1
|
Peixoto D, Ravasco JM, Blanco-Fernandez B, Veiga F, Concheiro A, Conde J, Paiva-Santos AC, Alvarez-Lorenzo C. Enzyme-responsive vitamin D-based micelles for paclitaxel-controlled delivery and synergistic pancreatic cancer therapy. Mater Today Bio 2025; 31:101555. [PMID: 40026626 PMCID: PMC11869029 DOI: 10.1016/j.mtbio.2025.101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most feared diseases worldwide owing to its poor prognosis, negligible therapeutic advances, and high mortality. Herein, multifunctional enzyme-responsive micelles for the controlled delivery of paclitaxel (PTX) were prepared to circumvent its current clinical challenges. Accordingly, two enzyme-responsive structural units composed of Vitamin D3 (VD3) conjugated with polyethylene glycol of different molecular weights (600 Da and 2000 Da) were synthesized and characterized using different analytical methods. By applying the solvent evaporation method, these bioactive structural units self-assembled into sub-100 nm VD3 micelles with minimal batch-to-batch variation, monomodal particle size distribution, and high encapsulation efficiency. The enzyme-triggered disassembly of PTX-loaded VD3 micelles was demonstrated by release studies in the presence of a high esterase content typically featured by PDAC cells. PTX-loaded VD3 micelles also exhibited prominent cell internalization and induced a considerable cytotoxic synergistic effect against human PDAC cells (BxPC-3 cells) in 2D and 3D cell culture models compared with free PTX. The PTX-loaded VD3 micelles were hemocompatible and stable after long-term storage in the presence of biorelevant media, and showed higher efficiency to inhibit the tumor growth compared to the approved clinical nanoformulation (Abraxane®) in an in ovo tumor model. The findings reported here indicate that VD3S-PEG micelles may have a promising role in PDAC therapy, since VD3 could act not only as a hydrophobic core of the micelles but also as a therapeutic agent that provides synergetic therapeutic effects with the encapsulated PTX.
Collapse
Affiliation(s)
- Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João M. Ravasco
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Barbara Blanco-Fernandez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| | - João Conde
- Comprehensive Health Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169, Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649, Lisbon, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, 15782, Santiago, Spain
| |
Collapse
|
2
|
Dong X, Qiu Y, Jia N, Wu Y, Nie Q, Wen J, Zhao C, Zhai Y. Recent advances of edible marine algae-derived sulfated polysaccharides in antiviral treatments: challenges vs. opportunities. Front Nutr 2025; 12:1561119. [PMID: 40206958 PMCID: PMC11978671 DOI: 10.3389/fnut.2025.1561119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Marine polysaccharides, particularly those derived from red, brown, and green algae, have shown promising antiviral activity. Among them, sulfated polysaccharides are particularly notable due to their broad-spectrum antiviral properties. These include direct viral destruction, inhibition of virus adsorption, disruption of viral transcription and replication, and the stimulation of the host's antiviral immunity. With low toxicity, minimal drug resistance, and excellent biocompatibility, these polysaccharides represent promising candidates for the development of antiviral medications. For instance, carrageenan, a polysaccharide from red algae, and fucoidan, a polymer from brown algae, have both been proven to effectively inhibit viral infections. Sulfated polysaccharides from green algae, such as those found in Ulva species, also exhibit antiviral properties, including activity against the Japanese encephalitis virus. These polysaccharides function by blocking the attachment of viruses to host cells or interfering with various stages of the viral life cycle. Moreover, marine polysaccharides have been shown to enhance host immune responses, thereby aiding in viral clearance. Although these findings highlight the antiviral potential of marine polysaccharides, most studies have been conducted in vitro or in animal models. Further clinical trials are necessary to validate their effectiveness and safety for therapeutic use.
Collapse
Affiliation(s)
- Xiaoying Dong
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yusong Qiu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinfeng Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Nie
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jiahui Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Zlotnikov ID, Belogurova NG, Kudryashova EV. Targeted Delivery Inside the Cells Directly Visualized with Förster Resonance Energy Transfer (FRET). Polymers (Basel) 2025; 17:790. [PMID: 40292615 PMCID: PMC11944702 DOI: 10.3390/polym17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
We established a real-time Förster resonance energy transfer (FRET) based assay to evaluate targeted drug delivery using polymeric micelles. Red fluorescent protein (RFP)-expressing E. coli cells were used as a test system to monitor the delivery of drug-fluorophore such as curcumin and umbelliferones (MUmb and AMC) encapsulated in the polymeric micellar formulations. The efficiency of the drug delivery was quantified using the FRET efficiency, measured as the degree of energy transfer from the drug to the RFP. FRET efficiency directly provides the determination of the delivery efficacy, offering a versatile platform adaptable to various drugs and cell types. We used polymer micelles as a carrier for targeted delivery of fluorescent drugs to bacterial cells expressing RFP. The physicochemical characterization of the interaction between the drugs and the micelles including spectral properties, and the solubility and binding constants, were determined. We revealed a stronger affinity of MUmb for heparin-based micelles (Kd~10-5 M) compared to chitosan-based micelles (Kd~10-4 M), underscoring the influence of polymer composition on drug loading efficiency. For micelles containing MUmb, a FRET efficiency significantly exceeds (by three times) the efficiency for non-micellar MUmb, which have minimal penetration into bacterial cells. The most noticeable effect was observed with the use of the micellar curcumin providing pronounced activation of the RPF fluorescence signal, due to the interaction with curcumins (fluorophore-donor). Curcumin delivery using Chit5-OA micelle resulted in a 115% increase in RFP fluorescence intensity, and Hep-LA showed a significant seven-fold increase. These results highlight the significant effect of micellar composition on the effectiveness of drug delivery. In addition, we have developed a visual platform designed to evaluate the effectiveness of a pharmaceutical product through the visualization of the fluorescence of a bacterial culture on a Petri dish. This method allows us to quickly and accurately assess the penetration of a drug into bacteria, or those located inside other cells, such as macrophages, where the intercellular latent forms of the infection are located. Micellar formulations show enhanced antibacterial activity compared to free drugs, and formulations with Hep-OA micelles demonstrate the most significant reduction in E. coli viability. Synergistic effects were observed when combining curcumin and MUmb with moxifloxacin, resulting in a remarkable 40-50% increase in efficacy. The presented approach, based on the FRET test system with RFP expressed in the bacterial cells, establishes a powerful platform for development and optimizing targeted drug delivery systems.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (I.D.Z.)
| |
Collapse
|
4
|
Rehman R, Rafiq M, Shafi H, Rather AH, Khan RS, Raza SN, Rather SU, Majeed S, Khan NA, Sheikh FA. Designing sustained release from nanofiber patch for paclitaxel as prospective localized nanotherapeutic delivery in breast cancer. Int J Pharm 2025; 671:125158. [PMID: 39826787 DOI: 10.1016/j.ijpharm.2024.125158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
The second most prevalent cause of mortality among women is breast cancer, and paclitaxel (PTX) is an effective drug for its treatment. The present work aims to develop patch-based poly(ε-caprolactone) (PCL) nanofibers incorporating PTX as a localized and sustained drug delivery system. The co-deposition of poly(vinyl alcohol) (PVA) fibers during electrospinning was allowed to improve water absorption by the scaffold, which in turn facilitated the release of drug molecules. To figure out optimized electrospinning parameters and predict the optimal formulation, the quality-by-design approach was utilized. The blank mat, i.e., without drug and optimized nanofiber formulation (Fo), was characterized physiochemically using FE-SEM, XRD, FT-IR, TGA and DSC techniques. The optimization yielded a 92.7 % final product yield, indicating high process efficiency and minimum losses during electrospinning. FE-SEM studies have demonstrated that uniform nanofibers with bead-free morphology. The average fiber diameter and drug entrapment of the optimal formulation, Fo, were 547 ± 6.6 nm and 85 ± 1.73 %, respectively. Diffraction and calorimetric studies revealed a sharp decrease in the crystallinity of pure PTX and its subsequent amorphization within the nanofiber matrix. FT-IR studies showed no chemical interaction between the drug and polymers. A decrease in water contact angle from 120.4 ± 0.9 to 81.0 ± 0.8 in the Fo formulation was due to the co-spinning of PVA; this ensures proper wettability and adhesion ideal for localized delivery. The Fo nanofiber formulation demonstrated sustained PTX release for up to 17 days. The MTT assay results confirm Fo nanofibers were cytotoxic to the breast cancer cell line, MDA-MB-231, than pristine nanofibers. These findings suggest that Fo nanofiber mats could be a potential localized delivery system for PTX in breast cancer treatment, pending further in-vivo validation.
