1
|
Endo-Takahashi Y, Sakurai A, Oguri Y, Katagiri F, Akiyama S, Sashida S, Yamaguchi T, Marunouchi T, Suzuki R, Maruyama K, Tanonaka K, Nomizu M, Negishi Y. Phosphorodiamidate Morpholino Oligomers-Loaded Nanobubbles for Ultrasound-Mediated Delivery to the Myocardium in Muscular Dystrophy. ACS OMEGA 2025; 10:9639-9648. [PMID: 40092813 PMCID: PMC11904648 DOI: 10.1021/acsomega.4c10896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Microbubbles (MBs) and nanobubbles (NBs) can oscillate and collapse in response to ultrasound exposure, resulting in contrast and delivery effects. Therefore, the retention of the entrapped gas is an important condition in bubble formulations, especially for MBs and NBs with lipid shells, and the stability of the lipid membrane is considered to be affected. We previously developed NBs, which are polyethylene glycol-modified liposomes entrapping an ultrasound contrast gas that can serve as nucleic acid carriers and ultrasound contrast agents. In particular, NBs containing cationic lipids were useful as systemic delivery tools that can load genes and nucleic acids on their surfaces. However, the gas retention of NBs containing cationic lipids were low, leaving room for improvement as ultrasound contrast agents. In this study, we attempted to prepare NBs containing anionic lipids to improve their stability in vivo, and found that they lasted longer in contrast time than previous NBs. In order to utilize anionic NBs, we evaluated their usefulness as systemic delivery tools for cationic-peptide-conjugated phosphorodiamidate morpholino oligomers (PMO). PMO has attracted attention as a therapeutic agent for Duchenne muscular dystrophy (DMD); however, its charge neutrality makes its delivery into muscle fibers challenging, especially more difficult to apply PMO to myocardial damage. We examined the systemic delivery of PMO to the heart using a combination of anionic NBs and ultrasound. Furthermore, we evaluated the usability of octaarginine (R8), a cationic cell-penetrating peptide (CPP), in loading PMO onto the surface of NBs and verified the potential of PMO-loaded NBs as a therapy for cardiac dysfunction in muscular dystrophy.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akane Sakurai
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yukiko Oguri
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Fumihiko Katagiri
- Department
of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Saki Akiyama
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Sanae Sashida
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Taiki Yamaguchi
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tetsuro Marunouchi
- Department
of Molecular and Cellular Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryo Suzuki
- Laboratory
of Drug and Gene Delivery Research, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuo Maruyama
- Laboratory
of Theranostics, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1
Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kouichi Tanonaka
- Department
of Molecular and Cellular Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department
of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department
of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
2
|
Rajankar N, Aalhate M, Mahajan S, Maji I, Gupta U, Nair R, Paul P, Singh PK. Unveiling multifaceted avenues of echogenic liposomes: Properties, preparation, and potential applications. J Drug Deliv Sci Technol 2024; 99:105931. [DOI: 10.1016/j.jddst.2024.105931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Tabata H, Koyama D, Matsukawa M, Krafft MP, Yoshida K. Concentration-Dependent Viscoelasticity of Poloxamer-Shelled Microbubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:433-441. [PMID: 36580034 DOI: 10.1021/acs.langmuir.2c02690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The oscillation of shelled microbubbles during exposure to ultrasound is influenced by the mechanical properties of the shell components. The oscillation behavior of bubbles coated with various phospholipids and other amphiphiles has been studied. However, there have been few investigations of how the adsorption conditions of the shell molecules relate to the viscoelastic properties of the shell and influence the oscillation behavior of the bubbles. In the present study, we investigated the oscillation characteristics of microbubbles coated with a poloxamer surfactant, that is, Pluronic F-68, at several concentrations after the adsorption kinetics of the surfactant at the gas-water interface had reached equilibrium. The dilatational viscoelasticity of the shell during exposure to ultrasound was analyzed in the frequency domain from the attenuation characteristics of the acoustic pulses propagated in the bubble suspension. At Pluronic F-68 concentrations lower than 2.0 × 10-2 mol L-1, the attenuation characteristics typically exhibited a sharp peak. At concentrations higher than 2.0 × 10-2 mol L-1, the peak flattened. The dilatational elasticity and viscosity of the shell were estimated by fitting the theoretical model to the experimental values, which revealed that both the elasticity and viscosity increased markedly at approximately 2.0 × 10-2 mol L-1. This suggests that the adsorption properties of Pluronic F-68 strongly affect the oscillation characteristics of microbubbles of a size suitable for medical ultrasound diagnostics.
Collapse
Affiliation(s)
- Hiraku Tabata
- Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto610-0321, Japan
| | - Daisuke Koyama
- Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto610-0321, Japan
| | - Mami Matsukawa
- Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto610-0321, Japan
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, Strasbourg67034, France
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage-ku, Chiba263-8522, Japan
| |
Collapse
|
4
|
Zhou M, Wei T, Gu L, Yang H, Li M, Zhou Y. Focal opening of the neuronal plasma membrane by shock-induced bubble collapse for drug delivery: a coarse-grained molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:29862-29869. [PMID: 36468436 DOI: 10.1039/d2cp03442e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cell permeabilization using shock-induced bubble collapse provides an attractive choice for drug delivery systems. In this work, based on a realistically human brain plasma membrane (PM) model, we investigated the focal opening of this complex model by the jet from cavitation, focusing on the effect of characteristic membrane components, particle velocity (up) and bubble diameters (D). Both high levels of cholesterol and specific cerebrosides in the PM model limit the pore opening of cavitation jets. Sphingomyelin is the opposite, but has little effect due to its low content. Two adjustable parameters of up and D can be coupled to control the opening size. The relationship between them and the maximum pore area was provided for the first time. The maximum pore area increases with the up (or the impulse that is positively related to up) in the low-speed range, which agrees with the experimentally observed impulse determinism. However, the maximum area drops in the high-speed range. Combined with D, we proposed that the jet size determines the pore size, not the impulse. Larger bubbles that can create a larger pore in the membrane have a larger jet size, but their impulse is relatively small. Finally, the recovery simulation shows that the membrane with a small pore can be quickly recovered within 300 ps, while that with a larger pore did not recover until 2 μs. These rules from this work may be helpful to optimize the choice of shock waves for the delivery of different drugs across membranes.
