1
|
Lee JY, Hong JW, Thambi T, Yoon AR, Choi JW, Li Y, Bui QN, Lee DS, Yun CO. Optimizing Active Tumor Targeting Biocompatible Polymers for Efficient Systemic Delivery of Adenovirus. Cells 2021; 10:1896. [PMID: 34440666 PMCID: PMC8392276 DOI: 10.3390/cells10081896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Adenovirus (Ad) has risen to be a promising alternative to conventional cancer therapy. However, systemic delivery of Ad, which is necessary for the treatment of metastatic cancer, remains a major challenge within the field, owing to poor tumor tropism and nonspecific hepatic tropism of the virus. To address this limitation of Ad, we have synthesized two variants of folic acid (FA)-conjugated methoxy poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]-L-glutamate (P5N2LG-FA and P5N5LG-FA) using 5 kDa poly(ethylene glycol) (PEG) with a different level of protonation (N2 < N5 in terms of charge), along with a P5N5LG control polymer without FA. Our findings demonstrate that P5N5LG, P5N2LG-FA, and P5N5LG-FA exert a lower level of cytotoxicity compared to 25 kDa polyethyleneimine. Furthermore, green fluorescent protein (GFP)-expressing Ad complexed with P5N2LG-FA and P5N5LG-FA (Ad/P5N2LG-FA and Ad/P5N5LG-FA, respectively) exerted superior transduction efficiency compared to naked Ad or Ad complexed with P5N5LG (Ad/P5N5LG) in folate receptor (FR)-overexpressing cancer cells (KB and MCF7). All three nanocomplexes (Ad/P5N5LG, Ad/P5N2LG-FA, and Ad/P5N5LG-FA) internalized into cancer cells through coxsackie adenovirus receptor-independent endocytic mechanism and the cell uptake was more efficient than naked Ad. Importantly, the cell uptake of the two FA functionalized nanocomplexes (Ad/P5N2LG-FA and Ad/P5N5LG-FA) was dependent on the complementary interaction of FA-FR. Systemically administered Ad/P5N5LG, Ad/P5N2LG-FA, and Ad/P5N5LG-FA showed exponentially higher retainment of the virus in blood circulation up to 24 h post-administration compared with naked Ad. Both tumor-targeted nanocomplexes (Ad/P5N2LG-FA and Ad/P5N5LG-FA) showed significantly higher intratumoral accumulation than naked Ad or Ad/P5N5LG via systemic administration. Both tumor-targeted nanocomplexes accumulated at a lower level in liver tissues compared to naked Ad. Notably, the nonspecific accumulation of Ad/P5N2LG-FA was significantly lower than Ad/P5N5LG-FA in several normal organs, while exhibiting a significantly higher intratumoral accumulation level, showing that careful optimization of polyplex surface charge is critical to successful tumor-targeted systemic delivery of Ad nanocomplexes.
Collapse
Affiliation(s)
- Jun Young Lee
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.Y.L.); (T.T.); (A.-R.Y.); (J.-W.C.)
| | - Jin Woo Hong
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Thavasyappan Thambi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.Y.L.); (T.T.); (A.-R.Y.); (J.-W.C.)
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.Y.L.); (T.T.); (A.-R.Y.); (J.-W.C.)
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Korea
| | - Joung-Woo Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.Y.L.); (T.T.); (A.-R.Y.); (J.-W.C.)
| | - Yi Li
- Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.L.); (Q.N.B.)
| | - Quang Nam Bui
- Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.L.); (Q.N.B.)
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.L.); (Q.N.B.)
