1
|
Hazra R, Alam MSS, Malakar A, Rakshit P, Giri TK, Samanta A, Mukherjee K. Metal ion crosslinked polysaccharide hydrogels: A review on their potential for therapeutic delivery and tissue engineering. Int J Biol Macromol 2025; 310:143467. [PMID: 40280517 DOI: 10.1016/j.ijbiomac.2025.143467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Natural polysaccharides are extensively used in pharmaceutical and biomedical fields as carriers of diverse therapeutics and in tissue engineering applications. Apart from their biocompatibility and biodegradability, they can be tailored as per the specific requirements of the delivery carriers. Metal ion cross-linking of polysaccharide chains is a major tailoring technique which alters the rheological, mechanical, tensile, and other physicochemical attributes of the polysaccharides. Metal ions interact with the specific functional groups (carboxyl or sulphate) present in the polysaccharide chains to form water insoluble hydrogels, leading to structural stabilization of the polysaccharides. The concentration and valency of the ions dictate the porosity, rigidity, physicochemical, rheological, and mechanical characteristics of the cross-linked polysaccharide chains, paving the way for tailor-made formulations and delivery carriers. The review aims to explore the role of metal ions in the development of polysaccharide-based tailored matrix/medium. The article will provide comprehensive insights on how metal ions alter the swelling, porosity, mechanical, and dissolution properties of the polysaccharide chains. Finally, the review will serve as a groundwork resource providing valuable insights that can guide researchers in the fundamentals of their projects accordingly, such as achieving predetermined outcomes in areas like drug and cell delivery, tissue engineering, etc.
Collapse
Affiliation(s)
- Riya Hazra
- Drug Delivery Research laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India; Division of Microbiology and Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Md Sahil Shanawaz Alam
- Drug Delivery Research laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Angita Malakar
- Drug Delivery Research laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Pallabita Rakshit
- Drug Delivery Research laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tapan Kumar Giri
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Amalesh Samanta
- Division of Microbiology and Biotechnology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Kaushik Mukherjee
- Drug Delivery Research laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India.
| |
Collapse
|
2
|
Wang T, Qi Y, Miyako E, Bianco A, Ménard-Moyon C. Photocrosslinked Co-Assembled Amino Acid Nanoparticles for Controlled Chemo/Photothermal Combined Anticancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307337. [PMID: 38152926 DOI: 10.1002/smll.202307337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Indexed: 12/29/2023]
Abstract
Nanostructures formed from the self-assembly of amino acids are promising materials in many fields, especially for biomedical applications. However, their low stability resulting from the weak noncovalent interactions between the amino acid building blocks limits their use. In this work, nanoparticles co-assembled by fluorenylmethoxycarbonyl (Fmoc)-protected tyrosine (Fmoc-Tyr-OH) and tryptophan (Fmoc-Trp-OH) are crosslinked by ultraviolet (UV) light irradiation. Two methods are investigated to induce the dimerization of tyrosine, irradiating at 254 nm or at 365 nm in the presence of riboflavin as a photo-initiator. For the crosslinking performed at 254 nm, both Fmoc-Tyr-OH and Fmoc-Trp-OH generate dimers. In contrast, only Fmoc-Tyr-OH participates in the riboflavin-mediated dimerization under irradiation at 365 nm. The participation of both amino acids in forming the dimers leads to more stable crosslinked nanoparticles, allowing also to perform further chemical modifications for cancer applications. The anticancer drug doxorubicin (Dox) is adsorbed onto the crosslinked nanoparticles, subsequently coated by a tannic acid-iron complex, endowing the nanoparticles with glutathione-responsiveness and photothermal properties, allowing to control the release of Dox. A remarkable anticancer efficiency is obtained in vitro and in vivo in tumor-bearing mice thanks to the combined chemo- and photothermal treatment.
Collapse
Affiliation(s)
- Tengfei Wang
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Yun Qi
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
3
|
Chen J, Wang H, Zhang L, Yan W, Sheng R. Facile preparation of PEGylated polyethylenimine polymers as vaccine carriers with reduced cytotoxicity and enhanced Interleukin-2 (IL-2) production. Colloids Surf B Biointerfaces 2023; 230:113520. [PMID: 37619373 DOI: 10.1016/j.colsurfb.2023.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
Developing low-cost, easy-to-prepare, biocompatible and highly efficient vaccine carriers is a promising approach to realize practical cancer immunotherapy. In this study, through facile modification of mPEG5k-4-toluenesulfonate (mPEG5k-OTs) on PEI25k under mild conditions, a series of "stealth" mPEG5k-PEI25k polymers (PP1, PP2 and PP3) were prepared, their structures and physicochemical properties were characterized and theoretically analyzed. The polymers could bind/load ovalbumin (OVA) to form mPEG5k-PEI25k/OVA complexes as negatively charged nanoparticles with small hydrodynamic particle size (80-210 nm) and narrow size distribution. Compared to PEI25k/OVA, lower cytotoxicity could be achieved on mPEG5k-PEI25k/OVA complexes in dendritic cells (DCs). In DCs-RF 33.70 T-cells co-culture system, the mPEG5k-PEI25k/OVA complexes could bring about higher IL-2 production /secretion than that of PEI25k/OVA, notably, the optimum IL-2 secretion could reach 9.3-folds of the PEI25k/OVA under serum condition (10% FBS). Moreover, the cell biological features could be optimized by selecting suitable mPEG5k-grafting ratios and/or mPEG5k-PEI25k/OVA weight ratios. Intracellular imaging results showed that the mPEG5k-PEI25k(PP3)/Rhodamine-OVA complexes mainly localized inside lysosomes. Taken together, this work provided a facile method to prepare "stealth" PEGylated-PEI25k polymers with reduced cytotoxicity, promoted OVA cross-presentation efficiency and improved serum compatibility towards cancer immunotherapy.
Collapse
Affiliation(s)
- Jian Chen
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China.
| | - Hui Wang
- School of Pharmacy, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Li Zhang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Dongchuan Road, Shanghai 200240, China.
| | - Wanying Yan
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200240, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| |
Collapse
|
4
|
Delecourt G, Plet L, Guen YL, Tezgel O, Tresset G, Midoux P, Montier T, Bennevault V, Guégan P. Synthesis of Double Hydrophilic Block Copolymers Poly(2-isopropyl-2-oxazoline-b-ethylenimine) and their DNA Transfection Efficiency. Macromol Biosci 2023; 23:e2200296. [PMID: 36189853 DOI: 10.1002/mabi.202200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Indexed: 01/19/2023]
Abstract
Gene delivery is now a part of the therapeutic arsenal for vaccination and treatments of inherited or acquired diseases. Polymers represent an opportunity to develop new synthetic vectors for gene transfer, with a prerequisite of improved delivery and reduced toxicity compared to existing polymers. Here, the synthesis in a two-step's procedure of linear poly(ethylenimine-b-2-isopropyl-2-oxazoline) block copolymers with the linear polyethylenimine (lPEI) block of various molar masses is reported; the molar mass of the poly(2-isopropyl-2-oxazoline) (PiPrOx) block has been set to 7 kg mol-1 . Plasmid DNA condensation is successfully achieved, and in vitro transfection efficiency of the copolymers is at least comparable to that obtained with the lPEI of same molar mass. lPEI-b-PiPrOx block copolymers are however less cytotoxic than their linear counterparts. PiPrOx can be a good alternative to PEG which is often used in drug delivery systems. The grafting of histidine moieties on the lPEI block of lPEI-b-PiPrOx does not provide any real improvement of the transfection efficiency. A weak DNA condensation is observed, due to increased steric hindrance along the lPEI backbone. The low cytotoxicity of lPEI-b-PiPrOx makes this family a good candidate for future gene delivery developments.