Collapse
Affiliation(s)
- Mi Zhou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Tong Wei
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Lingzhi Gu
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Hong Yang
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Ming Li
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| | - Yang Zhou
- Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900, Mianyang, China.
| |
Collapse
|
5
|
Endo-Takahashi Y, Negishi Y. Gene and oligonucleotide delivery via micro- and nanobubbles by ultrasound exposure. Drug Metab Pharmacokinet 2022; 44:100445. [DOI: 10.1016/j.dmpk.2022.100445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
|
6
|
Zahiri M, Taghavi S, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Theranostic nanobubbles towards smart nanomedicines. J Control Release 2021; 339:164-194. [PMID: 34592384 DOI: 10.1016/j.jconrel.2021.09.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/04/2023]
Abstract
Targeted therapy and early accurate detection of malignant lesions are essential for the effectiveness of treatment and prognosis in cancer patients. The development of gaseous system as a versatile platform for the fabricated nanobubbles, has attracted much interest in improving the efficacy of ultrasound therapeutic, diagnostic, and theranostic platforms. Nano-sized bubble, as an ultrasound contrast agent, with spherical gas-filled structures exhibited contrast enhancement capability due to their inherent EPR effect. Additionally, nanobubbles exhibited good stability with extended retention time in the blood stream. The current review summarized various nanobubbles and discussed about the crucial parameters affecting the stability of ultrafine bubbles. Furthermore, therapeutic and theranostic gaseous systems for fighting against cancer were described.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Taghavi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Zhang Y, Fowlkes JB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision. Curr Med Chem 2021; 29:1331-1341. [PMID: 34348609 DOI: 10.2174/0929867328666210804092624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/07/2022]
Abstract
Ultrasound (US) is notable in the medical field as a safe and effective imaging modality due to its lack of ionizing radiation, non-invasive approach, and real-time monitoring capability. Accompanying recent progress in nanomedicine, US has been providing hope of theranostic capability not only for imaging-based diagnosis but also for US-based therapy by taking advantage of the bioeffects induced by US. Cavitation, sonoporation, thermal effects, and other cascade effects stimulated by acoustic energy conversion have contributed to medical problem-solving in the past decades although to varying degrees of efficacy in comparisons to other methods. Recently, the usage of liposomes-based nanoplatform fuels the development of nanomedicine and provides novel clinical strategies for antitumor, thrombolysis, and controlled drug release. Merging of novel liposome-based nanoplatforms and US-induced reactions has promise for a new blueprint for future medicine. In the present review article, the value of liposome-based nanoplatforms in US-related diagnosis and therapy will be discussed and summarized along with potential future directions for further investigations.
Collapse
Affiliation(s)
- Ying Zhang
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| | - J Brian Fowlkes
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| |
Collapse
|
8
|
Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021; 50:5746-5776. [PMID: 33972972 DOI: 10.1039/c9cs00839j] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.
| | - Stefaan De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
9
|
Ternary Complexes of pDNA, Neuron-Binding Peptide, and PEGylated Polyethyleneimine for Brain Delivery with Nano-Bubbles and Ultrasound. Pharmaceutics 2021; 13:pharmaceutics13071003. [PMID: 34371694 PMCID: PMC8309135 DOI: 10.3390/pharmaceutics13071003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
In brain-targeted delivery, the transport of drugs or genes across the blood-brain barrier (BBB) is a major obstacle. Recent reports found that focused ultrasound (FUS) with microbubbles enables transient BBB opening and improvement of drug or gene delivery. We previously developed nano-sized bubbles (NBs), which were prepared based on polyethylene glycol (PEG)-modified liposomes containing echo-contrast gas, and showed that our NBs with FUS could also induce BBB opening. The aim of this study was to enhance the efficiency of delivery of pDNA into neuronal cells following transportation across the BBB using neuron-binding peptides. This study used the RVG-R9 peptide, which is a chimeric peptide synthesized by peptides derived from rabies virus glycoprotein and nonamer arginine residues. The RVG peptide is known to interact specifically with the nicotinic acetylcholine receptor in neuronal cells. To enhance the stability of the RVG-R9/pDNA complex in vivo, PEGylated polyethyleneimine (PEG-PEI) was also used. The ternary complexes composed of RVG-R9, PEG-PEI, and pDNA could interact with mouse neuroblastoma cells and deliver pDNA into the cells. Furthermore, for the in vivo experiments using NBs and FUS, gene expression was observed in the FUS-exposed brain hemispheres. These results suggest that this systemic gene delivery system could be useful for gene delivery across the BBB.
Collapse
|
10
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y. Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 2021; 11:12915-12928. [PMID: 35423829 PMCID: PMC8697319 DOI: 10.1039/d0ra08727k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The non-specific distribution, non-selectivity towards cancerous cells, and adverse off-target side effects of anticancer drugs and other therapeutic molecules lead to their inferior clinical efficacy. Accordingly, ultrasound-based targeted delivery of therapeutic molecules loaded in smart nanocarriers is currently gaining wider acceptance for the treatment and management of cancer. Nanobubbles (NBs) are nanosize carriers, which are currently used as effective drug/gene delivery systems because they can deliver drugs/genes selectively to target sites. Thus, combining the applications of ultrasound with NBs has recently demonstrated increased localization of anticancer molecules in tumor tissues with triggered release behavior. Consequently, an effective therapeutic concentration of drugs/genes is achieved in target tumor tissues with ultimately increased therapeutic efficacy and minimal side-effects on other non-cancerous tissues. This review illustrates present developments in the field of ultrasound-nanobubble combined strategies for targeted cancer treatment. The first part of this review discusses the composition and the formulation parameters of NBs. Next, we illustrate the interactions and biological effects of combining NBs and ultrasound. Subsequently, we explain the potential of NBs combined with US for targeted cancer therapeutics. Finally, the present and future directions for the improvement of current methods are proposed. NBs combined with ultrasound demonstrated the ability to enhance the targeting of anticancer agents and improve the efficacy.![]()
Collapse
Affiliation(s)
- Chunhong Su
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - XiaoJun Ren
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Fang Nie
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Tiangang Li
- Department of Ultrasound Diagnosis, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, 730030, Gansu Province, China
| | - Wenhao Lv
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Hui Li
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Pneumology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| | - Yao Zhang
- Department of Ultrasound Diagnosis, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
- Department of Emergency, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu Province, China
| |
Collapse
|
12
|
Microbubbles and Nanobubbles with Ultrasound for Systemic Gene Delivery. Pharmaceutics 2020; 12:pharmaceutics12100964. [PMID: 33066531 PMCID: PMC7602142 DOI: 10.3390/pharmaceutics12100964] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
The regulation of gene expression is a promising therapeutic approach for many intractable diseases. However, its use in clinical applications requires the efficient delivery of nucleic acids to target tissues, which is a major challenge. Recently, various delivery systems employing physical energy, such as ultrasound, magnetic force, electric force, and light, have been developed. Ultrasound-mediated delivery has particularly attracted interest due to its safety and low costs. Its delivery effects are also enhanced when combined with microbubbles or nanobubbles that entrap an ultrasound contrast gas. Furthermore, ultrasound-mediated nucleic acid delivery could be performed only in ultrasound exposed areas. In this review, we summarize the ultrasound-mediated nucleic acid systemic delivery system, using microbubbles or nanobubbles, and discuss its possibilities as a therapeutic tool.
Collapse
|
13
|
Unga J, Kageyama S, Suzuki R, Omata D, Maruyama K. Scale-up production, characterization and toxicity of a freeze-dried lipid-stabilized microbubble formulation for ultrasound imaging and therapy. J Liposome Res 2019; 30:297-304. [DOI: 10.1080/08982104.2019.1649282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Johan Unga
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Saori Kageyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
14
|
Lipid Delivery Systems for Nucleic-Acid-Based-Drugs: From Production to Clinical Applications. Pharmaceutics 2019; 11:pharmaceutics11080360. [PMID: 31344836 PMCID: PMC6723796 DOI: 10.3390/pharmaceutics11080360] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
In the last years the rapid development of Nucleic Acid Based Drugs (NABDs) to be used in gene therapy has had a great impact in the medical field, holding enormous promise, becoming “the latest generation medicine” with the first ever siRNA-lipid based formulation approved by the United States Food and Drug Administration (FDA) for human use, and currently on the market under the trade name Onpattro™. The growth of such powerful biologic therapeutics has gone hand in hand with the progress in delivery systems technology, which is absolutely required to improve their safety and effectiveness. Lipid carrier systems, particularly liposomes, have been proven to be the most suitable vehicles meeting NABDs requirements in the medical healthcare framework, limiting their toxicity, and ensuring their delivery and expression into the target tissues. In this review, after a description of the several kinds of liposomes structures and formulations used for in vitro or in vivo NABDs delivery, the broad range of siRNA-liposomes production techniques are discussed in the light of the latest technological progresses. Then, the current status of siRNA-lipid delivery systems in clinical trials is addressed, offering an updated overview on the clinical goals and the next challenges of this new class of therapeutics which will soon replace traditional drugs.