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.Y.L.); (T.T.); (A.-R.Y.); (J.-W.C.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Korea
| |
Collapse
|
2
|
Zhou Y, Han S, Liang Z, Zhao M, Liu G, Wu J. Progress in arginine-based gene delivery systems. J Mater Chem B 2020; 8:5564-5577. [DOI: 10.1039/d0tb00498g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine based gene delivery systems with enhanced membrane penetration and lower cytotoxicity greatly enrich the gene vectors library and outline a new development direction of gene delivery.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Shuyan Han
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Zhiqing Liang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
3
|
Oncolytic adenovirus coexpressing interleukin-12 and decorin overcomes Treg-mediated immunosuppression inducing potent antitumor effects in a weakly immunogenic tumor model. Oncotarget 2018; 8:4730-4746. [PMID: 28002796 PMCID: PMC5354867 DOI: 10.18632/oncotarget.13972] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023] Open
Abstract
Interleukin (IL)-12 is a potent antitumor cytokine. However, immunosuppressive tumor microenvironments containing transforming growth factor-β (TGF-β) attenuate cytokine-mediated antitumor immune responses. To enhance the efficacy of IL-12-mediated cancer immunotherapy, decorin (DCN) was explored as an adjuvant for overcoming TGF-β-mediated immunosuppression. We designed and generated a novel oncolytic adenovirus (Ad) coexpressing IL-12 and DCN (RdB/IL12/DCN). RdB/IL12/DCN-treated tumors showed significantly greater levels of interferon (IFN)-γ, tumor necrosis factor-α, monocyte chemoattractant protein-1, and IFN-γ-secreting immune cells than tumors treated with cognate control oncolytic Ad expressing a single therapeutic gene (RdB/DCN or RdB/IL12). Moreover, RdB/IL12/DCN attenuated intratumoral TGF-β expression, which positively correlated with reduction of Treg cells in draining lymph nodes and tumor tissues. Furthermore, tumor tissue treated with RdB/IL12/DCN showed increases infiltration of CD8+ T cells and proficient viral spreading within tumor tissues. These results demonstrated that an oncolytic Ad co-expressing IL-12 and DCN induces a potent antitumor immune response via restoration of antitumor immune function in a weakly immunogenic murine 4T1 orthotopic breast cancer model. These findings provide new insights into the therapeutic mechanisms of IL-12 plus DCN, making it a promising cancer immunotherapeutic agent for overcoming tumor-induced immunosuppression.
Collapse
|
4
|
Kasala D, Lee SH, Hong JW, Choi JW, Nam K, Chung YH, Kim SW, Yun CO. Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Biomaterials 2017; 145:207-222. [DOI: 10.1016/j.biomaterials.2017.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
|
5
|
Aoyama K, Kuroda S, Morihiro T, Kanaya N, Kubota T, Kakiuchi Y, Kikuchi S, Nishizaki M, Kagawa S, Tazawa H, Fujiwara T. Liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus with stealth effect on the immune system. Sci Rep 2017; 7:14177. [PMID: 29074882 PMCID: PMC5658411 DOI: 10.1038/s41598-017-14717-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has the disadvantage of being unsuitable for systemic delivery due to immune elimination. Liposomal encapsulation is well-recognized to reduce immune elimination and enhance the stability of drugs in the bloodstream. In the present study, the potential of liposome-encapsulated plasmid DNA of telomerase-specific oncolytic adenovirus (TelomeScan) expressing GFP (Lipo-pTS) as an oncolytic adenoviral agent suitable for systemic delivery was investigated. Lipo-pTS, which has a diameter of 40–50 nm, showed potent antitumor effects on HCT116 colon carcinoma cells in vitro and in vivo. Tumor selectivity of Lipo-pTS was independent of coxsackie and adenovirus receptor (CAR). Importantly, Lipo-pTS reduced production of adenovirus-neutralizing antibodies (AdNAbs) after intravenous administration into immune-competent mice compared to TelomeScan, and even in the presence of AdNAbs, Lipo-pTS maintained strong cytotoxicity. In conclusion, Lipo-pTS has the potential to become an oncolytic adenoviral agent suitable for systemic delivery with the characteristics of CAR-independent antitumor activity and a stealth effect on the immune system.
Collapse
Affiliation(s)
- Katsuyuki Aoyama
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan. .,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan.