Collapse
Affiliation(s)
- Gwendoline Delecourt
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France
| | - Laetitia Plet
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France
| | - Yann Le Guen
- INSERM, EFS, UMR 1078, GGB - GTCA team, Univ Brest, Brest, 29200, France
| | - Ozgul Tezgel
- CNRS, Laboratoire de Physique des Solides, University of Paris-Saclay, Orsay, 91405, France
| | - Guillaume Tresset
- CNRS, Laboratoire de Physique des Solides, University of Paris-Saclay, Orsay, 91405, France
| | - Patrick Midoux
- CNRS UPR4301, Centre de Biophysique Moléculaire, Orléans, Cedex 2, 45071, France
| | - Tristan Montier
- INSERM, EFS, UMR 1078, GGB - GTCA team, Univ Brest, Brest, 29200, France.,CHRU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", Brest, 29200, France
| | - Véronique Bennevault
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France.,University of Evry, Evry, Cedex, 91025, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, Paris, Cedex 05, 75252, France
| |
Collapse
|
5
|
Sadat Abolmaali S, Zarenejad S, Mohebi Y, Najafi H, Javanmardi S, Abedi M, Mohammad Tamaddon A. Biotin receptor-targeting nanogels loaded with methotrexate for enhanced antitumor efficacy in triple-negative breast cancer in vitro and in vivo models. Int J Pharm 2022; 624:122049. [PMID: 35878871 DOI: 10.1016/j.ijpharm.2022.122049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
High-dose methotrexate (MTX) chemotherapeutic applications confront drug specificity and pharmacokinetic challenges, which can be overcome by utilizing targeted drug delivery systems. In the present study, biotin-PEG conjugated nanogels of carboxymethyl polyethyleneimine (Biotin-PEG-CMPEI) were developed for active targeted delivery of MTX in triple negative breast cancer (TNBC). TEM and DLS analyses revealed uniform, discrete, and spherical particles with a mean hydrodynamic diameter of about 100 nm and ζ-potential of + 15 mV (pH = 7.4). Biotin-PEG-CMPEI nanogels exhibited a zero-order MTX release kinetics at pH = 7.5 and a swelling-controlled release at pH = 5.5. In 4 T1 cells treated with the MTX-loaded Biotin-PEG-CMPEI, the IC50 was reduced by about 10 folds compared to the free drug, while the unloaded nanogels showed no significant toxicity. In the model mice, the group treated with the MTX-loaded Biotin-PEG-CMPEI had a lower tumor volume and mortality rate animal model when compared to free drug. Additionally, histopathological analyses showed that the group treated with the MTX-loaded nanogels had less lung metastasis and glomerular damage caused by MTX. Overall, the MTX-loaded Biotin-PEG-CMPEI targeted directly against overexpressed biotin receptors in TNBC have been shown to improve the MTX safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Sepideh Zarenejad
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Younes Mohebi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Sanaz Javanmardi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mehdi Abedi
- Pharmaceutical Nanotechnology Department and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Ali Mohammad Tamaddon
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| |
Collapse
|
6
|
Zhang C, Ma Y, Zhang J, Kuo JCT, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022; 27:molecules27061943. [PMID: 35335310 PMCID: PMC8949521 DOI: 10.3390/molecules27061943] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid-based nanoparticles (LBNPs) are biocompatible and biodegradable vesicles that are considered to be one of the most efficient drug delivery platforms. Due to the prominent advantages, such as long circulation time, slow drug release, reduced toxicity, high transfection efficiency, and endosomal escape capacity, such synthetic nanoparticles have been widely used for carrying genetic therapeutics, particularly nucleic acids that can be applied in the treatment for various diseases, including congenital diseases, cancers, virus infections, and chronic inflammations. Despite great merits and multiple successful applications, many extracellular and intracellular barriers remain and greatly impair delivery efficacy and therapeutic outcomes. As such, the current state of knowledge and pitfalls regarding the gene delivery and construction of LBNPs will be initially summarized. In order to develop a new generation of LBNPs for improved delivery profiles and therapeutic effects, the modification strategies of LBNPs will be reviewed. On the basis of these developed modifications, the performance of LBNPs as therapeutic nanoplatforms have been greatly improved and extensively applied in immunotherapies, including infectious diseases and cancers. However, the therapeutic applications of LBNPs systems are still limited due to the undesirable endosomal escape, potential aggregation, and the inefficient encapsulation of therapeutics. Herein, we will review and discuss recent advances and remaining challenges in the development of LBNPs for nucleic acid-based immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jimmy Chun-Tien Kuo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Zhongkun Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Haotian Xie
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX 76010, USA
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| |
Collapse
|
7
|
Liu J, Bao X, Kolesnik I, Jia B, Yu Z, Xing C, Huang J, Gu T, Shao X, Kletskov A, Kritchenkov AS, Potkin V, Li W. Enhancing the in vivo stability of polyanion gene carriers by using PEGylated hyaluronic acid as a shielding system. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2021-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To increase the in vivo stability of cationic gene carriers and avoid the adverse effects of their positive charge, we synthesized a new shielding material by conjugating low molecular weight polyethylene glycol (PEG) to a hyaluronic acid (HA) core. The HA-PEG conjugate assembled with the positively charged complex, forming a protective layer through electrostatic interactions. DNA/polyetherimide/HA-PEG (DNA/PEI/HA-PEG) nanoparticles had higher stability than both DNA/polyethyleneimine (DNA/PEI) and DNA/PEI/HA complexes. Furthermore, DNA/PEI/HA-PEG nanoparticles also showed a diminished nonspecific response toward serum proteins in vivo. The in vivo transfection efficiency was also enhanced by the low cytotoxicity and the improved stability; therefore, this material might be promising for use in gene delivery applications.
Collapse
Affiliation(s)
- Jiaxue Liu
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Xiaoli Bao
- 2Norman Bethune Health Science Center, Jilin University, Jilin, China
| | - Irina Kolesnik
- 3Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov Str., 220072, Minsk, Belarus
| | - Boyan Jia
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Zihan Yu
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Caiyun Xing
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Jiawen Huang
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Tingting Gu
- 4School of Pharmacy, Jilin Medical University, Jilin, China
| | - Xiaotong Shao
- 5School of Medical Laboratory, Jilin Medical University, Jilin, China
| | - Alexey Kletskov
- 6Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Andreii S. Kritchenkov
- 6Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Vladimir Potkin
- 3Institute of Physical Organic Chemistry of National Academy of Sciences of Belarus, 13 Surganov Str., 220072, Minsk, Belarus
| | - Wenliang Li
- 1Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China; 4School of Pharmacy, Jilin Medical University, Jilin, China
| |
Collapse
|
8
|
An Y, Zhao J. Functionalized Selenium Nanotherapeutics Synergizes With Zoledronic Acid to Suppress Prostate Cancer Cell Growth Through Induction of Mitochondria-Mediated Apoptosis and Cell Cycle S Phase Arrest. Front Oncol 2021; 11:685784. [PMID: 34168998 PMCID: PMC8219073 DOI: 10.3389/fonc.2021.685784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023] Open
Abstract
The use of established drugs in new therapeutic applications has great potential for the treatment of cancers. Nanomedicine has the advantages of efficient cellular uptake and specific cell targeting. In this study, we investigate using lentinan-functionalized selenium nanoparticles (LET-SeNPs) for the treatment of prostate cancer (PCa). We used assays to demonstrate that a combination of LET-SeNPs and zoledronic acid (ZOL) can reduce PCa cell viability in vitro. Stability and hemocompatibility assays were used to determine the safety of the combination of LET-SeNPs and ZOL. The localization of LET-SeNPs was confirmed using fluorescence microscopy. JC-1 was used to measure the mitochondrial membrane potential, while the cellular uptake, cell cycle and apoptosis were evaluated by flow cytometry. Finally, cell migration and invasion assays were used to evaluate the effects of the combination treatment on cell migration and invasion. Under optimized conditions, we found that LET-SeNPs has good stability. The combination of LET-SeNPs and ZOL can effectively inhibit metastatic PCa cells in a concentration-dependent manner, as evidenced by cytotoxicity testing, flow cytometric analysis, and mitochondria functional test. The enhanced anti-cancer effect of LET-SeNPs and ZOL may be related to the regulation of BCL2 family proteins that could result in the release of cytochrome C from the inner membranes of mitochondria into the cytosol, accompanied by induction of cell cycle arrest at the S phase, leading to irreversible DNA damage and killing of PCa cells. Collectively, the results of this study suggest that the combination of SeNPs and ZOL can successfully inhibit the growth of PCa cells.