Collapse
|
15
|
Hamarat Şanlıer Ş, Ak G, Yılmaz H, Ünal A, Bozkaya ÜF, Tanıyan G, Yıldırım Y, Yıldız Türkyılmaz G. Development of Ultrasound-Triggered and Magnetic-Targeted Nanobubble System for Dual-Drug Delivery. J Pharm Sci 2019; 108:1272-1283. [DOI: 10.1016/j.xphs.2018.10.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/14/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023]
|
16
|
Abstract
Theranostics is a term used to describe the combination of diagnostic and therapeutic functions in a single agent. Ultrasound, for example, is a good tool for theranostics due to its multi-potency as both a diagnostic tool using sonography, and as a therapeutic, i.e., by high intensity focused ultrasound (HIFU). Likewise, microbubbles and nanobubbles are not only used as contrast imaging agents, but also as enhancers of drug delivery. Recently, the combination of these bubbles with low intensity ultrasound has been utilized as an effective drug delivery system. We have implemented a similar technique by combining bubbles and ultrasound to study cancer gene therapy and chemotherapy. In addition, we have used high intensity ultrasound as a method for directly damaging tumor cells, thus serving as a cancer therapy. For effective cancer treatment, however, the properties of the bubbles are of utmost importance. Currently, we are applying these bubbles to various therapeutic strategies in cancer treatment. In this session, we would like to introduce the feasibility study of our use of these bubbles in cancer treatment.
Collapse
Affiliation(s)
- Ryo Suzuki
- Faculty of Pharma-Sciences, Teikyo University
| | | |
Collapse
|
17
|
Wu T, Li Z, Zhang Y, Ji J, Huang Y, Yuan H, Feng F, Schanze KS. Remarkable Amplification of Polyethylenimine-Mediated Gene Delivery Using Cationic Poly(phenylene ethynylene)s as Photosensitizers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24421-24430. [PMID: 29957922 DOI: 10.1021/acsami.8b07124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conjugated polymers can serve as good photosensitizers in biomedical applications. However, it remains unknown whether they are phototoxic to the supercoiled structure of DNA in improving gene delivery by the photochemical internalization (PCI) strategy, which complicates the application of conjugated polymers in gene delivery. In this work, we introduced a trace amount of cationic poly(phenylene ethynylene)s (cPPEs) into the polymeric shell of branched polyethylenimine (BPEI)/DNA complexes, studied the photosensitization of singlet oxygen by cPPEs, and confirmed that the supercoiled DNA is undamaged by the singlet oxygen generated by the photoexcitation of cPPEs. By taking advantage of the cPPE-mediated PCI effect, we report that the addition of the trace amount of cPPEs to the outer shell of the BPEI/DNA polyplexes could greatly amplify the transfection of gene green fluorescent protein on tumor cells with the efficiency from 14 to 86% without decreasing the cell viabilities, well solving the problem with a poor transfection capability of BPEI under low DNA-loading conditions. Our strategy to employ conjugated polymers as photosensitizing agents in gene delivery systems is simple, safe, efficient, and promising for broad applications in gene delivery areas.
Collapse
Affiliation(s)
| | - Zhiliang Li
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Yajie Zhang
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules , Jiangsu Second Normal University , Nanjing , Jiangsu 210013 , PR China
| | | | - Yun Huang
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| | | | | | - Kirk S Schanze
- Department of Chemistry , University of Texas at San Antonio , One UTSA Circle , San Antonio , Texas 78249 , United States
| |
Collapse
|
18
|
Tsuchiya A, Kang JH, Mori T, Naritomi Y, Kushio S, Niidome T, Tachibana K, Takahashi Y, Negishi Y, Oda Y, Suzuki R, Maruyama K, Katayama Y. Efficient delivery of signal-responsive gene carriers for disease-specific gene expression via bubble liposomes and sonoporation. Colloids Surf B Biointerfaces 2017; 160:60-64. [DOI: 10.1016/j.colsurfb.2017.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 01/06/2023]
|
19
|
Abdalkader R, Kawakami S, Unga J, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection. Drug Deliv 2017; 24:320-327. [PMID: 28165819 PMCID: PMC8241156 DOI: 10.1080/10717544.2016.1250139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/11/2016] [Accepted: 10/14/2016] [Indexed: 12/23/2022] Open
Abstract
In this study, stable nano-sized bubbles (nanobubbles [NBs]) were produced using the mechanical agitation method in the presence of perfluorocarbon gases. NBs made with perfluoropropane had a smaller size (around 400 nm) compared to that of those made with perfluorobutane or nitrogen gas. The lipid concentration in NBs affected both their initial size and post-formulation stability. NBs formed with a final lipid concentration of 0.5 mg/ml tended to be more stable, having a uniform size distribution for 24 h at room temperature and 50 h at 4 °C. In vitro gene expression revealed that NBs/pDNA in combination with ultrasound (US) irradiation had significantly higher transfection efficacy in colon C26 cells. Moreover, for in vivo gene transfection in mice left limb muscles, there was notable local transfection activity by NBs/pDNA when combined with US irradiation. In addition, the aged NBs kept at room temperature or 4 °C were still functional at enhancing gene transfection in mice. We succeeded in preparing stable NBs for efficient in vivo gene transfection, using the mechanical agitation method.