Collapse
Affiliation(s)
- Razia Rehman
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Muheeb Rafiq
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Hasham Shafi
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India; Center for Translational Science, Florida International University, Port St. Lucie 34987, FL, United States
| | - Anjum Hamid Rather
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Rumysa Saleem Khan
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Syed Naiem Raza
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Sami-Ullah Rather
- Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Shafquat Majeed
- Laboratory for Multifunctional Nanomaterials, Department of Nanotechnology, University of Kashmir Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Nisar Ahmad Khan
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| | - Faheem A Sheikh
- Nanostructure and Biomimetic Lab, Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Radhakrishnan A, Shanmukhan NK, Samuel LC. Pharmacogenomics influence on MDR1-associated cancer resistance and innovative drug delivery approaches: advancing precision oncology. Med Oncol 2025; 42:67. [PMID: 39913003 DOI: 10.1007/s12032-025-02611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Currently, there is a growing concern surrounding the treatment of cancer, a formidable disease. Pharmacogenomics and personalized medicine have emerged as significant areas of interest in cancer management. The efficacy of many cancer drugs is hindered by resistance mechanisms, particularly P-glycoprotein (P-gp) efflux, leading to reduced therapeutic outcomes. Efforts have intensified to inhibit P-gp efflux, thereby enhancing the effectiveness of resistant drugs. P-gp, a member of the ATP-binding cassette (ABC) superfamily, specifically the multidrug resistance (MDR)/transporter associated with antigen processing (TAP) sub-family B, member 1, utilizes energy derived from ATP hydrolysis to drive efflux. This review focuses on genetic polymorphisms associated with P-gp efflux and explores various novel pharmaceutical strategies to address this challenge. These strategies encompass SEDDS/SNEDDS, liposomes, immunoliposomes, solid lipid nanoparticles, lipid core nanocapsules, microemulsions, dendrimers, hydrogels, polymer-drug conjugates, and polymeric nanoparticles. The article aims to elucidate the interplay between pharmacogenomics, P-gp-mediated drug resistance in cancer, and formulation strategies to improve cancer therapy by tailoring formulations to genetically susceptible patients.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India.
| | - Nikhitha K Shanmukhan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India
| | - Linda Christabel Samuel
- Department of Conservative Dentistry and Endodontics, JKKN Dental College and Hospitals, Kumarapalayam, 638183, India
| |
Collapse
|
6
|
Zhao R, Lan D, Xia B, Dong M, Mu J, Zhao Y. PET-Based Dual-Modal Probes for In Vivo Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409713. [PMID: 39873346 DOI: 10.1002/smll.202409713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/07/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging has significantly advanced the detection and analysis of in vivo metabolic processes, while single-modal techniques remain limited. Dual-modal imaging, particularly positron emission tomography (PET)-based combinations has emerged as a powerful solution, offering enhanced capabilities through integration with magnetic resonance imaging (MRI) or near-infrared fluorescence (NIRF) imaging. This review highlights recent progress in PET-based dual-modal imaging, focusing on the development of various bimodal probes derived from antibodies, nanoparticles, and peptides, and key applications including image-guided surgery and disease assessment. PET-based dual-modal imaging holds substantial potential for advancing research and diagnostics by improving resolution and providing functional insights. By combining complementary modalities, these systems deliver a more comprehensive view of disease processes, leading to more accurate diagnoses and targeted treatments. Future research prioritizes optimizing probe design for enhanced biocompatibility and safety, facilitating clinical translation, and broadens applications beyond cancer. Through interdisciplinary collaboration, PET-based dual-modal probes are poised to play a pivotal role in improving patient outcomes, particularly in diagnosing and managing complex diseases.
Collapse
Affiliation(s)
- Runge Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Deren Lan
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Beibei Xia
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - MengJie Dong
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jing Mu
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yongsheng Zhao
- Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| |
Collapse
|
7
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
8
|
Yamakawa R, Onoe H, Kurashina Y. Hydrogel carrier with bubble vibration enhancer for ultrasound-triggered drug release. ULTRASONICS SONOCHEMISTRY 2025; 112:107173. [PMID: 39612755 PMCID: PMC11635015 DOI: 10.1016/j.ultsonch.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Hydrogel-based drug carriers provide on-demand drug release via external stimuli. Ultrasound is a promising method because of the potential for remotely releasing the drug. However, intense ultrasound irradiation has been required in previous studies. This paper reports drug model release from hydrogel carriers encapsulating bubble vibration enhancers (BVEs) consisting of microbubbles coated with a lipid membrane. Vibration of BVEs induced by ultrasound stimulation promoted the release of drug models with ultrasound irradiation controlled to a biologically safe acoustic pressure based on spatial-peak temporal-average intensity (ISPTA). The release ratio increased significantly from 2.3 % without BVEs and ultrasound to 10.2 % with both. To evaluate the frequency response, the release ratio was measured at three different ultrasound frequencies (0.3, 1.8, and 2.5 MHz), showing increased efficiency as the frequency approached the resonance frequency of the BVEs. For in vivo applications, hydrogel microspherical carriers with BVEs achieved a 12 % release ratio. Poly-L-lysine coating successfully suppressed the drug release to 0.2 %. The carriers demonstrated repeated responsiveness when ultrasound was applied in three 5-minute intervals. The hydrogel carrier encapsulating BVEs we proposed is a promising in vivo device capable of releasing drugs on demand by ultrasound irradiation based on its high biosafety and acoustic responsiveness.
Collapse
Affiliation(s)
- Ryuto Yamakawa
- Division of Advanced Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Hiroaki Onoe
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuta Kurashina
- Division of Advanced Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
9
|
Pimple P, Shah J, Singh P. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Curr Drug Deliv 2025; 22:15-40. [PMID: 38299275 DOI: 10.2174/0115672018270434240105110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/02/2023] [Accepted: 12/17/2023] [Indexed: 02/02/2024]
Abstract
Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual's quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.
Collapse
Affiliation(s)
- Prachi Pimple
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Jenny Shah
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| | - Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle, Mumbai 400056, India
| |
Collapse
|
10
|
Su C, Liu G, Zou Y, Ji S, Gao J. Preparation and in vitro evaluation of pH and glutathione dual-responsive drug delivery system based on sodium carboxymethyl cellulose. Int J Biol Macromol 2024; 280:135857. [PMID: 39307500 DOI: 10.1016/j.ijbiomac.2024.135857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Stimuli-responsive drug delivery systems based on sodium carboxymethyl cellulose (NaCMC) for drug release encounter inherent challenges. In this research, a novel pH and glutathione (GSH) dual-responsive system, CPT-S-S-NaCMC@ZIF-8/SP-PEG, was constructed. Firstly, the prodrug CPT-S-S-OH was synthesized and combined with NaCMC to form GSH-responsive micelles CPT-S-S-NaCMC, significantly enhancing the drug loading and grafting rates to 63.79 % and 91.99 %, respectively. Subsequently, zinc ions and dimethylimidazole can be assembled into porous materials (ZIF-8) on the surface of the micelles. This system exhibits dual pH-GSH responsiveness and effectively reduces the drug release from 84.76 % to 28.71 % at pH = 7.4. Moreover, incorporating pH-responsive spiropyran (SP)-modified polyethylene glycol (PEG) can reduce drug leakage to 16.09 % at pH = 7.4 and exhibit good fluorescence intensity at 722 nm.