Collapse
Affiliation(s)
- Yulin An
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Engin AB, Engin A. Nanoantibiotics: A Novel Rational Approach to Antibiotic Resistant Infections. Curr Drug Metab 2019; 20:720-741. [DOI: 10.2174/1389200220666190806142835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023]
Abstract
Background:The main drawbacks for using conventional antimicrobial agents are the development of multiple drug resistance due to the use of high concentrations of antibiotics for extended periods. This vicious cycle often generates complications of persistent infections, and intolerable antibiotic toxicity. The problem is that while all new discovered antimicrobials are effective and promising, they remain as only short-term solutions to the overall challenge of drug-resistant bacteria.Objective:Recently, nanoantibiotics (nAbts) have been of tremendous interest in overcoming the drug resistance developed by several pathogenic microorganisms against most of the commonly used antibiotics. Compared with free antibiotic at the same concentration, drug delivered via a nanoparticle carrier has a much more prominent inhibitory effect on bacterial growth, and drug toxicity, along with prolonged drug release. Additionally, multiple drugs or antimicrobials can be packaged within the same smart polymer which can be designed with stimuli-responsive linkers. These stimuli-responsive nAbts open up the possibility of creating multipurpose and targeted antimicrobials. Biofilm formation still remains the leading cause of conventional antibiotic treatment failure. In contrast to conventional antibiotics nAbts easily penetrate into the biofilm, and selectively target biofilm matrix constituents through the introduction of bacteria specific ligands. In this context, various nanoparticles can be stabilized and functionalized with conventional antibiotics. These composites have a largely enhanced bactericidal efficiency compared to the free antibiotic.Conclusion:Nanoparticle-based carriers deliver antibiotics with better biofilm penetration and lower toxicity, thus combating bacterial resistance. However, the successful adaptation of nanoformulations to clinical practice involves a detailed assessment of their safety profiles and potential immunotoxicity.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Peng L, Wagner E. Polymeric Carriers for Nucleic Acid Delivery: Current Designs and Future Directions. Biomacromolecules 2019; 20:3613-3626. [DOI: 10.1021/acs.biomac.9b00999] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Ke X, Wei Z, Wang Y, Shen S, Ren Y, Williford JM, Luijten E, Mao HQ. Subtle changes in surface-tethered groups on PEGylated DNA nanoparticles significantly influence gene transfection and cellular uptake. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:126-135. [PMID: 31048082 DOI: 10.1016/j.nano.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
PEGylation strategy has been widely used to enhance colloidal stability of polycation/DNA nanoparticles (NPs) for gene delivery. To investigate the effect of polyethylene glycol (PEG) terminal groups on the transfection properties of these NPs, we synthesized DNA NPs using PEG-g-linear polyethyleneimine (lPEI) with PEG terminal groups containing alkyl chains of various lengths with or without a hydroxyl terminal group. For both alkyl- and hydroxyalkyl-decorated NPs with PEG grafting densities of 1.5, 3, or 5% on lPEI, the highest levels of transfection and uptake were consistently achieved at intermediate alkyl chain lengths of 3 to 6 carbons, where the transfection efficiency is significantly higher than that of nonfunctionalized lPEI/DNA NPs. Molecular dynamics simulations revealed that both alkyl- and hydroxyalkyl-decorated NPs with intermediate alkyl chain length exhibited more rapid engulfment than NPs with shorter or longer alkyl chains. This study identifies a new parameter for the engineering design of PEGylated DNA NPs.
Collapse
Affiliation(s)
- Xiyu Ke
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Zonghui Wei
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, United States
| | - Ying Wang
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | - Sabrina Shen
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Yong Ren
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States
| | | | - Erik Luijten
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States; Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL, United States.
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States; Translational Tissue Engineering Center and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
12
|
Zhang Y, Lin L, Liu L, Liu F, Maruyama A, Tian H, Chen X. Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydr Polym 2018; 201:246-256. [DOI: 10.1016/j.carbpol.2018.08.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023]
|
13
|
Liu T, Shi C, Duan L, Zhang Z, Luo L, Goel S, Cai W, Chen T. A highly hemocompatible erythrocyte membrane-coated ultrasmall selenium nanosystem for simultaneous cancer radiosensitization and precise antiangiogenesis. J Mater Chem B 2018; 6:4756-4764. [PMID: 30450208 PMCID: PMC6234506 DOI: 10.1039/c8tb01398e] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiotherapy is a vitally important strategy for clinical treatment of malignant cancers. Therefore, rational design and development of radiosensitizers that could enhance radiotherapeutic efficacy has attracted tremendous attention. Antiangiogenesis therapy could be a potentially effective strategy to regulate tumor growth and metastasis due to angiogenesis plays a pivotal role for tumor growth, invasion and metastasis to other organs. Herein, we have rationally designed a smart and effective nanosystem by combining ultrasmall selenium nanoparticles and bevacizumab (Avastin™, Av), for simultaneous radiotherapy and antiangiogenic therapy of cancer. The nanosystem was further coated with red blood cell (RBC) membranes to develop the final construct, RBCs@Se/Av. The RBC membrane coating effectively prolongs the blood circulation time and reduces the elimination of the nanosystem by autoimmune responses. As expected, RBCs@Se/Av, when irradiated with X-ray demonstrated potent anticancer and antiangiogenesis response in vitro and in vivo, as evidenced by strong inhibition of A375 tumor growth in nude mice, without causing any obvious histological damage to the non-target major organs. Taken together, this study demonstrates an effective strategy for design of smart Se-based nanosystem decorated with RBC membrane for simultaneous cancer radiosensitization and precise antiangiogenesis.
Collapse
Affiliation(s)
- Ting Liu
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Changzheng Shi
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Linqi Duan
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zehang Zhang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Liangping Luo
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shreya Goel
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
14
|
Post-PEGylated and crosslinked polymeric ssRNA nanocomplexes as adjuvants targeting lymph nodes with increased cytolytic T cell inducing properties. J Control Release 2018; 284:73-83. [DOI: 10.1016/j.jconrel.2018.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/04/2023]
|
15
|
Zhang W, Meng X, Liu H, Xie L, Liu J, Xu H. Ratio of Polycation and Serum Is a Crucial Index for Determining the RNAi Efficiency of Polyplexes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43529-43537. [PMID: 29144122 DOI: 10.1021/acsami.7b15797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report that the mass ratio of the polycation to serum in the medium determines the (RNA interference) RNAi efficiency in vitro by using spermine-modified pullulan (Ps) and spermine-modified dextran (Ds) as polycation models. The high ratio of Ps to serum protein (Ps/Pr) mediated the formation of larger polyplexes, which led to the promoted cellular uptake, enhanced lysosomal escape, and elevated RNAi efficiency. In addition, the supplementary of free Ps also enhanced small interfering RNA transfection because of the elevation of Ps/Pr. Similar results were obtained with Ds. Compared with the adjustment of the nitrogen to phosphate (N/P) ratio in the polyplex, these findings revealed a more applicable strategy to tune the polycation-mediated RNAi efficiency in the serum-containing culture medium.