Collapse
Affiliation(s)
- Rodi Abdalkader
- Department of Drug Delivery Researches, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Johan Unga
- Department of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan, and
| | - Yuriko Higuchi
- Department of Drug Delivery Researches, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ryo Suzuki
- Department of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan, and
| | - Kazuo Maruyama
- Department of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan, and
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Researches, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Researches, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Kyoto University Institute for Integrated Cell-Material Science (iCeMS), Kyoto, Japan
| |
Collapse
|
20
|
Jiang N, Chen Q, Cao S, Hu B, Wang YJ, Zhou Q, Guo RQ. Ultrasound‑targeted microbubbles combined with a peptide nucleic acid binding nuclear localization signal mediate transfection of exogenous genes by improving cytoplasmic and nuclear import. Mol Med Rep 2017; 16:8819-8825. [PMID: 28990051 PMCID: PMC5779960 DOI: 10.3892/mmr.2017.7681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/01/2017] [Indexed: 11/29/2022] Open
Abstract
The development of an efficient delivery system is critical for the successful treatment of cardiovascular diseases using non-viral gene therapies. Cytoplasmic and nuclear membrane barriers reduce delivery efficiency by impeding the transfection of foreign genes. Thus, a gene delivery system capable of transporting exogenous genes may improve gene therapy. The present study used a novel strategy involving ultrasound-targeted microbubbles and peptide nucleic acid (PNA)-binding nuclear localization signals (NLS). Ultrasound-targeted microbubble destruction (UTMD) and PNA-binding NLS were used to improve the cytoplasmic and nuclear importation of the plasmid, respectively. Experiments were performed using antibody-targeted microbubbles (AT-MCB) that specifically recognize the SV40T antigen receptor expressed on the membranes of 293T cells, resulting in the localization of ultrasound microbubbles to 293T cell membranes. Furthermore, PNA containing NLS was inserted into the enhanced green fluorescent protein (EGFP)-N3 plasmid DNA (NLS-PNA-DNA), which increased nuclear localization. The nuclear import and gene expression efficiency of the AT-MCB with PNA-binding NLS were compared with AT-MCB alone or a PNA-binding NLS. The effect of the AT-MCB containing PNA-binding NLS on transfection was investigated. The ultrasound and AT-MCB delivery significantly enhanced the cytoplasmic intake of exogenous genes and maintained high cell viability. The nuclear import and gene expression of combined microbubble- and PNA-transfected cells were significantly greater compared with cells that were transfected with AT-MCB or DNA with only PNA-binding NLS. The quantity of EGFP-N3 plasmids in the nuclei was increased by >5.0-fold compared with control microbubbles (CMCB) and NLS-free plasmids. The gene expression was ~1.7-fold greater compared with NLS-free plasmids and 1.3-fold greater compared with control microbubbles. In conclusion, UTMD combined with AT-MCB and a PNA-binding NLS plasmid significantly improved transfection efficiency by increasing cytoplasmic and nuclear DNA import. This method is a promising strategy for the noninvasive and effective delivery of target genes or drugs for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qian Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Jia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui-Qiang Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
21
|
Endo-Takahashi Y, Ooaku K, Ishida K, Suzuki R, Maruyama K, Negishi Y. Preparation of Angiopep-2 Peptide-Modified Bubble Liposomes for Delivery to the Brain. Biol Pharm Bull 2017; 39:977-83. [PMID: 27251499 DOI: 10.1248/bpb.b15-00994] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the development of therapeutic approaches for central nervous system diseases, a significant obstacle is efficient drug delivery across the blood-brain barrier owing to its low permeability. Various nanocarriers have been developed for brain-targeted drug delivery by modification with specific ligands. We have previously developed polyethylene glycol-modified liposomes (Bubble liposomes [BLs]) that entrap ultrasound (US) contrast gas and can serve as both plasmid DNA or small interfering RNA carriers and US contrast agents. In this study, we attempted to prepare brain-targeting BLs modified with Angiopep-2 (Ang2) peptide (Ang2-BLs). Ang2 is expected to be a useful ligand for the efficient delivery of nanocarriers to the brain. We showed that Ang2-BLs interacted specifically with brain endothelial cells via low-density lipoprotein receptor-related protein-1. We also confirmed that Ang2-BLs could entrap US contrast gas and had US imaging ability as well as unmodified BLs. Furthermore, we demonstrated that Ang2-BLs accumulated in brain tissue after intravascular injection. These results suggested that Ang2-BLs may be a useful tool for brain-targeted delivery and US imaging via systemic administration.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | | | | |
Collapse
|
22
|
Hsieh TY, Huang WC, Kang YD, Chu CY, Liao WL, Chen YY, Chen SY. Neurotensin-Conjugated Reduced Graphene Oxide with Multi-Stage Near-Infrared-Triggered Synergic Targeted Neuron Gene Transfection In Vitro and In Vivo for Neurodegenerative Disease Therapy. Adv Healthc Mater 2016; 5:3016-3026. [PMID: 27805786 DOI: 10.1002/adhm.201600647] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Delivery efficiency with gene transfection is a pivotal point in achieving maximized therapeutic efficacy and has been an important challenge with central nervous system (CNS) diseases. In this study, neurotensin (NT, a neuro-specific peptide)-conjugated polyethylenimine (PEI)-modified reduced graphene oxide (rGO) nanoparticles with precisely controlled two-stage near-infrared (NIR)-laser photothermal treatment to enhance the ability to target neurons and achieve high gene transfection in neurons. First-stage NIR laser irradiation on the cells with nanoparticles attached on the surface can increase the permeability of the cell membrane, resulting in an apparent increase in cellular uptake compared to untreated cells. In addition, second-stage NIR laser irradiation on the cells with nanoparticles inside can further induce endo/lysosomal cavitation, which not only helps nanoparticles escape from endo/lysosomes but also prevents plasmid DNA (pDNA) from being digested by DNase I. At least double pDNA amount can be released from rGO-PEI-NT/pDNA under NIR laser trigger release compared to natural release. Moreover, in vitro differentiated PC-12 cell and in vivo mice (C57BL/6) brain transfection experiments have demonstrated the highest transfection efficiency occurring when NT modification is combined with external multi-stage stimuli-responsive NIR laser treatment. The combination of neuro-specific targeting peptide and external NIR-laser-triggered aid provides a nanoplatform for gene therapy in CNS diseases.
Collapse
Affiliation(s)
- Tsung-Ying Hsieh
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Wei-Chen Huang
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Yi-Da Kang
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Chao-Yi Chu
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| | - Wen-Lin Liao
- Taiwan Institute of Neuroscience; National Chengchi University; No. 64, Sec. 2, Zhinan Rd., Wenshan Dist Taipei City 116 Taiwan
| | - You-Yin Chen
- Department of Biomedical Engineering; National Yang Ming University; No. 155, Sec. 2, Linong St Taipei Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering; National Chiao Tung University; No. 1001, Ta-Hsueh Rd Hsinchu 30010 Taiwan
| |
Collapse
|
23
|
Boissenot T, Bordat A, Fattal E, Tsapis N. Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release 2016; 241:144-163. [DOI: 10.1016/j.jconrel.2016.09.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
|
24
|
Negishi Y, Endo-Takahashi Y, Maruyama K. Gene delivery systems by the combination of lipid bubbles and ultrasound. Drug Discov Ther 2016; 10:248-255. [PMID: 27795481 DOI: 10.5582/ddt.2016.01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | |
Collapse
|
25
|
Negishi Y, Tsunoda Y, Hamano N, Omata D, Endo-Takahashi Y, Suzuki R, Maruyama K, Nomizu M, Aramaki Y. Ultrasound-mediated gene delivery systems by AG73-modified Bubble liposomes. Biopolymers 2016; 100:402-7. [PMID: 23532952 DOI: 10.1002/bip.22246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 11/06/2022]
Abstract