| | - Toshiaki Morihiro
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsushi Kubota
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Masahiko Nishizaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Yoon AR, Kasala D, Li Y, Hong J, Lee W, Jung SJ, Yun CO. Antitumor effect and safety profile of systemically delivered oncolytic adenovirus complexed with EGFR-targeted PAMAM-based dendrimer in orthotopic lung tumor model. J Control Release 2016; 231:2-16. [PMID: 26951927 DOI: 10.1016/j.jconrel.2016.02.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 01/24/2023]
Abstract
Adenovirus (Ad)-mediated cancer gene therapy has been proposed as a promising alternative to conventional therapy for cancer. However, success of systemically administered naked Ad has been limited due to the immunogenicity of Ad and the induction of hepatotoxicity caused by Ad's native tropism. In this study, we synthesized an epidermal growth factor receptor (EGFR)-specific therapeutic antibody (ErbB)-conjugated and PEGylated poly(amidoamine) (PAMAM) dendrimer (PPE) for complexation with Ad. Transduction of Ad was inhibited by complexation with PEGylated PAMAM (PP) dendrimer due to steric hindrance. However, PPE-complexed Ad selectively internalized into EGFR-positive cells with greater efficacy than either naked Ad or Ad complexed with PP. Systemically administered PPE-complexed oncolytic Ad elicited significantly reduced immunogenicity, nonspecific liver sequestration, and hepatotoxicity than naked Ad. Furthermore, PPE-complexed oncolytic Ad demonstrated prolonged blood retention time, enhanced intratumoral accumulation of Ad, and potent therapeutic efficacy in EGFR-positive orthotopic lung tumors in comparison with naked Ad. We conclude that ErbB-conjugated and PEGylated PAMAM dendrimer can efficiently mask Ad's capsid and retarget oncolytic Ad to be efficiently internalized into EGFR-positive tumor while attenuating toxicity induced by systemic administration of naked oncolytic Ad.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Yan Li
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Wonsig Lee
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Soo-Jung Jung
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, South Korea.
| |
Collapse
|
8
|
Na Y, Choi JW, Kasala D, Hong J, Oh E, Li Y, Jung SJ, Kim SW, Yun CO. Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model. J Control Release 2015; 220:766-82. [PMID: 26471393 DOI: 10.1016/j.jconrel.2015.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is highly aggressive, malignant, and notoriously difficult to cure using conventional cancer therapies. These conventional therapies have significant limitations due to excessive extracellular matrix (ECM) of pancreatic cancer and poor cancer specificity. The excess ECM prevents infiltration of drugs into the inner layer of the solid tumor. Therefore, novel treatment modalities that can specifically target the tumor and degrade the ECM are required for effective therapy. In the present study, we used ECM-degrading and Wnt signal-disrupting oncolytic adenovirus (oAd/DCN/LRP) to achieve a desirable therapeutic outcome against pancreatic cancer. In addition, to overcome the limitations in systemic delivery of oncolytic Ad (oAd) and to specifically target pancreatic cancer, neurotensin peptide (NT)-conjugated polyethylene glycol (PEG) was chemically crosslinked to the surface of Ad, generating a systemically injectable hybrid system, oAd/DCN/LRP-PEG-NT. We tested the targeting and therapeutic efficacy of oAd/DCN/LRP-PEG-NT toward neurotensin receptor 1 (NTR)-overexpressing pancreatic cancer cells, both in vitro and in vivo. The oAd/DCN/LRP-PEG-NT elicited increased NTR-selective cancer cell killing and transduction efficiency when compared with a cognate control lacking NT (oAd/DCN/LRP-PEG). Furthermore, systemic administration of oAd/DCN/LRP-PEG-NT significantly decreased induction of innate and adaptive immune responses against Ad, and blood retention time was markedly prolonged by PEGylation. Moreover, NTR-targeting oAd elicited greater in vivo tumor growth suppression when compared with naked oAd and 9.5 × 10(6)-fold increased tumor-to-liver ratio. This significantly enhanced antitumor effect of oAd/DCN/LRP-PEG-NT was mediated by active viral replication and viral spreading, which was facilitated by ECM degradation and inhibition of Wnt signaling-related factors (Wnt, β-catenin, and/or vimentin) in the tumor tissues. Taken together, these results demonstrate that oAd/DCN/LRP-PEG-NT has strong therapeutic potential for systemic treatment of NTR-overexpressing pancreatic cancer due to its NTR-targeting ability, enhanced therapeutic efficacy, and safety.
Collapse
Affiliation(s)
- Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Joung-Woo Choi
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Eonju Oh
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Yan Li
- Graduate Program for Nanomedical Science, Yonsei University, Seoul, Korea
| | - Soo-Jung Jung
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Sung Wan Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea; Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
9
|
Agirre M, Zarate J, Ojeda E, Puras G, Rojas LA, Alemany R, Pedraz JL. Delivery of an adenovirus vector plasmid by ultrapure oligochitosan based polyplexes. Int J Pharm 2014; 479:312-9. [PMID: 25550211 DOI: 10.1016/j.ijpharm.2014.12.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/11/2022]
Abstract
Ultrapure oligochitosans have been recently reported as efficient non-viral vectors for the delivery of pCMS-EGFP plasmid (5.5kbp) to the cornea and retina. However, the delivery of oncolytic adenoviral plasmids (40kbp) represents a unique challenge. In this work, we elaborated self assembled O15 and O25 UOC/pAdTLRGD polyplexes, and we studied the influence of the N/P ratio, the pH of the transfection medium and the salt concentration on the particle size and zeta potential by an orthogonal experimental design. All polyplexes showed a particle size lower than 200nm and a positive zeta potential. These parameters were influenced by the N/P ratio, salt concentration, and pH of the transfection medium. The selected polyplexes were able to bind, release, and protect the plasmid from DNase degradation. Transfection experiments in HEK293 and A549 cell lines demonstrated that UOC/pAdTLRGD polyplexes were able to deliver the plasmid and transfect both cell lines. These results suggest that O15 and O25 UOC based polyplexes are suitable for future in vivo applications.
