCID: PMC2572756 DOI: 10.1016/j.jconrel.2006.01.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Revised: 01/22/2006] [Accepted: 01/24/2006] [Indexed: 12/13/2022]
Abstract
The localized and temporally controlled delivery of growth factors is key to achieving optimal clinical efficacy. In sophisticated tissue engineering strategies, the biodegradable scaffold is preferred to serve as both a three-dimensional (3-D) substrate and a growth factor delivery vehicle to promote cellular activity and enhance tissue neogenesis. This study presents a novel approach to fabricate tissue engineering scaffolds capable of controlled growth factor delivery whereby growth factor containing microspheres were incorporated into 3-D scaffolds with good mechanical properties, well-interconnected macroporous and nano-fibrous structures. The microspheres were uniformly distributed throughout the nano-fibrous scaffold and their incorporation did not interfere the macro-, micro-, and nanostructures of the scaffold. The release kinetics of platelet-derived growth factor-BB (PDGF-BB) from microspheres and scaffolds was investigated using poly(lactic-co-glycolic acid) (PLGA50) microspheres with different molecular weights (6.5 and 64kDa, respectively) and microsphere-incorporated poly(l-lactic acid) (PLLA) nano-fibrous scaffolds. Incorporation of microspheres into scaffolds significantly reduced the initial burst release. Sustained release from several days to months was achieved through different microspheres in scaffolds. Released PDGF-BB was demonstrated to possess biological activity as evidenced by stimulation of human gingival fibroblast DNA synthesis in vitro. The successful generation of 3-D nano-fibrous scaffold incorporating controlled-release factors indicates significant potential for more complex tissue regeneration.
Collapse
Affiliation(s)
- Guobao Wei
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2209, USA
| | | | | | | |
Collapse
|