Collapse
Affiliation(s)
- Chengdong Su
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Yulong Zou
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Shuang Ji
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China
| | - Jun Gao
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province 610065, China.
| |
Collapse
|
11
|
Kheiriabad S, Jafari A, Namvar Aghdash S, Ezzati Nazhad Dolatabadi J, Andishmand H, Jafari SM. Applications of Advanced Nanomaterials in Biomedicine, Pharmaceuticals, Agriculture, and Food Industry. BIONANOSCIENCE 2024; 14:4298-4321. [DOI: 10.1007/s12668-024-01506-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2024] [Indexed: 01/06/2025]
|
12
|
Verma VS, Pandey A, Jha AK, Badwaik HKR, Alexander A, Ajazuddin. Polyethylene Glycol-Based Polymer-Drug Conjugates: Novel Design and Synthesis Strategies for Enhanced Therapeutic Efficacy and Targeted Drug Delivery. Appl Biochem Biotechnol 2024; 196:7325-7361. [PMID: 38519751 DOI: 10.1007/s12010-024-04895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Due to their potential to enhance therapeutic results and enable targeted drug administration, polymer-drug conjugates that use polyethylene glycol (PEG) as both the polymer and the linker for drug conjugation have attracted much research. This study seeks to investigate recent developments in the design and synthesis of PEG-based polymer-drug conjugates, emphasizing fresh ideas that fill in existing knowledge gaps and satisfy the increasing need for more potent drug delivery methods. Through an extensive review of the existing literature, this study identifies key challenges and proposes innovative strategies for future investigations. The paper presents a comprehensive framework for designing and synthesizing PEG-based polymer-drug conjugates, including rational molecular design, linker selection, conjugation methods, and characterization techniques. To further emphasize the importance and adaptability of PEG-based polymer-drug conjugates, prospective applications are highlighted, including cancer treatment, infectious disorders, and chronic ailments.
Collapse
Affiliation(s)
- Vinay Sagar Verma
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India
| | - Aakansha Pandey
- Faculty of Pharmaceutical Sciences, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Arvind Kumar Jha
- Shri Shankaracharya Professional University, Junwani, Bhilai, 490020, Chhattisgarh, India
| | - Hemant Kumar Ramchandra Badwaik
- Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, Chhattisgarh, India.
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Shri Shankaracharya Technical Campus, Junwani, Bhilai, 490020, Chhattisgarh, India.
| | - Amit Alexander
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research, Ministry of Chemical and Fertilizers, Guwahati, 781101, Assam, India
| | - Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai, Durg, Chhattisgarh, 490023, India.
| |
Collapse
|
13
|
Wang J, Zhang X, Xing J, Gao L, Lu H. Nanomedicines in diagnosis and treatment of prostate cancers: an updated review. Front Bioeng Biotechnol 2024; 12:1444201. [PMID: 39318666 PMCID: PMC11420853 DOI: 10.3389/fbioe.2024.1444201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PC) is the third most common male cancer in the world, which occurs due to various mutations leading to the loss of chromatin structure. There are multiple treatments for this type of cancer, of which chemotherapy is one of the most important. Sometimes, a combination of different treatments, such as chemotherapy, radiotherapy, and surgery, are used to prevent tumor recurrence. Among other treatments, androgen deprivation therapy (ADT) can be mentioned, which has had promising results. One of the drawbacks of chemotherapy and ADT treatments is that they are not targeted to the tumor tissue. For this reason, their use can cause extensive side effects. Treatments based on nanomaterials, known as nanomedicine, have attracted much attention today. Nanoparticles (NPs) are one of the main branches of nanomedicine, and they can be made of different materials such as polymer, metal, and carbon, each of which has distinct characteristics. In addition to NPs, nanovesicles (NVs) also have therapeutic applications in PC. In treating PC, synthetic NVs (liposomes, micelles, and nanobubbles) or produced from cells (exosomes) can be used. In addition to the role that NPs and NVs have in treating PC, due to being targeted, they can be used to diagnose PC and check the treatment process. Knowing the characteristics of nanomedicine-based treatments can help design new treatments and improve researchers' understanding of tumor biology and its rapid diagnosis. In this study, we will discuss conventional and nanomedicine-based treatments. The results of these studies show that the use of NPs and NVs in combination with conventional treatments has higher efficacy in tumor treatment than the individual use of each of them.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Xuan Zhang
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Jiazhen Xing
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Hua Lu
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| |
Collapse
|
14
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
15
|
Zlotnikov ID, Ezhov AA, Kudryashova EV. pH-Sensitive Fluorescent Marker Based on Rhodamine 6G Conjugate with Its FRET/PeT Pair in "Smart" Polymeric Micelles for Selective Imaging of Cancer Cells. Pharmaceutics 2024; 16:1007. [PMID: 39204352 PMCID: PMC11360677 DOI: 10.3390/pharmaceutics16081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer cells are known to create an acidic microenvironment (the Warburg effect). At the same time, fluorescent dyes can be sensitive to pH, showing a sharp increase or decrease in fluorescence depending on pH. However, modern applications, such as confocal laser scanning microscopy (CLSM), set additional requirements for such fluorescent markers to be of practical use, namely, high quantum yield, low bleaching, minimal quenching in the cell environment, and minimal overlap with auto-fluorophores. R6G could be the perfect match for these requirements, but its fluorescence is not pH-dependent. We have attempted to develop an R6G conjugate with its FRET or PeT pair that would grant it pH sensitivity in the desired range (5.5-7.5) and enable the selective targeting of tumor cells, thus improving CLSM imaging. Covalent conjugation of R6G with NBD using a spermidine (spd) linker produced a pH-sensitive FRET effect but within the pH range of 7.0-9.0. Shifting this effect to the target pH range of 5.5-7.5 appeared possible by incorporating the R6G-spd-NBD conjugate within a "smart" polymeric micelle based on chitosan grafted with lipoic acid. In our previous studies, one could conclude that the polycationic properties of chitosan could make this pH shift possible. As a result, the micellar form of the NBD-spd-R6G fluorophore demonstrates a sharp ignition of fluorescence by 40%per1 pH unit in the pH range from 7.5 to 5. Additionally, "smart" polymeric micelles based on chitosan allow the label to selectively target tumor cells. Due to the pH sensitivity of the fluorophore NBD-spd-R6G and the selective targeting of cancer cells, the efficient visualization of A875 and K562 cells was achieved. CLSM imaging showed that the dye actively penetrates cancer cells (A875 and K562), while minimal accumulation and low fluorophore emission are observed in normal cells (HEK293T). It is noteworthy that by using "smart" polymeric micelles based on polyelectrolytes of different charges and structures, we create the possibility of regulating the pH dependence of the fluorescence in the desired interval, which means that these "smart" polymeric micelles can be applied to the visualization of a variety of cell types, organelles, and other structures.