Collapse
Affiliation(s)
- Weiqi Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100005, P. R. China
| | - Xianghui Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100005, P. R. China
| | - Huike Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100005, P. R. China
| | - Lifei Xie
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100005, P. R. China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100005, P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100005, P. R. China
| |
Collapse
|
16
|
Duo X, Li Q, Wang J, Lv J, Hao X, Feng Y, Ren X, Shi C, Zhang W. Core/Shell Gene Carriers with Different Lengths of PLGA Chains to Transfect Endothelial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13315-13325. [PMID: 29100464 DOI: 10.1021/acs.langmuir.7b02934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to improve the transfection efficiency and reduce the cytotoxicity of gene carriers, many strategies have been used to develop novel gene carriers. In this study, five complex micelles (MSP(2 k), MSP(4 k), MSP(6 k), MSP(8 k), and MSP(10 k)) were prepared from methoxy-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) (mPEG-b-PLGA) and sorbitol-poly(d,l-lactide-co-glycolide)-graft-PEI (sorbitol-PLGA-g-PEI, where the designed molecular weights of PLGA chains were 2 kDa, 4 kDa, 6 kDa, 8 kDa, and 10 kDa, respectively) copolymers by a self-assembly method, and the mass ratio of mPEG-b-PLGA to sorbitol-PLGA-g-PEI was 1/3. These complex micelles and their gene complexes had appropriate sizes and zeta potentials, and pEGFP-ZNF580 (pDNA) could be efficiently internalized into EA.hy926 cells by their gene complexes (MSP(2 k)/pDNA, MSP(4 k)/pDNA, MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA). The MTT assay results demonstrated that the gene complexes had low cytotoxicity in vitro. When the hydrophobic PLGA chain increased above 6 kDa, the gene complexes showed higher performance than that prepared from short hydrophobic chains. Moreover, the relative ZNF580 protein expression levels in MSP(6 k)/pDNA, MSP(8 k)/pDNA, and MSP(10 k)/pDNA) groups were 79.6%, 71.2%, and 73%, respectively. These gene complexes could promote the transfection of endothelial cells, while providing important information and insight for the design of new and effective gene carriers to promote the proliferation and migration of endothelial cells.
Collapse
Affiliation(s)
- Xinghong Duo
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities , Bayi middle Road 3, Xining, Qinghai 810007, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Jun Wang
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Juan Lv
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) , Weijin Road 92, Tianjin 300072, China
- Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin University-Helmholtz-Zentrum Geesthacht , Yaguan Road 135, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University , Yaguan Road 135, Tianjin 300350, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, CAS , Wenzhou, Zhejiang 325011, China
- Institute of Biomaterials and Engineering, Wenzhou Medical University , Wenzhou, Zhejiang 325011, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force , Tianjin 300162, China
| |
Collapse
|
17
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
18
|
Morys S, Urnauer S, Spitzweg C, Wagner E. EGFR Targeting and Shielding of pDNA Lipopolyplexes via Bivalent Attachment of a Sequence-Defined PEG Agent. Macromol Biosci 2017; 18. [PMID: 28877405 DOI: 10.1002/mabi.201700203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/18/2017] [Indexed: 12/20/2022]
Abstract
For successful nonviral gene delivery, cationic polymers are promising DNA carrier, which need to comprise several functionalities. The current work focuses on the postincorporation of epidermal growth factor receptor (EGFR) targeted PEGylation agents onto lipopolyplexes for pDNA delivery. T-shaped lipo-oligomers are previously found to be effective sequence-defined carriers for pDNA and siRNA. Here, the bis-oleoyl-oligoaminoethanamide 454 containing tyrosine trimer-cysteine ends is applied for complex formation with pDNA coding for luciferase or sodium iodide symporter (NIS). In a second step, the lipopolyplexes are modified via disulfide formation with sequence-defined monovalent or bivalent PEGylation agents containing one or two 3-nitro-2-pyridinesulfenyl (NPys)-activated cysteines, respectively. For targeting, the polyethylene glycol (PEG) agents comprise the EGFR targeting peptide GE11. In comparison of all transfection complexes, 454 lipopolyplexes modified with the bidentate PEG-GE11 agent show the best, EGFR-dependent uptake as well as luciferase and NIS gene expression into receptor-positive tumor cells.
Collapse
Affiliation(s)
- Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research and Center for Nanoscience (CeNS), LMU Munich, 81377, Munich, Germany
| |
Collapse
|
19
|
Nakamura Y, Sato H, Nobori T, Matsumoto H, Toyama S, Shuno T, Kishimura A, Mori T, Katayama Y. Modification of ligands for serum albumin on polyethyleneimine to stabilize polyplexes in gene delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1382-1393. [DOI: 10.1080/09205063.2017.1328730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuta Nakamura
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hikari Sato
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Takanobu Nobori
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Hotaru Matsumoto
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Shoko Toyama
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Shuno
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Faculty of Engineering, Department of Applied Chemistry, Kyushu University, Fukuoka, Japan
- Center for Molecular Systems, Kyushu University, Fukuoka, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Faculty of Engineering, Department of Applied Chemistry, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
- Faculty of Engineering, Department of Applied Chemistry, Kyushu University, Fukuoka, Japan
- Center for Future Chemistry, Kyushu University, Fukuoka, Japan
- Center for Molecular Systems, Kyushu University, Fukuoka, Japan
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Jiang B, He H, Yao L, Zhang T, Huo J, Sun W, Yin L. Harmonizing the Intracellular Kinetics toward Effective Gene Delivery Using Cancer Cell-Targeted and Light-Degradable Polyplexes. Biomacromolecules 2017; 18:877-885. [PMID: 28165729 DOI: 10.1021/acs.biomac.6b01774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Benchun Jiang
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Hua He
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials and Devices,
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Li Yao
- Department
of Nephrology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Tong Zhang
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Jianping Huo
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Wei Sun
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Lichen Yin
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials and Devices,
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Mauri E, Moroni I, Magagnin L, Masi M, Sacchetti A, Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther 2016; 26:452-62. [PMID: 26176432 DOI: 10.1089/hum.2015.069] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CRISPR/Cas9 genome editing platforms are widely applied as powerful tools in basic research and potential therapeutics for genome regulation. The appropriate alternative of delivery system is critical if genome editing systems are to be effectively performed in the targeted cells or organisms. To date, the in vivo delivery of the Cas9 system remains challenging. Both physical methods and viral vectors are adopted in the delivery of the Cas9-based gene editing platform. However, physical methods are more applicable for in vitro delivery, while viral vectors are generally concerned with safety issues, limited packing capacities, and so on. With the robust development of nonviral drug delivery systems, lipid- or polymer-based nanocarriers might be potent vectors for the delivery of CRISPR/Cas9 systems. In this review, we look back at the delivery approaches that have been used for the delivery of the Cas9 system and outline the recent development of nonviral vectors that might be potential carriers for the genome editing platform in the future. The efforts in optimizing cationic nanocarriers with structural modification are described and promising nonviral vectors under clinical investigations are highlighted.