Targeted gene delivery to neovascular vessels in tumors is considered a promising strategy for cancer therapy. We previously reported that "Bubble liposomes" (BLs), which are ultrasound (US) imaging gas-encapsulating liposomes, were suitable for US imaging and gene delivery. When BLs are exposed to US, the bubble is destroyed, creating a jet stream by cavitation, and resulting in the instantaneous ejection of extracellular plasmid DNA (pDNA) or other nucleic acids into the cytosol. We developed AG73 peptide-modified Bubble liposomes (AG73-BL) as a targeted US contrast agent, which was designed to attach to neovascular tumor vessels and to allow specific US detection of angiogenesis (Negishi et al., Biomaterials 2013, 34, 501-507). In this study, to evaluate the effectiveness of AG73-BL as a gene delivery tool for neovascular vessels, we examined the gene transfection efficiency of AG73-BL with US exposure in primary human endothelial cells (HUVEC). The transfection efficiency was significantly enhanced if the AG73-BL attached to the HUVEC was exposed to US compared to the BL-modified with no peptide or scrambled peptide. In addition, the cell viability was greater than 80% after transfection with AG73-BL. These results suggested that after the destruction of the AG73-BL with US exposure, a cavitation could be effectively induced by the US exposure against AG73-BL binding to the cell surface of the HUVEC, and the subsequent gene delivery into cells could be enhanced. Thus, AG73-BL may be useful for gene delivery as well as for US imaging of neovascular vessels.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, Gallarate M, Milla P, Peira E, Rocco F, Sapino S, Stella B, Ugazio E, Ceruti M. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Suzuki R, Oda Y, Omata D, Nishiie N, Koshima R, Shiono Y, Sawaguchi Y, Unga J, Naoi T, Negishi Y, Kawakami S, Hashida M, Maruyama K. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci 2016; 107:217-23. [PMID: 26707839 PMCID: PMC4814255 DOI: 10.1111/cas.12867] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/03/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
We previously developed novel liposomal nanobubbles (Bubble liposomes [BL]) that oscillate and collapse in an ultrasound field, generating heat and shock waves. We aimed to investigate the feasibility of cancer therapy using the combination of BL and ultrasound. In addition, we investigated the anti-tumor mechanism of this cancer therapy. Colon-26 cells were inoculated into the flank of BALB/c mice to induce tumors. After 8 days, BL or saline was intratumorally injected, followed by transdermal ultrasound exposure of tumor tissue (1 MHz, 0-4 W/cm2 , 2 min). The anti-tumor effects were evaluated by histology (necrosis) and tumor growth. In vivo cell depletion assays were performed to identify the immune cells responsible for anti-tumor effects. Tumor temperatures were significantly higher when treated with BL + ultrasound than ultrasound alone. Intratumoral BL caused extensive tissue necrosis at 3-4 W/cm2 of ultrasound exposure. In addition, BL + ultrasound significantly suppressed tumor growth at 2-4 W/cm2 . In vivo depletion of CD8+ T cells (not NK or CD4+ T cells) completely blocked the effect of BL + ultrasound on tumor growth. These data suggest that CD8+ T cells play a critical role in tumor growth suppression. Finally, we concluded that BL + ultrasound, which can prime the anti-tumor cellular immune system, may be an effective hyperthermia strategy for cancer treatment.
Collapse
Affiliation(s)
- Ryo Suzuki
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yusuke Oda
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Daiki Omata
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Norihito Nishiie
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Risa Koshima
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yasuyuki Shiono
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | | | - Johan Unga
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Tomoyuki Naoi
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Department of Clinical Pharmacy, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.,Institute of Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Maruyama
- Laboratory of Drug Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
28
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
29
|
Manta S, Delalande A, Bessodes M, Bureau MF, Scherman D, Pichon C, Mignet N. Characterization of Positively Charged Lipid Shell Microbubbles with Tunable Resistive Pulse Sensing (TRPS) Method: A Technical Note. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:624-630. [PMID: 26653937 DOI: 10.1016/j.ultrasmedbio.2015.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 10/15/2015] [Accepted: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Microbubbles are polydisperse microparticles. Their size distribution cannot be accurately measured from the current methods used, such as optical microscopy, electrical sensing or light scattering. Indeed, these techniques present some limitations when applied to microbubbles, which prompted us to investigate the use of an alternative technique: tunable resistive pulse sensing (TRPS). This technique is based on the principle of the Coulter counter with the advantage of being more flexible compared to other methods using this principle, since the flow rate, the potential difference and the pore size can be modulated. The main limitation of TRPS is that more than one size of nanopore membrane is required to obtain the full size distribution of polydisperse microparticles. To evaluate this technique, the concentration and the size distribution of positively charged microbubbles were studied using TRPS and compared to data obtained using optical microscopy. We describe herein the parameters required for the accurate measurement of microbubble concentration and size distribution by TRPS and present a statistical comparison of the data obtained by TRPS and optical microscopy.
Collapse
Affiliation(s)
- Simona Manta
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Anthony Delalande
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Michel Bessodes
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Michel Francis Bureau
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Daniel Scherman
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France
| | - Chantal Pichon
- Center for Molecular Biophysics (CBM), CNRS UPR4301, Orléans, France
| | - Nathalie Mignet
- Paris Descartes University, Sorbonne Paris Cité, Team vectors for molecular imaging and targeted therapy, CNRS UTCBS UMR8258, INSERM UTCBS U1022, Chimie ParisTech, PSL Research University, Paris, France.
| |
Collapse
|
30
|
Endo-Takahashi Y, Negishi Y, Suzuki R, Maruyama K, Aramaki Y. MicroRNA Imaging in Combination with Diagnostic Ultrasound and Bubble Liposomes for MicroRNA Delivery. Methods Mol Biol 2016; 1372:209-213. [PMID: 26530926 DOI: 10.1007/978-1-4939-3148-4_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
MicroRNA (miRNA) is expected to play an important role in the diagnosis and therapy of various diseases. In miRNA therapy, the development of delivery tools to the target site is considered to be essential. By using a delivery tool possessing imaging ability, miRNA colocalized with the carrier could be visualized after administration. We prepared polyethylene glycol (PEG)-modified liposomes containing echo-contrast gas, "Bubble liposomes" (BLs), and confirmed that BLs containing cationic lipid were capable of loading miRNA. Furthermore, we also achieved the imaging and delivery of systemically injected miRNA to target site in combination with ultrasound exposure. MiRNA-loaded BLs could be a useful tool for imaging and therapy.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
31
|
Suzuki R, Omata D, Oda Y, Unga J, Negishi Y, Maruyama K. Cancer Therapy with Nanotechnology-Based Drug Delivery Systems: Applications and Challenges of Liposome Technologies for Advanced Cancer Therapy. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2016. [DOI: 10.1007/978-1-4939-3121-7_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Suzuki R, Klibanov AL. Co-administration of Microbubbles and Drugs in Ultrasound-Assisted Drug Delivery: Comparison with Drug-Carrying Particles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:205-20. [PMID: 26486340 DOI: 10.1007/978-3-319-22536-4_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are two alternative approaches to ultrasound-assisted drug delivery. First, the drug can be entrapped into or attached onto the ultrasound-responsive particles and administered in the vasculature, to achieve ultrasound-triggered drug release from the particles and localized tissue deposition in response to ultrasound treatment of the target zone. Second, the drug can be co-administered with the microbubbles or other sonosensitive particles. In this case, the action of ultrasound on the particles (which act as cavitation nuclei) results in the transient improvement of permeability of the physiological barriers, so that the circulating drug can exit the bloodstream and get into the target tissues and cells. We discuss and compare both of these approaches, their characteristic advantages and disadvantages for the specific drug delivery scenarios. Clearly, the system based on the off-label use of the existing approved microbubbles and drugs (or drug carriers) will have a chance of getting to clinical trials faster and with lesser resources spent. However, if a superior curative potential of a sonosensitive drug carrier is proven, and formulation stability problems are addressed properly, this approach may find its way to practical use, especially for nucleic acid delivery scenarios.