Collapse
Affiliation(s)
- Igor D. Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| | - Alexander A. Ezhov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia;
| | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia;
| |
Collapse
|
16
|
Agwa MM, Marzouk RE, Sabra SA. Advances in active targeting of ligand-directed polymeric nanomicelles via exploiting overexpressed cellular receptors for precise nanomedicine. RSC Adv 2024; 14:23520-23542. [PMID: 39071479 PMCID: PMC11273262 DOI: 10.1039/d4ra04069d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Many of the utilized drugs which already exist in the pharmaceutical sector are hydrophobic in nature. These drugs are characterized by being poorly absorbed and difficult to formulate in aqueous environments with low bioavailability, which could result in consuming high and frequent doses in order to fulfil the required therapeutic effect. As a result, there is a decisive demand to find modern alternatives to overcome all these drawbacks. Self-assembling polymeric nanomicelles (PMs) with their unique structure appear to be a fascinating choice as a pharmaceutical carrier system for improving the solubility & bioavailability of many drugs. PMs as drug carriers have many advantages including suitable size, high stability, prolonged circulation time, elevated cargo capacity and controlled therapeutic release. Otherwise, the pathological features of some diseased cells, like cancer, allow PMs with particle size <200 nm to be passively uptaken via enhanced permeability and retention phenomenon (EPR). However, the passive targeting approach was proven to be insufficient in many cases. Consequently, the therapeutic efficiency of these PMs can be further reinforced by enhancing their cellular internalization via incorporating targeting ligands. These targeting ligands can enhance the assemblage of loaded cargos in the intended tissues via receptor-mediated endocytosis through exploiting receptors robustly expressed on the exterior of the intended tissue while minimizing their toxic effects. In this review, the up-to-date approaches of harnessing active targeting ligands to exploit certain overexpressed receptors will be summarized concerning the functionalization of the exterior of PMs for ameliorating their targeting potential in the scope of nanomedicine.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre 33 El-Behooth St, Dokki Giza 12622 Egypt +202 33370931 +202 33371635
| | - Rehab Elsayed Marzouk
- Medical Biochemistry Department, Faculty of Medicine, Helwan University Helwan Cairo Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University Alexandria 21526 Egypt
| |
Collapse
|
17
|
Amaroli A, Panfoli I, Bozzo M, Ferrando S, Candiani S, Ravera S. The Bright Side of Curcumin: A Narrative Review of Its Therapeutic Potential in Cancer Management. Cancers (Basel) 2024; 16:2580. [PMID: 39061221 PMCID: PMC11275093 DOI: 10.3390/cancers16142580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, exhibits significant therapeutic potential in cancer management. This review explores curcumin's mechanisms of action, the challenges related to its bioavailability, and its enhancement through modern technology and approaches. Curcumin demonstrates strong antioxidant and anti-inflammatory properties, contributing to its ability to neutralize free radicals and inhibit inflammatory mediators. Its anticancer effects are mediated by inducing apoptosis, inhibiting cell proliferation, and interfering with tumor growth pathways in various colon, pancreatic, and breast cancers. However, its clinical application is limited by its poor bioavailability due to its rapid metabolism and low absorption. Novel delivery systems, such as curcumin-loaded hydrogels and nanoparticles, have shown promise in improving curcumin bioavailability and therapeutic efficacy. Additionally, photodynamic therapy has emerged as a complementary approach, where light exposure enhances curcumin's anticancer effects by modulating molecular pathways crucial for tumor cell growth and survival. Studies highlight that combining low concentrations of curcumin with visible light irradiation significantly boosts its antitumor efficacy compared to curcumin alone. The interaction of curcumin with cytochromes or drug transporters may play a crucial role in altering the pharmacokinetics of conventional medications, which necessitates careful consideration in clinical settings. Future research should focus on optimizing delivery mechanisms and understanding curcumin's pharmacokinetics to fully harness its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Andrea Amaroli
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy;
| | - Matteo Bozzo
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Sara Ferrando
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
| | - Simona Candiani
- BIO-Photonics Overarching Research Laboratory (BIOPHOR), Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.B.); (S.F.); (S.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ravera
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
18
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
19
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
20
|
Mishra AK, S L N, Jain A, Jagtap CY, Dane G, Paroha S, Sahoo PK. Effectiveness of Semecarpus anacardium Linn. fruits in cancer and inflammatory diseases: A mini review. Fitoterapia 2024; 175:105978. [PMID: 38685508 DOI: 10.1016/j.fitote.2024.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Semecarpus anacardium Linn. (SCA) fruits are found in India's sub-Himalayan, tropical, and central regions and have been utilized for centuries in traditional Indian medicine to treat various ailments. In recent times, a growing body of research has emerged indicating that the extracts and active components found in SCA fruits possess qualities that can potentially inhibit the development of cancer and inflammatory markers. PURPOSE This study aims to provide a comprehensive review of the existing literature on the pharmacological mechanisms underlying the effects of extracts and phytochemicals of SCA fruits in cellular, animal models, and clinical trials of cancer and inflammatory diseases. METHODS A comprehensive literature search was conducted utilizing several databases, including PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews using the keywords "Semecarpus anacardium", "Anti-inflammatory," and "cancer". The collection of articles started with establishing the database and continued until April 2024. RESULTS Out of 1130 retrieved database records, 316 pertained to systematic reviews. The remaining 814 records focused on examining the anticancer and anti-inflammatory properties of SCA fruits. In the course of these investigations, the four primary cancer types linked to SCA fruits are identified as lung cancer, hepatocellular carcinoma, breast cancer, and blood cancer. CONCLUSION The findings will provide more support for investigating SCA fruits in cancer treatment and will furnish thorough reference data and recommendations for future studies on this botanical medication.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Neha S L
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333001, India
| | | | - Ganesh Dane
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Shweta Paroha
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
21
|
Abousalman-Rezvani Z, Refaat A, Dehghankelishadi P, Roghani-Mamaqani H, Esser L, Voelcker NH. Insights into Targeted and Stimulus-Responsive Nanocarriers for Brain Cancer Treatment. Adv Healthc Mater 2024; 13:e2302902. [PMID: 38199238 DOI: 10.1002/adhm.202302902] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Brain cancers, especially glioblastoma multiforme, are associated with poor prognosis due to the limited efficacy of current therapies. Nanomedicine has emerged as a versatile technology to treat various diseases, including cancers, and has played an indispensable role in combatting the COVID-19 pandemic as evidenced by the role that lipid nanocarrier-based vaccines have played. The tunability of nanocarrier physicochemical properties -including size, shape, surface chemistry, and drug release kinetics- has resulted in the development of a wide range of nanocarriers for brain cancer treatment. These nanocarriers can improve the pharmacokinetics of drugs, increase blood-brain barrier transfer efficiency, and specifically target brain cancer cells. These unique features would potentially allow for more efficient treatment of brain cancer with fewer side effects and better therapeutic outcomes. This review provides an overview of brain cancers, current therapeutic options, and challenges to efficient brain cancer treatment. The latest advances in nanomedicine strategies are investigated with an emphasis on targeted and stimulus-responsive nanocarriers and their potential for clinical translation.
Collapse
Affiliation(s)
- Zahra Abousalman-Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Ahmed Refaat
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Pharmaceutics Department, Faculty of Pharmacy - Alexandria University, 1 El-Khartoum Square, Alexandria, 21021, Egypt
| | - Pouya Dehghankelishadi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box: 51335/1996, Iran
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Research Way, Melbourne, VIC 3168, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Rd, Melbourne, VIC 3168, Australia
- Department of Materials Science & Engineering, Faculty of Engineering, Monash University, 14 Alliance Ln, Melbourne, VIC 3168, Australia
| |
Collapse
|
22
|
Kumar V, Poonia N, Kumar P, Kumar Verma P, Alshammari A, Albekairi NA, Kabra A, Yadav N. Amphiphilic, lauric acid-coupled pluronic-based nano-micellar system for efficient glipizide delivery. Saudi Pharm J 2024; 32:102046. [PMID: 38577487 PMCID: PMC10992704 DOI: 10.1016/j.jsps.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Glipizide; an insulin secretagogue belonging to the sulfonylurea class, is a widely used antidiabetic drug for managing type 2 diabetes. However, the need for life-long administration and repeated doses poses challenges in maintaining optimal blood glucose levels. In this regard, orally active sustained-release nano-formulations can be a better alternative to traditional antidiabetic formulations. The present study explored an innovative approach by formulating orally active sustained-release nano-micelles using the amphiphilic lauric acid-conjugated-F127 (LAF127) block copolymer. LAF127 block copolymer was synthesized through esterification and thoroughly characterized before being employed to develop glipizide-loaded nano-micelles (GNM) via the thin-film hydration technique. The optimized formulation exhibited mean particle size of 341.40 ± 3.21 nm and depicted homogeneous particle size distribution with a polydispersity index (PDI) < 0.2. The formulation revealed a surface charge of -17.11 ± 6.23 mV. The in vitro release studies of glipizide from developed formulation depicted a sustained release profile. Drug loaded micelles exhibited a substantial reduction in blood glucose levels in diabetic rats for a duration of up to 24 h. Notably, neither the blank nano-micelles of LAF127 nor the drug loaded micelles manifested any indications of toxicity in healthy rats. This study provides an insight on suitability of synthesized LAF127 block copolymer for development of effective oral drug delivery systems for anti-diabetic activity without any significant adverse effects.