Collapse
Affiliation(s)
- Ling Li
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| | - Zhi-Yao He
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| | - Xia-Wei Wei
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| | - Guang-Ping Gao
- 2 Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiology Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Yu-Quan Wei
- 1 Lab for Aging Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu, Sichuan, PR China
| |
Collapse
|
23
|
He D, Müller K, Krhac Levacic A, Kos P, Lächelt U, Wagner E. Combinatorial Optimization of Sequence-Defined Oligo(ethanamino)amides for Folate Receptor-Targeted pDNA and siRNA Delivery. Bioconjug Chem 2016; 27:647-59. [DOI: 10.1021/acs.bioconjchem.5b00649] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dongsheng He
- Pharmaceutical
Biotechnology, Center for System-based Drug Research and Center for
NanoScience (CeNS), Ludwig-Maximilians-University, 81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse
4, 80799 Munich, Germany
| | - Katharina Müller
- Pharmaceutical
Biotechnology, Center for System-based Drug Research and Center for
NanoScience (CeNS), Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Ana Krhac Levacic
- Pharmaceutical
Biotechnology, Center for System-based Drug Research and Center for
NanoScience (CeNS), Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Petra Kos
- Pharmaceutical
Biotechnology, Center for System-based Drug Research and Center for
NanoScience (CeNS), Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Ulrich Lächelt
- Pharmaceutical
Biotechnology, Center for System-based Drug Research and Center for
NanoScience (CeNS), Ludwig-Maximilians-University, 81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse
4, 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Center for System-based Drug Research and Center for
NanoScience (CeNS), Ludwig-Maximilians-University, 81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse
4, 80799 Munich, Germany
| |
Collapse
|
24
|
Sun F, Feng C, Liu H, Huang X. PHEA-g-PDMAEA well-defined graft copolymers: SET-LRP synthesis, self-catalyzed hydrolysis, and quaternization. Polym Chem 2016. [DOI: 10.1039/c6py01637e] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the synthesis of well-defined graft copolymers containing a PHEA backbone and degradable PDMAEA side chains, by the combination of RAFT polymerization, SET-LRP, and the grafting-from strategy.
Collapse
Affiliation(s)
- Fangxu Sun
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Haoyu Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
25
|
Nam JP, Nah JW. Target gene delivery from targeting ligand conjugated chitosan–PEI copolymer for cancer therapy. Carbohydr Polym 2016; 135:153-61. [DOI: 10.1016/j.carbpol.2015.08.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/01/2023]
|
26
|
Sarkar K, Banerjee SL, Kundu PP, Madras G, Chatterjee K. Biofunctionalized surface-modified silver nanoparticles for gene delivery. J Mater Chem B 2015; 3:5266-5276. [PMID: 32262602 DOI: 10.1039/c5tb00614g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Silver nanoparticles (AgNPs) find use in different biomedical applications including wound healing and cancer. We propose that the efficacy of the nanoparticles can be further augmented by using these particles for gene delivery applications. The objective of this work was to engineer biofunctionalized stable AgNPs with good DNA binding ability for efficient transfection and minimal toxicity. Herein, we report on the one-pot facile green synthesis of polyethylene glycol (PEG) stabilized chitosan-g-polyacrylamide modified AgNPs. The size of the PEG stabilized AgNPs was 38 ± 4 nm with a tighter size distribution compared to the unstabilized nanoparticles which showed bimodal distribution of particle sizes of 68 ± 5 nm and 7 ± 4 nm. To enhance the efficiency of gene transfection, the Arg-Gly-Asp-Ser (RGDS) peptide was immobilized on the silver nanoparticles. The transfection efficiency of AgNPs increased significantly after immobilization of the RGDS peptide reaching up to 42 ± 4% and 30 ± 3% in HeLa and A549 cells, respectively, and significantly higher than 34 ± 3% and 23 ± 2%, respectively, with the use of polyethyleneimine (25 kDa). These nanoparticles were found to induce minimal cellular toxicity. Differences in cellular uptake mechanisms with RGDS immobilization resulting in improved efficiency are elucidated. This study presents biofunctionalized AgNPs for potential use as efficient nonviral carriers for gene delivery with minimal cytotoxicity toward augmenting the therapeutic efficacy of AgNPs used in different biomedical products.
Collapse
Affiliation(s)
- Kishor Sarkar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore-560012, India
| | | | | | | | | |
Collapse
|
27
|
Germershaus O, Nultsch K. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
28
|
Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. J Control Release 2015; 205:109-19. [DOI: 10.1016/j.jconrel.2014.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/16/2014] [Accepted: 12/24/2014] [Indexed: 12/29/2022]
|
29
|
Zhang L, Bellis SL, Fan Y, Wu Y. Using inositol as a biocompatible ligand for efficient transgene expression. Int J Nanomedicine 2015; 10:2871-84. [PMID: 25926732 PMCID: PMC4403686 DOI: 10.2147/ijn.s77002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transgene transfection techniques using cationic polymers such as polyethylenimines (PEIs) and PEI derivatives as gene vectors have shown efficacy, although they also have shortcomings. PEIs have decent DNA-binding capability and good cell internalization performance, but they cannot deliver gene payloads very efficiently to cell nuclei. In this study, three hyperbranched polyglycerol-polyethylenimine (PG6-PEI) polymers conjugated with myo-inositol (INO) molecules were developed. The three resulting PG6-PEI-INO polymers have an increased number of INO ligands per molecule. PG6-PEI-INO 1 had only 14 carboxymethyl INO (CMINO) units per molecule. PG6-PEI-INO 2 had approximately 130 CMINO units per molecule. PG6-PEI-INO 3 had as high as 415 CMINO units approximately. Mixing PG6-PEI-INO polymers with DNA produced compact nanocomposites. We then performed localization studies using fluorescent microscopy. As the number of conjugated inositol ligands increased in PG6-PEI-INO polymers, there was a corresponding increase in accumulation of the polymers within 293T cell nuclei. Transfection performed with spherical 293T cells yielded 82% of EGFP-positive cells when using PG6-PEI-INO 3 as the vehicle. Studies further revealed that extracellular adenosine triphosphate (eATP) can inhibit the transgene efficiency of PG6-PEI-INO polymers, as compared with PEI and PG6-PEI that were not conjugated with inositol. Our work unveiled the possibility of using inositol as an effective ligand for transgene expression.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| | - Susan L Bellis
- Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yiwen Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| |
Collapse
|
30
|
Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chem Rev 2015; 115:11043-78. [DOI: 10.1021/cr5006793] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ulrich Lächelt
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical
Biotechnology, Department of Pharmacy, Ludwig Maximilians Universität, 81377 Munich, Germany
- Nanosystems
Initiative
Munich (NIM), 80799 Munich, Germany
| |
Collapse
|
31
|
Reversibly cross-linked polyplexes enable cancer-targeted gene delivery via self-promoted DNA release and self-diminished toxicity. Biomacromolecules 2015; 16:1390-400. [PMID: 25756930 DOI: 10.1021/acs.biomac.5b00180] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polycations often suffer from the irreconcilable inconsistency between transfection efficiency and toxicity. Polymers with high molecular weight (MW) and cationic charge feature potent gene delivery capabilities, while in the meantime suffer from strong chemotoxicity, restricted intracellular DNA release, and low stability in vivo. To address these critical challenges, we herein developed pH-responsive, reversibly cross-linked, polyetheleneimine (PEI)-based polyplexes coated with hyaluronic acid (HA) for the effective and targeted gene delivery to cancer cells. Low-MW PEI was cross-linked with the ketal-containing linker, and the obtained high-MW analogue afforded potent gene delivery capabilities during transfection, while rapidly degraded into low-MW segments upon acid treatment in the endosomes, which promoted intracellular DNA release and reduced material toxicity. HA coating of the polyplexes shielded the surface positive charges to enhance their stability under physiological condition and simultaneously reduced the toxicity. Additionally, HA coating allowed active targeting to cancer cells to potentiate the transfection efficiencies in cancer cells in vitro and in vivo. This study therefore provides an effective approach to overcome the efficiency-toxicity inconsistence of nonviral vectors, which contributes insights into the design strategy of effective and safe vectors for cancer gene therapy.