Collapse
Affiliation(s)
- Ryo Suzuki
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.,Department of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Alexander L Klibanov
- Cardiovascular Division, Robert M Berne Cardiovascular Research Center, University of Virginia, 801394, Charlottesville, VA, 22908, USA.
| |
Collapse
|
33
|
Oda Y, Suzuki R, Mori T, Takahashi H, Natsugari H, Omata D, Unga J, Uruga H, Sugii M, Kawakami S, Higuchi Y, Yamashita F, Hashida M, Maruyama K. Development of fluorous lipid-based nanobubbles for efficiently containing perfluoropropane. Int J Pharm 2015; 487:64-71. [PMID: 25841568 DOI: 10.1016/j.ijpharm.2015.03.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/24/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Abstract
Nano-/microbubbles are expected not only to function as ultrasound contrast agents but also as ultrasound-triggered enhancers in gene and drug delivery. Notably, nanobubbles have the ability to pass through tumor vasculature and achieve passive tumor targeting. Thus, nanobubbles would be an attractive tool for use as ultrasound-mediated cancer theranostics. However, the amounts of gas carried by nanobubbles are generally lower than those carried by microbubbles because nanobubbles have inherently smaller volumes. In order to reduce the injection volume and to increase echogenicity, it is important to develop nanobubbles with higher gas content. In this study, we prepared 5 kinds of fluoro-lipids and used these reagents as surfactants to generate "Bubble liposomes", that is, liposomes that encapsulate nanobubbles such that the lipids serve as stabilizers between the fluorous gas and water phases. Bubble liposome containing 1-stearoyl-2-(18,18-difluoro)stearoyl-sn-glycero-3-phosphocholine carried 2-fold higher amounts of C3F8 compared to unmodified Bubble liposome. The modified Bubble liposome also exhibited increased echogenicity by ultrasonography. These results demonstrated that the inclusion of fluoro-lipid is a promising tool for generating nanobubbles with increased efficiency of fluorous gas carrier.
Collapse
Affiliation(s)
- Yusuke Oda
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Tatsuya Mori
- Laboratory of Organic Chemistry, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Hideyo Takahashi
- Laboratory of Organic Chemistry, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Hideaki Natsugari
- Laboratory of Organic Chemistry, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Johan Unga
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Hitoshi Uruga
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Mutsumi Sugii
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Japan
| | - Shigeru Kawakami
- Analytical Research for Pharmacoinformatics, Graduate School of Biomedical Sciences Medical and Dental Sciences, Nagasaki University, Japan
| | - Yuriko Higuchi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University, Japan.
| |
Collapse
|
34
|
Omata D, Negishi Y, Suzuki R, Oda Y, Endo-Takahashi Y, Maruyama K. Nonviral gene delivery systems by the combination of bubble liposomes and ultrasound. ADVANCES IN GENETICS 2014; 89:25-48. [PMID: 25620007 DOI: 10.1016/bs.adgen.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The combination of therapeutic ultrasound (US) and nano/microbubbles is an important system for establishing a novel and noninvasive gene delivery system. Genes are delivered more efficiently using this system compared with a conventional nonviral vector system such as the lipofection method, resulting in higher gene expression. This higher efficiency is due to the gene being delivered into the cytosol and bypassing the endocytosis pathway. Many in vivo studies have demonstrated US-mediated gene delivery with nano/microbubbles, and several gene therapy feasibility studies for various diseases have been reported. In addition, nano/microbubbles can deliver genes site specifically by the control of US exposure site. In the present review, we summarize the gene delivery systems by the combination of nano/microbubbles and US, describe their properties, and assess applications and challenges of US theranostics.
Collapse
Affiliation(s)
- Daiki Omata
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ryo Suzuki
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yusuke Oda
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Kazuo Maruyama
- Department of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| |
Collapse
|
35
|
Sanches PG, Mühlmeister M, Seip R, Kaijzel E, Löwik C, Böhmer M, Tiemann K, Grüll H. Ultrasound-mediated gene delivery of naked plasmid DNA in skeletal muscles: A case for bolus injections. J Control Release 2014; 195:130-7. [DOI: 10.1016/j.jconrel.2014.06.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/06/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
|
36
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
37
|
Negishi Y, Hamano N, Shiono H, Akiyama S, Endo-Takahashi Y, Suzuki R, Maruyama K, Aramaki Y. [Development of an ultrasound-mediated nucleic acid delivery system for treating muscular dystrophies]. YAKUGAKU ZASSHI 2014. [PMID: 23208045 DOI: 10.1248/yakushi.12-00235-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscular dystrophies are a group of heterogeneous diseases that are characterized by progressive muscle weakness, wasting and degeneration. These muscular deficiencies are often caused by the loss of the protein dystrophin, a crucial element of the dystrophin-glycoprotein complex of muscle fibers. Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscular disease that occurs in 1 out of every 3500 males. Therefore, feasible strategies for replacing or repairing the defective gene are required; however, to date, no effective therapeutic strategies for muscular dystrophies have been established. In this review, we first introduce gene therapies mediated by adeno-associated viruses (AAVs) including a functional dystrophin cDNA or antisense oligonucleotide (AO)-induced exon-skipping therapies, which are designed to exclude the mutated or additional exon(s) in the defective gene and thereby correct the translational reading frame. Recently, we developed "Bubble liposomes" (BLs), which are polyethylene glycol (PEG)-modified liposomes entrapping echo-contrast gas that is known as ultrasound (US) imaging gas. BL application combined with US exposure can function as a novel gene delivery tool, and we demonstrate that the US-mediated eruption of BLs is a feasible and efficient technique to deliver plasmid DNA or AOs for the treatment of muscular dystrophies.
Collapse
Affiliation(s)
- Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sun RR, Noble ML, Sun SS, Song S, Miao CH. Development of therapeutic microbubbles for enhancing ultrasound-mediated gene delivery. J Control Release 2014; 182:111-20. [PMID: 24650644 DOI: 10.1016/j.jconrel.2014.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 12/15/2022]
Abstract
Ultrasound (US)-mediated gene delivery has emerged as a promising non-viral method for safe and selective gene delivery. When enhanced by the cavitation of microbubbles (MBs), US exposure can induce sonoporation that transiently increases cell membrane permeability for localized delivery of DNA. The present study explores the effect of generalizable MB customizations on MB facilitation of gene transfer compared to Definity®, a clinically available contrast agent. These modifications are 1) increased MB shell acyl chain length (RN18) for elevated stability and 2) addition of positive charge on MB (RC5K) for greater DNA associability. The MB types were compared in their ability to facilitate transfection of luciferase and GFP reporter plasmid DNA in vitro and in vivo under various conditions of US intensity, MB dosage, and pretreatment MB-DNA incubation. The results indicated that both RN18 and RC5K were more efficient than Definity®, and that the cationic RC5K can induce even greater transgene expression by increasing payload capacity with prior DNA incubation without compromising cell viability. These findings could be applied to enhance MB functions in a wide range of therapeutic US/MB gene and drug delivery approach. With further designs, MB customizations have the potential to advance this technology closer to clinical application.