Collapse
Affiliation(s)
- Vipan Kumar
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa 125055, India
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neera Yadav
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Zhou J, Tang H, Wang R. Co-assembly of Amphiphilic Triblock Copolymers with Nanodrugs and Drug Release Kinetics in Solution. J Phys Chem B 2024; 128:2841-2852. [PMID: 38452254 DOI: 10.1021/acs.jpcb.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polymeric vesicles present great potential in disease treatment as they can be featured as a structurally stable and easily functionalized drug carrier that can simultaneously encapsulate multiple drugs and release them on-demand. Based on the dissipative particle dynamics (DPD) simulation, the drug-loaded vesicles were designed by the co-assembly process of linear amphiphilic triblock copolymers and hydrophobic nanodrugs in solvents, and most importantly, the drug release behavior of drug-loaded vesicles were intensively investigated. The drug-loaded aggregates, such as vesicles, spherical micelles, and disk-like micelles, were observed by varying the size and concentration of nanodrugs and the length of the hydrophobic block. The distribution of nanodrugs in the vesicles was intensively analyzed. As the size of the nanodrugs increases, the localization of nanodrugs change from being unable to fully wrap in the vesicle wall to the uniform distribution and finally to the aggregation in the vesicles at the fixed concentration of nanodrugs. The membrane thickness of the drug-loaded polymeric vesicle can be increased, and the nanodrugs localized closer to the center of the vesicle by increasing the length of the hydrophobic block. The nanodrugs will be released from vesicles by varying the interactions between the nanodrug and the solvent or the hydrophobic block and the solvent, respectively. We found that the release kinetics conforms to the first-order kinetic model, which can be used to fit the cumulative release rate of nanodrugs over time. The results showed that increasing the size of nanodrugs, the length of hydrophobic block, and the interaction parameters between the hydrophobic block and the solvent will slow down the release rate of the nanodrug and change the drug release process from monophasic to biphasic release model.
Collapse
Affiliation(s)
- Junwei Zhou
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
24
|
Jeong EJ, Kim C, Lee YC, Rhim T, Lee SK, Lee KY. Tumor-specific cytolysis by peptide-conjugated echogenic polymer micelles. Biomed Pharmacother 2024; 172:116272. [PMID: 38354570 DOI: 10.1016/j.biopha.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Interest in multifunctional polymer nanoparticles for targeted delivery of anti-cancer drugs has grown significantly in recent years. In this study, tumor-targeting echogenic polymer micelles were prepared from poly(ethylene glycol) methyl ether-alkyl carbonate (mPEG-AC) derivatives, and their potential in cancer therapy was assessed. Various mPEG derivatives with carbonate linkages were synthesized via an alkyl halide reaction between mPEG and alkyl chloroformate. Micelle formation using polymer amphiphiles in aqueous media and the subsequent carbon dioxide (CO2) gas generation from the micelles was confirmed. Their ability to target neuroblastoma was substantially enhanced by incorporating the rabies virus glycoprotein (RVG) peptide. RVG-modified gas-generating micelles significantly inhibited tumor growth in a tumor-bearing mouse model owing to CO2 gas generation within tumor cells and resultant cytolytic effects, showing minimal side effects. The development of multifunctional polymer micelles may offer a promising therapeutic approach for various diseases, including cancer.
Collapse
Affiliation(s)
- Eun Ju Jeong
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Choonggu Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Yun-Chan Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Taiyoun Rhim
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| | - Sang-Kyung Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
25
|
Singh D, Sharma Y, Dheer D, Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int J Biol Macromol 2024; 261:129901. [PMID: 38316328 DOI: 10.1016/j.ijbiomac.2024.129901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Yashika Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
26
|
Huang J, Tang X, Yang Z, Chen J, Wang K, Shi C, Liu Z, Wu M, Du Q. Enhancing oral delivery and anticancer efficacy of 7-ethyl-10-hydroxycamptothecin through self-assembled micelles of deoxycholic acid grafted N'-nonyl-trimethyl chitosan. Colloids Surf B Biointerfaces 2024; 234:113736. [PMID: 38215603 DOI: 10.1016/j.colsurfb.2023.113736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Irinotecan (CPT-11) is used as a first or second-line chemotherapy drug for the treatment and management of colorectal cancers. In vitro studies have shown that 7-ethyl-10-hydroxycamptothecin (SN38), the active metabolite of CPT-11, displays promising anticancer efficacy. However, its poor aqueous solubility and hydrolytic degradation result in its lower oral bioavailability and impracticable clinical application. To overcome these limitations, a novel amphiphilic chitosan derivative, deoxycholic acid decorated N'-nonyl-trimethyl chitosan, was synthesized. Nano-micelles loaded with SN38 were subsequently prepared to enhance the bioavailability and anti-tumor efficacy of the drug through oral administration. The nano-micelles demonstrated improved dilution stability, enhanced greater mucosal adherence, significant P-gp efflux inhibition, and increased drug transport in the intestine by paracellular and transcellular pathways. Consequently, both the in vivo pharmacokinetic profile and therapeutic efficacy of SN38 against cancer were substantially improved via the micellar system. Thus, the developed polymeric micelles can potentially enhance the SN38 oral absorption for cancer therapy, offering prospective avenues for further exploration.
Collapse
Affiliation(s)
- Jie Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Tang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ziqiong Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jianqiu Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kun Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chengnan Shi
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zihan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ming Wu
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou, China
| | - Qian Du
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
27
|
Korucu Aktas P, Baysal I, Yabanoglu-Ciftci S, Lamprecht A, Arica B. Recent progress in drug delivery systems for tyrosine kinase inhibitors in the treatment of lung cancer. Int J Pharm 2024; 650:123703. [PMID: 38092263 DOI: 10.1016/j.ijpharm.2023.123703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
Lung cancer ranks as the second most commonly diagnosed cancer in both men and women worldwide. Despite the availability of diverse diagnostic and treatment strategies, it remains the leading cause of cancer-related deaths globally. The current treatment approaches for lung cancer involve the utilization of first generation (e.g., erlotinib, gefitinib) and second generation (e.g., afatinib) tyrosine kinase inhibitors (TKIs). These TKIs exert their effects by inhibiting a crucial enzyme called tyrosine kinase, which is responsible for cell survival signaling. However, their clinical effectiveness is hindered by limited solubility and oral bioavailability. Nanotechnology has emerged as a significant application in modern cancer therapy. Nanoparticle-based drug delivery systems, including lipid, polymeric, hybrid, inorganic, dendrimer, and micellar nanoparticles, have been designed to enhance the bioavailability, stability, and retention of these drugs within the targeted lung area. Furthermore, these nanoparticle-based delivery systems offer several advantages, such as increased therapeutic efficacy and reduced side effects and toxicity. This review focuses on the recent advancements in drug delivery systems for some of the most important TKIs, shedding light on their potential in improving lung cancer treatment.