Collapse
|
32
|
Taranejoo S, Liu J, Verma P, Hourigan K. A review of the developments of characteristics of PEI derivatives for gene delivery applications. J Appl Polym Sci 2015. [DOI: 10.1002/app.42096] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shahrouz Taranejoo
- Department of Chemical Engineering; Faculty of Engineering; Monash University; Melbourne Victoria Australia 3800
- Laboratory for Biomedical Engineering/Fluids Laboratory for Aeronautical and Industrial Research; Department of Mechanical and Aerospace Engineering; Faculty of Engineering; Monash University; Melbourne Victoria Australia 3800
| | - Jun Liu
- Stem Cell and Genetic Engineering Group; Department of Materials Engineering; Faculty of Engineering; Monash University Melbourne; Victoria Australia 3800
| | - Paul Verma
- Stem Cell and Genetic Engineering Group; Department of Materials Engineering; Faculty of Engineering; Monash University Melbourne; Victoria Australia 3800
- Turretfield Research Center South Australian Research and Development Institute; Adelaide South Australia Australia 5350
| | - Kerry Hourigan
- Laboratory for Biomedical Engineering/Fluids Laboratory for Aeronautical and Industrial Research; Department of Mechanical and Aerospace Engineering; Faculty of Engineering; Monash University; Melbourne Victoria Australia 3800
| |
Collapse
|
33
|
Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:947-58. [PMID: 25680543 DOI: 10.1016/j.nano.2015.01.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/12/2014] [Accepted: 01/22/2015] [Indexed: 11/23/2022]
Abstract
UNLABELLED Multidrug resistance is one of the greatest challenges in cancer therapy. Herein we described the synthesis of folate (FA)-conjugated selenium nanoparticles (SeNPs) as cancer-targeted nano-drug delivery system for ruthenium polypyridyl (RuPOP) exhibits strong fluorescence, which allows the direct imaging of the cellular trafficking of the nanosystem. This nanosystem could effectively antagonize against multidrug resistance in liver cancer. FA surface conjugation significantly enhanced the cellular uptake of SeNPs by FA receptor-mediated endocytosis through nystain-dependent lipid raft-mediated and clathrin-mediated pathways. The nanomaterials overcame the multidrug resistance in R-HepG2 cells through inhibition of ABC family proteins expression. Internalized nanoparticles triggered ROS overproduction and induced apoptosis by activating p53 and MAPKs pathways. Moreover, FA-SeNPs exhibited low in vivo acute toxicity, which verified the safety and application potential of FA-SeNPs as nanodrugs. This study provides an effective strategy for the design of cancer-targeted nanodrugs against multidrug resistant cancers. FROM THE CLINICAL EDITOR In the combat against hepatocellular carcinoma, multidrug resistance remains one of the obstacles to be overcome. The authors designed and synthesized folate (FA)-conjugated selenium nanoparticles (SeNPs) with enhanced cancer-targeting capability. This system carried ruthenium polypyridyl (RuPOP), an efficient metal-based anti-cancer drug with strong fluorescence. It was shown that this combination was effective in antagonizing against multidrug resistance in vitro.
Collapse
|
34
|
Falzarano MS, Passarelli C, Ferlini A. Nanoparticle delivery of antisense oligonucleotides and their application in the exon skipping strategy for Duchenne muscular dystrophy. Nucleic Acid Ther 2014; 24:87-100. [PMID: 24506782 DOI: 10.1089/nat.2013.0450] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA, is proving to be a highly promising therapy for some genetic disorders like Duchenne muscular dystrophy and spinal muscular atrophy. However, AONs are unable to cross the plasma membrane unaided, and several other obstacles still remain to be overcome, in particular their instability due to their nuclease sensitivity and their lack of tissue specificity. Various drug delivery systems have been explored to improve the bioavailability of nucleic acids, and nanoparticles (NPs) have been suggested as potential vectors for DNA/RNA. This review describes the recent progress in AON conjugation with natural and synthetic delivery systems, and provides an overview of the efficacy of NP-AON complexes as an exon-skipping treatment for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- 1 Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara , Ferrara, Italy
| | | | | |
Collapse
|
35
|
Rogers ML, Smith KS, Matusica D, Fenech M, Hoffman L, Rush RA, Voelcker NH. Non-viral gene therapy that targets motor neurons in vivo. Front Mol Neurosci 2014; 7:80. [PMID: 25352776 PMCID: PMC4196515 DOI: 10.3389/fnmol.2014.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS). We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by “immunogene” nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12) as DNA carrier was conjugated to an antibody (MLR2) to the neurotrophin receptor p75 (p75NTR). We used a plasmid (pVIVO2) designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP). MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice, GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0% of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Kevin S Smith
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Matthew Fenech
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Lee Hoffman
- Department of Chemistry and Biochemistry, South Dakota State University Brookings, SD, USA
| | - Robert A Rush
- Department of Human Physiology, Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Nicolas H Voelcker
- Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Mawson Institute, University of South Australia Adelaide, SA, Australia
| |
Collapse
|
36
|
Chen X, Tian H, Guan X. Polymeric Gene Carriers. BIOINSPIRED AND BIOMIMETIC POLYMER SYSTEMS FOR DRUG AND GENE DELIVERY 2014:171-202. [DOI: 10.1002/9783527672752.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Silk fibroin layer-by-layer microcapsules for localized gene delivery. Biomaterials 2014; 35:7929-39. [DOI: 10.1016/j.biomaterials.2014.05.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/21/2014] [Indexed: 12/23/2022]
|
38
|
Wen X, Huang A, Liu Z, Liu Y, Hu J, Liu J, Shuai X. Downregulation of ROCK2 through nanocomplex sensitizes the cytotoxic effect of temozolomide in U251 glioma cells. PLoS One 2014; 9:e92050. [PMID: 24642531 PMCID: PMC3958422 DOI: 10.1371/journal.pone.0092050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 02/18/2014] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Rho-associated coiled-coil kinase 2 (ROCK2) is an attractive therapeutic target because it is overexpressed in many malignancies, including glioma. Therefore, we designed the current study to determine whether the downregulation of ROCK2 would sensitize the cytotoxic effect of temozolomide (TMZ) in U251 cells. METHODS Glycol-polyethyleneimine (PEG-PEI) was used to deliver siROCK2 to U251 cells, and the physical characteristics of the PEG-PEI/siROCK2 complex (referred to as the siROCK2 complex) were investigated. The transfection efficiency and cell uptake were determined by flow cytometry (FCM) and confocal laser microscopy (CLSM), respectively. U251 cells were then treated with 100 μM TMZ, siROCK2 complexes or their combination. The apoptosis rate and cell migration were measured by FCM and wound-healing assay, respectively. The levels of Bax, Bcl-2, cleaved caspase-3, MMP-2, and MMP-9 were detected to analyze the degrees of apoptosis and migration. RESULTS Our results revealed that the characteristics of the siROCK2 complexes depended closely on the N/P ratios. PEG-PEI served as a good vector for siROCK2 and exhibited low cytotoxicity toward U251 cells. The CLSM assay showed that the siROCK2 complexes were successfully uptaken and that both the protein and mRNA levels of ROCK2 were significantly suppressed. Furthermore, the combination treatment induced a higher apoptosis rate and markedly increased the gap distance of U251 cells in the wound-healing assay. Levels of the proapoptotic proteins Bax and cleaved caspase-3 were significantly increased, whereas levels of the antiapoptotic protein Bcl-2 and the migration-related proteins MMP-2 and MMP-9 were significantly reduced by the combination treatment compared with either treatment alone. CONCLUSIONS In conclusion, our results demonstrate that the combination of TMZ and siROCK2 effectively induces apoptosis and inhibits the migration of U251 cells. Therefore, the combination of TMZ and siROCK2 complex is a potential therapeutic approach for human glioma.