Collapse
Affiliation(s)
- Ryan R Sun
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Misty L Noble
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Samuel S Sun
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Shuxian Song
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, USA; Dept. of Pediatrics, University of Washington, Seattle, USA.
| |
Collapse
|
39
|
Development of anionic bubble lipopolyplexes for efficient and safe gene transfection with ultrasound exposure in mice. J Control Release 2014; 176:24-34. [DOI: 10.1016/j.jconrel.2013.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/06/2013] [Accepted: 12/19/2013] [Indexed: 02/02/2023]
|
40
|
Endo-Takahashi Y, Negishi Y, Nakamura A, Ukai S, Ooaku K, Oda Y, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci Rep 2014; 4:3883. [PMID: 24457599 PMCID: PMC3900923 DOI: 10.1038/srep03883] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 01/09/2014] [Indexed: 11/12/2022] Open
Abstract
Currently, micro RNA (miRNA) is considered an attractive target for therapeutic intervention. A significant obstacle to the miRNA-based treatments is the efficient delivery of miRNA to the target tissue. We have developed polyethylene glycol-modified liposomes (Bubble liposomes (BLs)) that entrap ultrasound (US) contrast gas and can serve as both plasmid DNA (pDNA) or small interfering RNA (siRNA) carriers and US contrast agents. In this study, we investigated the usability of miRNA-loaded BLs (mi-BLs) using a hindlimb ischemia model and miR-126. It has been reported that miR-126 promotes angiogenesis via the inhibition of negative regulators of VEGF signaling. We demonstrated that mi-BLs could be detected using diagnostic US and that mi-BLs with therapeutic US could deliver miR-126 to an ischemic hindlimb, leading to the induction of angiogenic factors and the improvement of blood flow. These results suggest that combining mi-BLs with US may be useful for US imaging and miRNA delivery.
Collapse
Affiliation(s)
- Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Arisa Nakamura
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Saori Ukai
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kotomi Ooaku
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yusuke Oda
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Katsutoshi Sugimoto
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Fuminori Moriyasu
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yukihiko Aramaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
41
|
Kim H, Kim WJ. Photothermally controlled gene delivery by reduced graphene oxide-polyethylenimine nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:117-26. [PMID: 23696272 DOI: 10.1002/smll.201202636] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 03/08/2013] [Indexed: 05/19/2023]
Abstract
Externally stimuli-triggered spatially and temporally controlled gene delivery can play a pivotal role in achieving targeted gene delivery with maximized therapeutic efficacy. In this study, a photothermally controlled gene delivery carrier is developed by conjugating low molecular-weight branched polyethylenimine (BPEI) and reduced graphene oxide (rGO) via a hydrophilic polyethylene glycol (PEG) spacer. This PEG-BPEI-rGO nanocomposite forms a stable nano-sized complex with plasmid DNA (pDNA), as confirmed by physicochemical studies. For the in vitro gene transfection study, PEG-BPEI-rGO shows a higher gene transfection efficiency without observable cytotoxicity compared to unmodified controls in PC-3 and NIH/3T3 cells. Moreover, the PEG-BPEI-rGO nanocomposite demonstrates an enhanced gene transfection efficiency upon NIR irradiation, which is attributed to accelerated endosomal escape of polyplexes augmented by locally induced heat. The endosomal escaping effect of the nanocomposite is investigated using Bafilomycin A1, a proton sponge effect inhibitor. The developed photothermally controlled gene carrier has the potential for spatial and temporal site-specific gene delivery.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea; Center for Self-assembly and Complexity, Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yusung-gu, Daejeon, 305-811, Korea
| | | |
Collapse
|
42
|
Fumoto S, Kawakami S. Combination of Nanoparticles with Physical Stimuli toward Cancer Therapy. Biol Pharm Bull 2014; 37:212-6. [DOI: 10.1248/bpb.b13-00703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Suzuki R, Oda Y, Omata D, Sawaguchi Y, Negishi Y, Maruyama K. [Novel dianostics and therapeutics with ultrasound technologies and nanotechnologies]. YAKUGAKU ZASSHI 2013; 133:1263-8. [PMID: 24292170 DOI: 10.1248/yakushi.13-00222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ultrasound is a good tool for theranostics due to have multi-potency both of diagnostics with sonography and therapeutics with high intensity focused ultrasound (HIFU). In addition, microbubbles and nanobubbles are utilized as not only contrast imaging agent but also enhancer of drug and gene delivery by combination of ultrasound. Recently, we developed novel liposomal nanobubbles (Bubble liposomes) which were containing perfluoropropane. Bubble liposomes induced jet stream by low intensity ultrasound exposure and resulted in enhancing permeability of cell membrane. This phenomenon has been utilized as driving force for drug and gene delivery. On the other hand, the combination of Bubble liposomes and high intensity ultrasound induces strong jet stream and increase temperature. This condition can directly damage to tumor cells, we are applying this for cancer therapy. Therefore, their combination has potency for various cancer therapies such as gene therapy, immunotherapy and hyperthermia. In this review, we discuss about cancer therapy by the combination of Bubble liposomes and ultrasound.
Collapse
Affiliation(s)
- Ryo Suzuki
- Laboratory of Drug and Gene Delivery System, Faculty of Pharma-Sciences, Teikyo University
| | | | | | | | | | | |
Collapse
|
44
|
Cavalli R, Bisazza A, Lembo D. Micro- and nanobubbles: a versatile non-viral platform for gene delivery. Int J Pharm 2013; 456:437-45. [PMID: 24008081 DOI: 10.1016/j.ijpharm.2013.08.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 01/01/2023]
Abstract
Micro- and nanobubbles provide a promising non-viral strategy for ultrasound mediated gene delivery. Microbubbles are spherical gas-filled structures with a mean diameter of 1-8 μm, characterised by their core-shell composition and their ability to circulate in the bloodstream following intravenous injection. They undergo volumetric oscillations or acoustic cavitation when insonified by ultrasound and, most importantly, they are able to resonate at diagnostic frequencies. It is due to this behaviour that microbubbles are currently being used as ultrasound contrast agents, but their use in therapeutics is still under investigation. For example, microbubbles could play a role in enhancing gene delivery to cells: when combined with clinical ultrasound exposure, microbubbles are able to favour gene entry into cells by cavitation. Two different delivery strategies have been used to date: DNA can be co-administered with the microbubbles (i.e. the contrast agent) or 'loaded' in purposed-built bubble systems - indeed a number of different technological approaches have been proposed to associate genes within microbubble structures. Nanobubbles, bubbles with sizes in the nanometre order of magnitude, have also been developed with the aim of obtaining more efficient gene delivery systems. Their small sizes allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. In contrast, microbubbles, due to their larger sizes, are unable to extravasate, thus and their targeting capacity is limited to specific antigens present within the vascular lumen. This review provides an overview of the use of microbubbles as gene delivery systems, with a specific focus on recent research into the development of nanosystems. In particular, ultrasound delivery mechanisms, formulation parameters, gene-loading approaches and the advantages of nanometric systems will be described.