Collapse
Affiliation(s)
- Mireia Agirre
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jon Zarate
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Edilberto Ojeda
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Luis A Rojas
- Traslational Research Laboratory, IDIBELL-Institut Catalá d'Oncologia, L'Hospitalet de LLobregat, Barcelona, Spain
| | - Ramón Alemany
- Traslational Research Laboratory, IDIBELL-Institut Catalá d'Oncologia, L'Hospitalet de LLobregat, Barcelona, Spain
| | - José L Pedraz
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
10
|
Lee YS, Kim SW. Bioreducible polymers for therapeutic gene delivery. J Control Release 2014; 190:424-39. [PMID: 24746626 DOI: 10.1016/j.jconrel.2014.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/18/2023]
Abstract
Most currently available cationic polymers have significant acute toxicity concerns such as cellular toxicity, aggregation of erythrocytes, and entrapment in the lung capillary bed, largely due to their poor biocompatibility and non-degradability under physiological conditions. To develop more intelligent polymers, disulfide bonds are introduced in the design of biodegradable polymers. Herein, the sustained innovations of biomimetic nano-sized constructs with bioreducible poly(disulfide amine)s demonstrate a viable clinical tool for the treatment of cardiovascular disease, anemia, diabetes, and cancer.
Collapse
Affiliation(s)
- Young Sook Lee
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA.
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, USA; Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Beloor J, Nam HY, Lee SK, Kumar P. Arginine-grafted biodegradable polymer: a versatile transfection reagent for both DNA and siRNA. Methods Mol Biol 2014; 1176:115-26. [PMID: 25030923 DOI: 10.1007/978-1-4939-0992-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Effective delivery of DNA or siRNA into primary cells demands an efficient delivery system. However, the significant differences in physical and molecular characteristics of the two molecules generally necessitate distinct delivery systems or considerable differences in carrier formulation protocols for effective transfection. Arginine-grafted bioreducible poly (disulfide amine) (ABP) is a redox-sensitive, bioreducible, positively charged polymer which complexes with siRNA and DNA via charge interactions to form nanoplexes. ABP effectively mediates cytoplasmic delivery of both DNA and siRNA into multiple cell types, including primary cells like myoblast, human umbilical vein endothelial cells (HUVECs), and primary rat aorta vascular smooth muscle cells (SMCs) eliciting functional activity. In this chapter, we provide the detailed protocols for the synthesis of ABP as well as transfection of both siRNA and DNA using ABP.
Collapse
Affiliation(s)
- Jagadish Beloor
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, 25 York Street, New Haven, CT, 06520, USA
| | | | | | | |
Collapse
|
12
|
Nam HY, Kim J, Kim SW, Bull DA. Cell targeting peptide conjugation to siRNA polyplexes for effective gene silencing in cardiomyocytes. Mol Pharm 2012; 9:1302-9. [PMID: 22452378 DOI: 10.1021/mp200589z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To deliver siRNA specifically to cardiomyocytes with a high transfection efficiency, primary cardiomyocyte-targeting (PCM) and/or cell-penetrating (Tat) peptides were incorporated into the siRNA. With the addition of plasmid DNA, these peptide-conjugated siRNAs were able to form compact and stable nanosized polyplex particles with bioreducible poly(CBA-DAH). The peptide-modified siRNA polyplexes enhanced the cellular uptake and the gene-silencing capacity of the siRNA in cardiomyocytes without significant immunogenicity or cytotoxicity. These findings demonstrate that the cell-targeting peptide and/or cell-penetrating peptide conjugation of siRNA may be a potentially important strategy for cell-specific gene therapy in gene-mediated disease states.
Collapse
Affiliation(s)
- Hye Yeong Nam
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | | | |
Collapse
|