Collapse
Affiliation(s)
- Pelinsu Korucu Aktas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ipek Baysal
- Vocational School of Health Services, Hacettepe University, Ankara,Turkey
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Germany
| | - Betul Arica
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
28
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
29
|
Barfar A, Alizadeh H, Masoomzadeh S, Javadzadeh Y. Oral Insulin Delivery: A Review on Recent Advancements and Novel Strategies. Curr Drug Deliv 2024; 21:887-900. [PMID: 37202888 DOI: 10.2174/1567201820666230518161330] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Due to the lifestyle of people in the community in recent years, the prevalence of diabetes mellitus has increased, so New drugs and related treatments are also being developed. INTRODUCTION One of the essential treatments for diabetes today is injectable insulin forms, which have their problems and limitations, such as invasive and less admission of patients and high cost of production. According to the mentioned issues, Theoretically, Oral insulin forms can solve many problems of injectable forms. METHODS Many efforts have been made to design and introduce Oral delivery systems of insulin, such as lipid-based, synthetic polymer-based, and polysaccharide-based nano/microparticle formulations. The present study reviewed these novel formulations and strategies in the past five years and checked their properties and results. RESULTS According to peer-reviewed research, insulin-transporting particles may preserve insulin in the acidic and enzymatic medium and decrease peptide degradation; in fact, they could deliver appropriate insulin levels to the intestinal environment and then to blood. Some of the studied systems increase the permeability of insulin to the absorption membrane in cellular models. In most investigations, in vivo results revealed a lower ability of formulations to reduce BGL than subcutaneous form, despite promising results in in vitro and stability testing. CONCLUSION Although taking insulin orally currently seems unfeasible, future systems may be able to overcome mentioned obstacles, making oral insulin delivery feasible and producing acceptable bioavailability and treatment effects in comparison to injection forms.
Collapse
Affiliation(s)
- Ashkan Barfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helia Alizadeh
- Pharm.D Student, Pharmacy Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Salar Masoomzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
31
|
Yu J, Wang J, Yang J, Ouyang T, Gao H, Kan H, Yang Y. New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155088. [PMID: 37844377 DOI: 10.1016/j.phymed.2023.155088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Ginkgo biloba leaves (GBLs), as an herbal dietary supplement and a traditional Chinese medicine, have been used in treating diseases for hundred years. Recently, increasing evidence reveals that the extracts and active ingredients of GBLs have anti-cancer (chemo-preventive) properties. However, the molecular mechanism of GBLs in anti-cancer has not been comprehensively summarized. PURPOSE To systematically summarize the literatures for identifying the molecular mechanism of GBLs in cellular, animal models and clinical trials of cancers, as well as for critically evaluating the current evidence of efficacy and safety of GBLs for cancers. METHODS Employing the search terms "Ginkgo biloba" and "cancer" till July 25, 2023, a comprehensive search was carried out in four electronic databases including Scopus, PubMed, Google Scholar and Web of Science. The articles not contained in the databases are performed by manual searches and all the literatures on anti-cancer research and mechanism of action of GBLs was extracted and summarized. The quality of methodology was assessed independently through PRISMA 2020. RESULTS Among 84 records found in the database, 28 were systematic reviews related to GBLs, while the remaining 56 records were related to the anticancer effects of GBLs, which include studies on the anticancer activities and mechanisms of extracts or its components in GBLs at cellular, animal, and clinical levels. During these studies, the top six cancer types associated with GBLs are lung cancer, hepatocellular carcinoma, gastric cancer, breast cancer, colorectal cancer, and cervical cancer. Further analysis reveals that GBLs primarily exert their anticancer effects by stimulating cancer cell apoptosis, inhibiting cell proliferation, invasion and migration of cancers, exhibiting anti-inflammatory and antioxidant properties, and modulating signaling pathways. Besides, the pharmacology, toxicology, and clinical research on the anti-tumor activity of GBLs have also been discussed. CONCLUSIONS This is the first paper to thoroughly investigate the pharmacology effect, toxicology, and the mechanisms of action of GBLs for anti-cancer properties. All the findings will reinforce the need to explore the new usage of GBLs in cancers and offer comprehensive reference data and recommendations for future research on this herbal medicine.
Collapse
Affiliation(s)
- Jing Yu
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Jianhua Yang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China; Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui 230012, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinsese Medicine, Hefei, Anhui 230012, China; Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, Anhui 230012, China.
| |
Collapse
|
32
|
Han Z, Li Z, Raveendran R, Farazi S, Cao C, Chapman R, Stenzel MH. Peptide-Conjugated Micelles Make Effective Mimics of the TRAIL Protein for Driving Apoptosis in Colon Cancer. Biomacromolecules 2023; 24:5046-5057. [PMID: 37812059 DOI: 10.1021/acs.biomac.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) drives apoptosis selectively in cancer cells by clustering death receptors (DR4 and DR5). While it has excellent in vitro selectivity and toxicity, the TRAIL protein has a very low circulation half-life in vivo, which has hampered clinical development. Here, we developed core-cross-linked micelles that present multiple copies of a TRAIL-mimicking peptide at its surface. These micelles successfully induce apoptosis in a colon cancer cell line (COLO205) via DR4/5 clustering. Micelles with a peptide density of 15% (roughly 1 peptide/45 nm2) displayed the strongest activity with an IC50 value of 0.8 μM (relative to peptide), demonstrating that the precise spatial arrangement of ligands imparted by a protein such as a TRAIL may not be necessary for DR4/5/signaling and that a statistical network of monomeric ligands may suffice. As micelles have long circulation half-lives, we propose that this could provide a potential alternative drug to TRAIL and stimulate the use of micelles in other membrane receptor clustering networks.
Collapse
Affiliation(s)
- Zifei Han
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Zihao Li
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Radhika Raveendran
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Shegufta Farazi
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cheng Cao
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Robert Chapman
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
33
|
Rathee A, Solanki P, Verma S, Vohora D, Ansari MJ, Aodah A, Kohli K, Sultana Y. Simultaneous Determination of Posaconazole and Hemp Seed Oil in Nanomicelles through RP-HPLC via a Quality-by-Design Approach. ACS OMEGA 2023; 8:30057-30067. [PMID: 37636934 PMCID: PMC10448652 DOI: 10.1021/acsomega.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
The present study involves the development of a reverse-phase HPLC method employing the quality-by-design methodology for the estimation of posaconazole and hemp seed oil simultaneously in nanomicelles formulation. The successful separation of posaconazole and hemp seed oil was achieved together, and this is the first study to develop and quantify posaconazole and hemp seed oil nanomicelles with linoleic acid as the internal standard and developed a dual drug analytical method employing a quality-by-design approach. The study was performed on a Shimadzu Prominence-I LC-2030C 3D Plus HPLC system with a PDA detector and the Shim-pack Solar C8 column (250 mm × 4.6 mm × 5 μm) for analysis with a mobile phase ratio of methanol:water (80:20% v/v) maintaining the flow rate of 1.0 mL/min. The final wavelength was selected as 240 nm and the elution of hemp seed oil and posaconazole was obtained at 2.7 and 4.6 min, respectively, with a maximum run time of 8.0 min. Box Behnken design was employed to optimize the method, keeping the retention time, peak area, and theoretical plates as dependent variables, while the mobile phase composition, flow rate, and wavelengths were chosen as independent variables. Parameters such as specificity, accuracy, robustness, linearity, sensitivity, precision, ruggedness, and forced degradation study were performed to validate the method. The calibration curves of posaconazole and hemp seed oil were determined to be linear throughout the range for concentration. The suggested approach can be effectively utilized for estimating the content of drugs from their nanoformulation and proved suitable for both in vivo and in vitro research.