Collapse
Affiliation(s)
- Roberta Cavalli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy.
| | | | | |
Collapse
|
45
|
Sugano M, Negishi Y, Endo-Takahashi Y, Hamano N, Usui M, Suzuki R, Maruyama K, Aramaki Y, Yamamoto M. Gene delivery to periodontal tissue using Bubble liposomes and ultrasound. J Periodontal Res 2013; 49:398-404. [PMID: 23889504 DOI: 10.1111/jre.12119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is the most common inflammatory disease caused by oral biofilm infection. For efficient periodontal treatment, it is important to enhance the outcome of existing regenerative therapies. The physical action of an ultrasound may be able to deliver a therapeutic gene or drugs into the local area of the periodontium being treated for periodontal regeneration. Previously, we developed "Bubble liposomes" as a useful carrier for gene or drug delivery, and reported that delivery efficiency was increased with high-frequency ultrasound in vitro and in vivo. Hence, the aim of the present study was to examine the possibility of delivering genes into gingival tissues using Bubble liposomes and ultrasound. MATERIAL AND METHODS We attempted to deliver naked plasmid DNA encoding luciferase or enhanced green fluorescent protein (EGFP) into the lower labial gingiva of Wistar rats using Bubble liposomes, with or without ultrasound exposure. Ultrasound parameters were optimized for intensity (0-4.0 W/cm(2) ) and exposure time (0-120 s) to establish the most efficient conditions for exposure. The efficacy and duration of gene expression in the gingiva were investigated using a luciferase assay and fluorescence microscopy. RESULTS The strongest relative luciferase activity was observed when rats were treated under the following ultrasound conditions: 2.0 W/cm(2) intensity and 30 s of exposure time. Relative luciferase activity, 1 d after gene delivery, was significantly higher in gingiva treated using Bubble liposomes and ultrasound than in gingiva of the other treatment groups. Histological analysis also showed that distinct EGFP-expressing cells were observed in transfected gingiva when rats were treated under optimized conditions. CONCLUSION From these results, the combination of Bubble liposomes and ultrasound provides an efficient technique for delivering plasmid DNA into the gingiva. This technique can be applied for the delivery of a variety of therapeutic molecules into target tissue, and may serve as a useful treatment strategy for periodontitis.
Collapse
Affiliation(s)
- M Sugano
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan; Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sakamura Y, Yoshiura M, Tang H, Mori T, Katayama Y, Niidome T. Thermal Enhancement of Gene Transfection in Tumor Cells Mediated by the Photothermal Effect of Gold Nanorods. CHEM LETT 2013. [DOI: 10.1246/cl.130220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Sakamura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Moemi Yoshiura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Hengmin Tang
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University
- Center for Future Chemistry, Kyushu University
- International Research Center for Molecular System, Kyushu University
| | - Takuro Niidome
- Graduate School of Science and Technology, Kumamoto University
| |
Collapse
|
47
|
Eggen S, Afadzi M, Nilssen EA, Haugstad SB, Angelsen B, Davies CDL. Ultrasound improves the uptake and distribution of liposomal Doxorubicin in prostate cancer xenografts. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1255-66. [PMID: 23643054 DOI: 10.1016/j.ultrasmedbio.2013.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/12/2013] [Accepted: 02/16/2013] [Indexed: 05/19/2023]
Abstract
Combining liposomally encapsulated cytotoxic drugs with ultrasound exposure has improved the therapeutic response to cancer in animal models; however, little is known about the underlying mechanisms. This study focused on investigating the effect of ultrasound exposures (1 MHz and 300 kHz) on the delivery and distribution of liposomal doxorubicin in mice with prostate cancer xenografts. The mice were exposed to ultrasound 24 h after liposome administration to study the effect on release of doxorubicin and its penetration through the extracellular matrix. Optical imaging methods were used to examine the effects at both microscopic subcellular and macroscopic tissue levels. Confocal laser scanning microscopy revealed that ultrasound-exposed tumors had increased levels of released doxorubicin compared with unexposed control tumors and that the distribution of liposomes and doxorubicin through the tumor tissue was improved. Whole-animal optical imaging revealed that liposomes were taken up by both abdominal organs and tumors.
Collapse
Affiliation(s)
- Siv Eggen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
48
|
Ibsen S, Schutt CE, Esener S. Microbubble-mediated ultrasound therapy: a review of its potential in cancer treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:375-88. [PMID: 23667309 PMCID: PMC3650568 DOI: 10.2147/dddt.s31564] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Indexed: 01/05/2023]
Abstract
The inherently toxic nature of chemotherapy drugs is essential for them to kill cancer cells but is also the source of the detrimental side effects experienced by patients. One strategy to reduce these side effects is to limit the healthy tissue exposure by encapsulating the drugs in a vehicle that demonstrates a very low leak rate in circulation while simultaneously having the potential for rapid release once inside the tumor. Designing a vehicle with these two opposing properties is the major challenge in the field of drug delivery. A triggering event is required to change the vehicle from its stable circulating state to its unstable release state. A unique mechanical actuation type trigger is possible by harnessing the size changes that occur when microbubbles interact with ultrasound. These mechanical actuations can burst liposomes and cell membranes alike allowing for rapid drug release and facilitating delivery into nearby cells. The tight focusing ability of the ultrasound to just a few cubic millimeters allows for precise control over the tissue location where the microbubbles destabilize the vehicles. This allows the ultrasound to highlight the tumor tissue and cause rapid drug release from any carrier present. Different vehicle designs have been demonstrated from carrying drug on just the surface of the microbubble itself to encapsulating the microbubble along with the drug within a liposome. In the future, nanoparticles may extend the circulation half-life of these ultrasound triggerable drug-delivery vehicles by acting as nucleation sites of ultrasound-induced mechanical actuation. In addition to the drug delivery capability, the microbubble size changes can also be used to create imaging contrast agents that could allow the internal chemical environment of a tumor to be studied to help improve the diagnosis and detection of cancer. The ability to attain truly tumor-specific release from circulating drug-delivery vehicles is an exciting future prospect to reduce chemotherapy side effects while increasing drug effectiveness.
Collapse
Affiliation(s)
- Stuart Ibsen
- Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
49
|
Endo-Takahashi Y, Negishi Y, Nakamura A, Suzuki D, Ukai S, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K, Aramaki Y. pDNA-loaded Bubble liposomes as potential ultrasound imaging and gene delivery agents. Biomaterials 2013; 34:2807-13. [DOI: 10.1016/j.biomaterials.2012.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
|
50
|
Shirmanova MV, Serebrovskaya EO, Lukyanov KA, Snopova LB, Sirotkina MA, Prodanetz NN, Bugrova ML, Minakova EA, Turchin IV, Kamensky VA, Lukyanov SA, Zagaynova EV. Phototoxic effects of fluorescent protein KillerRed on tumor cells in mice. JOURNAL OF BIOPHOTONICS 2013; 6:283-90. [PMID: 22696211 DOI: 10.1002/jbio.201200056] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/12/2012] [Accepted: 05/21/2012] [Indexed: 06/01/2023]
Abstract
KillerRed is known to be a unique red fluorescent protein displaying strong phototoxic properties. Its effectiveness has been shown previously for killing bacterial and cancer cells in vitro. Here, we investigated the photototoxicity of the protein on tumor xenografts in mice. HeLa Kyoto cell line stably expressing KillerRed in mitochondria and in fusion with histone H2B was used. Irradiation of the tumors with 593 nm laser led to photobleaching of KillerRed indicating photosensitization reaction and caused significant destruction of the cells and activation of apoptosis. The portion of the dystrophically changed cells increased from 9.9% to 63.7%, and the cells with apoptosis hallmarks from 6.3% to 14%. The results of this study suggest KillerRed as a potential genetically encoded photosensitizer for photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, 603005 Minin Sq., 10/1, Nizhny Novgorod, Russia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|