Collapse
Affiliation(s)
- Xiaojun Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Amin Huang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhonglin Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Yunyun Liu
- Department of Neurology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingyang Hu
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital,Sun Yat-sen University, Guangzhou, China
| | - Xintao Shuai
- Center of Biomedical Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XL)
| |
Collapse
|
39
|
Wang J, Lei Y, Xie C, Lu W, Wagner E, Xie Z, Gao J, Zhang X, Yan Z, Liu M. Retro-inverso CendR peptide-mediated polyethyleneimine for intracranial glioblastoma-targeting gene therapy. Bioconjug Chem 2014; 25:414-23. [PMID: 24506588 DOI: 10.1021/bc400552t] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of nonviral gene delivery vectors offers the potential to provide effective treatment for glioblastoma in the form of gene therapy. Here, we report the use of retro-inverso C-end rule (CendR) peptide D(RPPREGR) as a targeting ligand to prepare a D(RPPREGR)-PEG-PEI gene vector. D(RPPREGR) peptide specifically recognized the neuropilin-1 receptor that was overexpressed on U87 glioma cells, and showed enhanced tumor spheroid penetration ability. Compared with parental RGERPPR, D(RPPREGR) possessed improved biological stability and had a higher affinity for U87 glioma cells; it also showed enhanced penetration of the tumor spheroid. mPEG-PEI/pDNA and D(RPPREGR)-PEG-PEI/pDNA complexes were prepared and MTT assay results revealed that the cytotoxicity of D(RPPREGR)-PEG-PEI complexes was significantly lower than that of PEI complexes, with cell survival rates above 80%. Qualitative and quantitative in vitro transfection results revealed that D(RPPREGR)-PEG-PEI complex transfection efficiencies were 1.9 times higher than those of mPEG-PEI. Fluorescent imaging and frozen sections of brain tissue demonstrated that the D(RPPREGR) modification improved the in vivo transfection efficiency of mPEG-PEI in nude mice bearing U87 gliomas. An antiglioblastoma assay revealed that D(RPPREGR)-PEG-PEI carrying the therapeutic gene pORF-hTRAIL significantly prolonged the survival time of intracranial U87 glioma-bearing mice from 25 to 30 days. Therefore, D(RPPREGR)-PEG-PEI appears to be suitable for use as a safe and efficient gene delivery vehicle with potential applications in glioblastoma gene therapy.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Smart Drug Delivery(Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wen X, Wang L, Liu Z, Liu Y, Hu J. Intracranial injection of PEG-PEI/ROCK II-siRNA improves cognitive impairment in a mouse model of Alzheimer's disease. Int J Neurosci 2014; 124:697-703. [PMID: 24350994 DOI: 10.3109/00207454.2013.877014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE A plenty of studies have demonstrated that the Rho/ROCK pathway is involved in the neuronal loss and inhibition of axonal regeneration observed in Alzheimer's disease (AD). Therefore, we conducted this study to evaluate whether intracranial injection of PEG-PEI/ROCK II siRNA (PPRS) would improve the cognitive impairments in a senescence-accelerated mouse (SAM) model of AD. MATERIALS AND METHODS Five male senescence-resistant inbred strain (SAMR1) mice and 15 male senescence-accelerated mouse prone-8 (SAMP8) strain mice were divided into the following three groups:PPRS group, PEG-PEI/ ROCK II-Scramble (PPRScr) siRNA group, and normal group (SAMR1). Total volumes of 2.3 μl of nanoparticles or saline were intracranially injected under the guidance of a stereotaxic apparatus. The injections were performed every three days and lasted for two weeks. Four weeks after injection, the Morris water maze (MWM) was used to evaluate the spatial learning and memory functions of the mice. Choline acetyltransferase (ChAT) activity was detected by immunohistochemistry. RESULTS Mice in the PPRS-treated group exhibited decreases in escape latencies over the three successive days of navigating the test and crossing the target quadrant during the spatial probe test more frequently than did the mice in the PPRScr-treated group. Analyses of ChAT activity revealed that greater numbers of ChAT-positive cells were present in the hippocampal regions of the PPRS-treated mice than in the PPRScr group. CONCLUSIONS Intracranial injection of PPRS improved the cognitive impairments of SAM mice, and this improvement may have been mediated by enhancement of ChAT activity in the hippocampus.
Collapse
Affiliation(s)
- Xiaojun Wen
- 1Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou, Guangdong Province , P.R. China
| | | | | | | | | |
Collapse
|
41
|
Wang J, Lei Y, Xie C, Lu W, Yan Z, Gao J, Xie Z, Zhang X, Liu M. Targeted gene delivery to glioblastoma using a C-end rule RGERPPR peptide-functionalised polyethylenimine complex. Int J Pharm 2013; 458:48-56. [DOI: 10.1016/j.ijpharm.2013.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 01/13/2023]
|
42
|
Durymanov MO, Slastnikova TA, Kuzmich AI, Khramtsov YV, Ulasov AV, Rosenkranz AA, Egorov SY, Sverdlov ED, Sobolev AS. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue. Biomaterials 2013; 34:10209-16. [PMID: 24075405 DOI: 10.1016/j.biomaterials.2013.08.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/27/2013] [Indexed: 12/22/2022]
Abstract
Targeted sodium-iodide symporter (NIS) gene transfer can be considered as a promising approach for diagnostics of specific types of cancer. For this purpose we used targeted polyplexes based on PEI-PEG-MC1SP block-copolymer containing MC1SP-peptide, a ligand specific for melanocortin receptor-1 (MC1R) overexpressed on melanoma cells. Targeted polyplexes demonstrated enhanced NIS gene transfer compared to non-targeted (lacking MC1SP) ones in vitro. Using dorsal skinfold chamber and intravital microscopy we evaluated accumulation and microdistribution of quantum dot-labeled polyplexes in tumor and normal subcutaneous tissues up to 4 h after intravenous injection. Polyplexes demonstrated significantly higher total accumulation in tumor tissue in comparison with subcutaneous ones (control). Targeted and non-targeted polyplexes extravasated and penetrated into the tumor tissue up to 20 μm from the vessel walls. In contrast, in normal subcutaneous tissue polyplexes penetrated not more than 3 μm from the vessel walls with the level of extravasated polyplexes 400-fold less than in tumor. Accumulated polyplexes in tumor tissue caused NIS gene expression. Subsequent (123)I(-) intravenous injection resulted in 6.8 ± 1.1 and 4.5 ± 0.8% ID/g (p < 0.001) iodide accumulation in tumors in the case of targeted and non-targeted polyplexes, respectively, as was shown using SPECT/CT.
Collapse
Affiliation(s)
- Mikhail O Durymanov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5, Vavilov St., 119334 Moscow, Russia; Department of Biophysics, Faculty of Biology, Moscow State University, 1-12, Leninskie Gory, 119991 Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang YQ, Wang F, Deng XQ, Sheng J, Chen SY, Su J. Delivery of therapeutic AGT shRNA by PEG-Bu for hypertension therapy. PLoS One 2013; 8:e68651. [PMID: 23894329 PMCID: PMC3716693 DOI: 10.1371/journal.pone.0068651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/31/2013] [Indexed: 11/18/2022] Open
Abstract
Gene silencing by RNA interference (RNAi) is a promising approach for gene therapy. However, up to today, it is still a major challenge to find safe and efficient non-viral vectors. Previously, we reported PEI-Bu, a small molecular weight PEI derivative, as an efficient non-viral carrier. However, like many PEI-based polymers, PEI-Bu was too toxic. In order to reduce cytotoxicity while maintain or even enhance transfecion efficiency, we modified PEI-Bu with poly(ethylene glycol) (PEG) to obtain PEG-Bu, and used it to delivery a theraputic short hairpin RNA (shRNA) targeting angiotensinogen (AGT) to normal rat liver cells (BRL-3A), which was a key target for the treatment of hypertension. The structure of PEG-Bu was confirmed by proton nuclear magnetic resonance ((1)H-NMR). Gel permeation chromatography (GPC) showed that the weight average molecular weight (Mw) of PEG-Bu was 5880 Da, with a polydispersity of 1.58. PEG-Bu could condense gene cargo into spherical and uniform nanoparticles with particle size (65-88 nm) and zeta potential (7.3-9.6 mV). Interestingly and importantly, PEG-Bu displayed lower cytotoxicity and enhanced tranfection efficiency than PEI-Bu after PEGylation in both normal cells BRL-3A and tumor cells HeLa. Moreover, PEG-Bu could efficiently delivery AGT shRNA to knockdown the AGT expression. To sum up, PEG-Bu would be a promising non-viral vector for delivering AGT shRNA to BRL-3A cells for hypertension therapy.