Collapse
Affiliation(s)
- Anjali Rathee
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Pavitra Solanki
- Department
of Pharmaceutics, Delhi Pharmaceutical Sciences
and Research University, Pushp Vihar, Sec-III, New Delhi 110017, India
| | - Surajpal Verma
- Department
of Pharmaceutical Analysis, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, Sec-III, New Delhi 110017, India
| | - Divya Vohora
- Department
of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Javed Ansari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdul Aziz University, Al-kharj 11231, Saudi Arabia
| | - Alhussain Aodah
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdul Aziz University, Al-kharj 11231, Saudi Arabia
| | - Kanchan Kohli
- Lloyd Institute
of Management and Technology, Greater Noida, Uttar Pradesh 201306, India
| | - Yasmin Sultana
- Department
of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
34
|
Schunke J, Mailänder V, Landfester K, Fichter M. Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy. Int J Mol Sci 2023; 24:12174. [PMID: 37569548 PMCID: PMC10419017 DOI: 10.3390/ijms241512174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Jenny Schunke
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Michael Fichter
- Department of Dermatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Insitute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
35
|
Hassan MM, Romana B, Mao G, Kumar N, Sonvico F, Thordarson P, Joyce P, Bremmell KE, Barnes TJ, Prestidge CA. Liposome-Micelle-Hybrid (LMH) Carriers for Controlled Co-Delivery of 5-FU and Paclitaxel as Chemotherapeutics. Pharmaceutics 2023; 15:1886. [PMID: 37514072 PMCID: PMC10385268 DOI: 10.3390/pharmaceutics15071886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Paclitaxel (PTX) and 5-fluorouracil (5-FU) are clinically relevant chemotherapeutics, but both suffer a range of biopharmaceutical challenges (e.g., either low solubility or permeability and limited controlled release from nanocarriers), which reduces their effectiveness in new medicines. Anticancer drugs have several major limitations, which include non-specificity, wide biological distribution, a short half-life, and systemic toxicity. Here, we investigate the potential of liposome-micelle-hybrid (LMH) carriers (i.e., drug-loaded micelles encapsulated within drug-loaded liposomes) to enhance the co-formulation and delivery of PTX and 5-FU, facilitating new delivery opportunities with enhanced chemotherapeutic performance. We focus on the combination of liposomes and micelles for co-delivery of PTX and 5_FU to investigate increased drug loading, improved solubility, and transport/permeability to enhance chemotherapeutic potential. Furthermore, combination chemotherapy (i.e., containing two or more drugs in a single formulation) may offer improved pharmacological performance. Compared with individual liposome and micelle formulations, the optimized PTX-5FU-LMH carriers demonstrated increased drug loading and solubility, temperature-sensitive release, enhanced permeability in a Caco-2 cell monolayer model, and cancer cell eradication. LMH has significant potential for cancer drug delivery and as a next-generation chemotherapeutic.
Collapse
Affiliation(s)
- Md Musfizur Hassan
- School of Chemistry, The Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Bilquis Romana
- School of Chemistry, The Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fabio Sonvico
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Paul Joyce
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Timothy J Barnes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
36
|
Chandran A, Abhirami N, Sudhina S, Chandran M, Janeesh PA. 2D Nano Covalent Organic Frameworks – A Porous Polymeric Promising Material Exploring New Prospects of Drug Delivery in Cancer Therapeutics. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202301145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 01/06/2025]
Abstract
AbstractCancer is one of the leading causes of death worldwide. Despite there are numerous treatments available for cancer therapy, early detection and efficient treatment with least side effects is still challenging. Covalent organic frameworks (COFs) are emerging crystalline porous polymeric material comprised of light weight atoms like H, B, C, N and O. The Unique characteristics of COFs is its porosity, large surface area and bio‐compatibility which makes them a suitable candidate for potential biomedical applications especially in cancer therapeutics, through targeted drug delivery. This review focused on general introduction of porous materials, history of COFs, an overview on cancer, brief discussion on the various synthetic strategies, dynamic linkages in COFs and potential biomedical application of COFs such as targeted drug delivery, photo thermal therapy (PTT) and photodynamic therapy (PDT). This review aims to provide in‐depth knowledge about COFs and its application in cancer therapeutics.
Collapse
Affiliation(s)
- Akash Chandran
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Nanoscience and Nanotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695581 Kerala India
| | - N. Abhirami
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - S. Sudhina
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - Mahesh Chandran
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Biotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| | - P. A. Janeesh
- Centre for Advanced Cancer Research Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Translational Nanomedicine and Lifestyle Disease Research Laboratory Department of Biochemistry University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
- Department of Nanoscience and Nanotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695581 Kerala India
- Department of Biotechnology University of Kerala, Kariavattom campus Thiruvananthapuram 695034 Kerala India
| |
Collapse
|
37
|
Salas Sanzana D, Flores Faúndez E, Meléndez J, Soto-Arriaza M. Increased delivery and cytotoxicity of doxorubicin in HeLa cells using the synthetic cationic peptide pEM-2 functionalized liposomes. Colloids Surf B Biointerfaces 2023; 228:113420. [PMID: 37379702 DOI: 10.1016/j.colsurfb.2023.113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
HYPOTHESIS Due to the inability of nano-carriers to passively cross the cell membrane, cell penetration enhancers are used to accelerate cytoplasmic delivery of antineoplastic drugs. In this regard, snake venom phospholipase A2 peptides are known for their ability to destabilize natural and artificial membranes. In this context, functionalized liposomes with peptide pEM-2 should favor the incorporation of doxorubicin and increase its cytotoxicity in HeLa cells compared to free doxorubicin, and doxorubicin encapsulated in non-functionalized liposomes. EXPERIMENTS Several characteristics were monitored, including doxorubicin loading capacity of the liposomes, as well as the release and uptake before and after functionalization. Cell viability and half-maximal inhibition concentrations were determined in HeLa cells. FINDINGS In vitro studies showed that functionalization of doxorubicin-loaded PC-NG liposomes with pEM-2 not only improved the amount of doxorubicin delivered compared to free doxorubicin or other doxorubicin-containing formulations, but also showed enhanced cytotoxicity against HeLa cells. The PC-NG liposomes loaded with doxorubicin improved treatment efficacy by reducing the IC50 value and incubation time. This increase in cell toxicity was directly related to the concentration of pEM-2 peptide bound to the liposomes. We conclude that the cytotoxicity observed in HeLa cells due to the action of doxorubicin was strongly favored when encapsulated in synthetic liposomes and functionalized with the pEM-2 peptide.
Collapse
Affiliation(s)
- Diego Salas Sanzana
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica, Santiago, Chile.
| | - Emilia Flores Faúndez
- Centro de Biología Celular y Biomedicina CEBICEM, Universidad San Sebastián, Santiago, Chile.
| | - Jaime Meléndez
- Reproductive Health Research Institute (RHRI), Santiago, Chile.
| | - Marco Soto-Arriaza
- Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
| |
Collapse
|
38
|
Gutiérrez-Saucedo RA, Gómez-López JC, Villanueva-Briseño AA, Topete A, Soltero-Martínez JFA, Mendizábal E, Jasso-Gastinel CF, Taboada P, Figueroa-Ochoa EB. Pluronic F127 and P104 Polymeric Micelles as Efficient Nanocarriers for Loading and Release of Single and Dual Antineoplastic Drugs. Polymers (Basel) 2023; 15:polym15102249. [PMID: 37242824 DOI: 10.3390/polym15102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The potential application of biodegradable and biocompatible polymeric micelles formed by Pluronic F127 and P104 as nanocarriers of the antineoplastic drugs docetaxel (DOCE) and doxorubicin (DOXO) is presented in this work. The release profile was carried out under sink conditions at 37 °C and analyzed using the Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin diffusion models. The cell viability of HeLa cells was evaluated using the proliferation cell counting kit CCK-8 assay. The formed polymeric micelles solubilized significant amounts of DOCE and DOXO, and released them in a sustained manner for 48 h, with a release profile composed of an initial rapid release within the first 12 h followed by a much slower phase the end of the experiments. In addition, the release was faster under acidic conditions. The model that best fit the experimental data was the Korsmeyer-Peppas one and denoted a drug release dominated by Fickian diffusion. When HeLa cells were exposed for 48 h to DOXO and DOCE drugs loaded inside P104 and F127 micelles, they showed lower IC50 values than those reported by other researchers using polymeric nanoparticles, dendrimers or liposomes as alternative carriers, indicating that a lower drug concentration is needed to decrease cell viability by 50%.