Collapse
Affiliation(s)
- Yu-Qiang Wang
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Wang
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qin Deng
- Department of Radiation Ontology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Sheng
- Department of Geriatrics, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Yan Chen
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (S-YC); (J. Su)
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (S-YC); (J. Su)
| |
Collapse
|
44
|
|
45
|
Sharma A, Kundu S, Reddy M A, Bajaj A, Srivastava A. Design and engineering of disulfide crosslinked nanocomplexes of polyamide polyelectrolytes: stability under biorelevant conditions and potent cellular internalization of entrapped model peptide. Macromol Biosci 2013; 13:927-37. [PMID: 23696522 DOI: 10.1002/mabi.201300018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Indexed: 01/31/2023]
Abstract
Counter polyelectrolytes (PEs) having a degradable polyamide backbone and controlled thiolation are prepared. Their nanosized polyelectrolyte complexes (PECs) spontaneously crosslink under ambient conditions via bioreducible disulfide bonds. These PECs are regenerable after centrifugation, and resist degradation by proteases. They are stable to variations of pH and electrolyte concentration, similar to those encountered in biological milieu. However, they are unraveled in reductive conditions. These PECs act as efficient vectors for delivering entrapped cargo. They entrap with high efficiency, and controllably release, fluorescein isothiocyanate (FITC)-insulin (a model peptide) in vitro. Potent cellular internalization of FITC-insulin within human lung cancer cells with high cell viability is demonstrated.
Collapse
Affiliation(s)
- Aashish Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Govindpura, Bhopal Madhya Pradesh, India
| | | | | | | | | |
Collapse
|
46
|
Wang Y, Su J, Cai W, Lu P, Yuan L, Jin T, Chen S, Sheng J. Hepatocyte-targeting gene transfer mediated by galactosylated poly(ethylene glycol)-graft-polyethylenimine derivative. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:211-21. [PMID: 23576866 PMCID: PMC3617917 DOI: 10.2147/dddt.s42582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/27/2022]
Abstract
Biscarbamate cross-linked polyethylenimine derivative (PEI-Et) has been reported as a novel nonviral vector for efficient and safe gene transfer in our previous work. However, it had no cell-specificity. To achieve specific delivery of genes to hepatocytes, galactosylated poly(ethylene glycol)-graft-polyethylenimine derivative (GPE) was prepared through modification of PEI-Et with poly(ethylene glycol) and lactobionic acid, bearing a galactose group as a hepatocyte-targeting moiety. The composition of GPE was characterized by proton nuclear magnetic resonance. The weight-average molecular weight of GPE measured with a gel permeation chromatography instrument was 9489 Da, with a polydispersity of 1.44. GPE could effectively condense plasmid DNA (pDNA) into nanoparticles. Gel retardation assay showed that GPE/pDNA complexes were completely formed at weigh ratios (w/w) over 3. The particle size of GPE/pDNA complexes was 79-100 nm and zeta potential was 6-15 mV, values which were appropriate for cellular uptake. The morphology of GPE/pDNA complexes under atomic force microscopy appeared spherical and uniform in size, with diameters of 53-65 nm. GPE displayed much higher transfection efficiency than commercially available PEI 25 kDa in BRL-3A cell lines. Importantly, GPE showed good hepatocyte specificity. Also, the polymer exhibited significantly lower cytotoxicity compared to PEI 25 kDa at the same concentration or weight ratio in BRL-3A cell lines. To sum up, our results indicated that GPE might carry great potential in safe and efficient hepatocyte-targeting gene delivery.
Collapse
Affiliation(s)
- Yuqiang Wang
- Department of Geriatrics, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Noga M, Edinger D, Kläger R, Wegner SV, Spatz JP, Wagner E, Winter G, Besheer A. The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials 2013; 34:2530-8. [PMID: 23312901 DOI: 10.1016/j.biomaterials.2012.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/22/2012] [Indexed: 01/18/2023]
Abstract
PEGylation is currently the gold-standard in shielding cationic DNA-polyplexes against non-specific interaction with blood components. However, it reduces cellular uptake and transfection, in what is known as the "PEG-dilemma". In an approach to solve this problem we developed hydroxyethyl starch (HES)-shielded polyplexes which get deshielded under the action of alpha amylase (AA). In this study, the effect of molar mass and degree of hydroxyethylation on the shielding and deshielding of the polyplexes as well as their in vivo performance were investigated. For this purpose, a battery of HES-polyethylenimine (PEI) conjugates was synthesized, and their rate and extent of biodegradation were investigated using asymmetric flow-field flow fractionation (AF4) and quartz-crystal microbalance with dissipation (QCM-D). Additionally, the transfection efficiency of the polyplexes was tested in Neuro2A cells and tumor-bearing mice. AF4 and QCM results show a rapid degradation for HES with lower degrees of hydroxyethylation. Meanwhile, in vitro transfection experiments showed a better shielding for higher HES molar masses, as well as deshielding with a significant boost in transfection upon addition of AA. Finally, in vivo experiments showed that the biodegradable HES markedly reduced the non-specific lung transcription of the polyplexes, but maintained gene expression in the tumor, contrary to the non-degradable HES and PEG controls, which reduced both tumor and lung expression. This study shows that by controlling the molecular characteristics of HES it is possible to engineer the shielding and deshielding properties of the polyplexes for more efficient gene delivery.
Collapse
Affiliation(s)
- Matthäus Noga
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Newland B, Dowd E, Pandit A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater Sci 2013; 1:556. [DOI: 10.1039/c3bm60030k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
49
|
Elbakry A, Wurster EC, Zaky A, Liebl R, Schindler E, Bauer-Kreisel P, Blunk T, Rachel R, Goepferich A, Breunig M. Layer-by-layer coated gold nanoparticles: size-dependent delivery of DNA into cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:3847-56. [PMID: 22911477 DOI: 10.1002/smll.201201112] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/02/2012] [Indexed: 05/22/2023]
Abstract
Because nanoparticles are finding uses in myriad biomedical applications, including the delivery of nucleic acids, a detailed knowledge of their interaction with the biological system is of utmost importance. Here the size-dependent uptake of gold nanoparticles (AuNPs) (20, 30, 50 and 80 nm), coated with a layer-by-layer approach with nucleic acid and poly(ethylene imine) (PEI), into a variety of mammalian cell lines is studied. In contrast to other studies, the optimal particle diameter for cellular uptake is determined but also the number of therapeutic cargo molecules per cell. It is found that 20 nm AuNPs, with diameters of about 32 nm after the coating process and about 88 nm including the protein corona after incubation in cell culture medium, yield the highest number of nanoparticles and therapeutic DNA molecules per cell. Interestingly, PEI, which is known for its toxicity, can be applied at significantly higher concentrations than its IC(50) value, most likely because it is tightly bound to the AuNP surface and/or covered by a protein corona. These results are important for the future design of nanomaterials for the delivery of nucleic acids in two ways. They demonstrate that changes in the nanoparticle size can lead to significant differences in the number of therapeutic molecules delivered per cell, and they reveal that the toxicity of polyelectrolytes can be modulated by an appropriate binding to the nanoparticle surface.
Collapse
Affiliation(s)
- Asmaa Elbakry
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Singarapu K, Pal I, Ramsey JD. Polyethylene glycol–grafted polyethylenimine used to enhance adenovirus gene delivery. J Biomed Mater Res A 2012; 101:1857-64. [DOI: 10.1002/jbm.a.34483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Kumar Singarapu
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | - Ivy Pal
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|