Collapse
Affiliation(s)
- Ramón A Gutiérrez-Saucedo
- Laboratorio de Proyectos Modulares, Departamento de Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Julio C Gómez-López
- Laboratorio de Proyectos Modulares, Departamento de Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Adrián A Villanueva-Briseño
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Jalisco, Mexico
| | - J F Armando Soltero-Martínez
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Eduardo Mendizábal
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Carlos F Jasso-Gastinel
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de Partículas e Instituto de Materiales (IMATUS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Edgar B Figueroa-Ochoa
- Laboratorio de Proyectos Modulares, Departamento de Química, Centro Universitario de Ciencias Exactas e Ingeniería, Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
39
|
Hussain MS, Faisal KS, Clulow AJ, Albrecht H, Krasowska M, Blencowe A. Influence of Lyophilization and Cryoprotection on the Stability and Morphology of Drug-Loaded Poly(ethylene glycol- b-ε-caprolactone) Micelles. Polymers (Basel) 2023; 15:polym15081974. [PMID: 37112121 PMCID: PMC10146133 DOI: 10.3390/polym15081974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Polymeric micelles are promising carriers for the delivery of poorly water-soluble drugs, providing enhanced drug solubility, blood circulation times, and bioavailability. Nevertheless, the storage and long-term stability of micelles in solution present challenges requiring the lyophilization and storage of formulations in the solid state, with reconstitution immediately prior to application. Therefore, it is important to understand the effects of lyophilization/reconstitution on micelles, particularly their drug-loaded counterparts. Herein, we investigated the use of β-cyclodextrin (β-CD) as a cryoprotectant for the lyophilization/reconstitution of a library of poly(ethylene glycol-b-ε-caprolactone) (PEG-b-PCL) copolymer micelles and their drug-loaded counterparts, as well as the effect of the physiochemical properties of different drugs (phloretin and gossypol). The critical aggregation concentration (CAC) of the copolymers decreased with increasing weight fraction of the PCL block (fPCL), plateauing at ~1 mg/L when the fPCL was >0.45. The blank (empty) and drug-loaded micelles were lyophilized/reconstituted in the absence and presence of β-CD (9% w/w) and analyzed via dynamic light scattering (DLS) and synchrotron small-angle X-ray scattering (SAXS) to assess for changes in aggregate size (hydrodynamic diameter, Dh) and morphology, respectively. Regardless of the PEG-b-PCL copolymer or the use of β-CD, the blank micelles displayed poor redispersibility (<10% relative to the initial concentration), while the fraction that redispersed displayed similar Dh to the as-prepared micelles, increasing in Dh as the fPCL of the PEG-b-PCL copolymer increased. While most blank micelles displayed discrete morphologies, the addition of β-CD or lyophilization/reconstitution generally resulted in the formation of poorly defined aggregates. Similar results were also obtained for drug-loaded micelles, with the exception of several that retained their primary morphology following lyophilization/reconstitution, although no obvious trends were noted between the microstructure of the copolymers or the physicochemical properties of the drugs and their successful redispersion.
Collapse
Affiliation(s)
- Md Saddam Hussain
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Khandokar Sadique Faisal
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Melbourne, VIC 3052, Australia
| | - Hugo Albrecht
- Drug Discovery and Development Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
40
|
Tang K, Cai Z, Lv Y, Liu R, Chen Q, Gu J. Scientometric Research on Trend Analysis of Nano-Based Sustained Drug Release Systems for Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15041168. [PMID: 37111653 PMCID: PMC10145462 DOI: 10.3390/pharmaceutics15041168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Nanomaterials, such as the nanoparticle (NP), nanomicelle, nanoscaffold, and nano-hydrogel, have been researched as nanocarriers for drug delivery more and more recently. Nano-based drug sustained release systems (NDSRSs) have been used in many medical fields, especially wound healing. However, as we know, no scientometric analysis has been seen on applying NDSRSs in wound healing, which could be of great importance to the relevant researchers. This study collected publications from 1999 to 2022 related to NDSRSs in wound healing from the Web of Science Core Collection (WOSCC) database. We employed scientometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace, VOSviewer, and Bibliometrix. The results indicated that China published the most significant number of documents in the last two decades, Islamic Azad Univ was the most productive institution, and Jayakumar, R was the most influential author. Regarding the analysis of keywords, trend topics indicate that "antibacterial", "chitosan (CS)", "scaffold", "hydrogel", "silver nanoparticle", and "growth factors (GFs)" are the hot topics in recent years. We anticipate that our work will provide a comprehensive overview of research in this field and help scholars better understand the research hotspots and frontiers in this area, thus inspiring further explorations in the future.
Collapse
Affiliation(s)
- Kuangyun Tang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zhengyu Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yanhan Lv
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jun Gu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
41
|
Alsehli M, Gauthier M. Unimolecular Micelles from Randomly Grafted Arborescent Copolymers with Different Core Branching Densities: Encapsulation of Doxorubicin and In Vitro Release Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2461. [PMID: 36984340 PMCID: PMC10053569 DOI: 10.3390/ma16062461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
A series of amphiphilic arborescent copolymers of generations G1 and G2 with an arborescent poly(γ-benzyl L-glutamate) (PBG) core and poly(ethylene oxide) (PEO) chain segments in the shell, PBG-g-PEO, were synthesized and evaluated as drug delivery nanocarriers. The PBG building blocks were generated by ring-opening polymerization of γ-benzyl L-glutamic acid N-carboxyanhydride (Glu-NCA) initiated with n-hexylamine. Partial or full deprotection of the benzyl ester groups followed by coupling with PBG chains yielded a comb-branched (arborescent polymer generation zero or G0) PBG structure. Additional cycles of deprotection and grafting provided G1 and G2 arborescent polypeptides. Side chains of poly(ethylene oxide) were then randomly grafted onto the arborescent PBG substrates to produce amphiphilic arborescent copolymers. Control over the branching density of G0PBG was investigated by varying the length and the deprotection level of the linear PBG substrates used in their synthesis. Three G0PBG cores with different branching densities, varying from a compact and dense to a loose and more porous structure, were thus synthesized. These amphiphilic copolymers behaved similar to unimolecular micelles in aqueous solutions, with a unimodal number- and volume-weighted size distributions in dynamic light scattering measurements. It was demonstrated that these biocompatible copolymers can encapsulate hydrophobic drugs such as doxorubicin (DOX) within their hydrophobic core with drug loading efficiencies of 42-65%. Sustained and pH-responsive DOX release was observed from the unimolecular micelles, which suggests that they could be useful as drug nanocarriers for cancer therapy.
Collapse
Affiliation(s)
- Mosa Alsehli
- Department of Chemistry, Taibah University, Medina P.O. Box 344, Saudi Arabia
- Department of Chemistry, Institute for Polymer Research, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| | - Mario Gauthier
- Department of Chemistry, Institute for Polymer Research, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
42
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
43
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
44
|
Yagolovich AV, Gasparian ME, Dolgikh DA. Recent Advances in the Development of Nanodelivery Systems Targeting the TRAIL Death Receptor Pathway. Pharmaceutics 2023; 15:pharmaceutics15020515. [PMID: 36839837 PMCID: PMC9961178 DOI: 10.3390/pharmaceutics15020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The TRAIL (TNF-related apoptosis-inducing ligand) apoptotic pathway is extensively exploited in the development of targeted antitumor therapy due to TRAIL specificity towards its cognate receptors, namely death receptors DR4 and DR5. Although therapies targeting the TRAIL pathway have encountered many obstacles in attempts at clinical implementation for cancer treatment, the unique features of the TRAIL signaling pathway continue to attract the attention of researchers. Special attention is paid to the design of novel nanoscaled delivery systems, primarily aimed at increasing the valency of the ligand for improved death receptor clustering that enhances apoptotic signaling. Optionally, complex nanoformulations can allow the encapsulation of several therapeutic molecules for a combined synergistic effect, for example, chemotherapeutic agents or photosensitizers. Scaffolds for the developed nanodelivery systems are fabricated by a wide range of conventional clinically approved materials and innovative ones, including metals, carbon, lipids, polymers, nanogels, protein nanocages, virus-based nanoparticles, dendrimers, DNA origami nanostructures, and their complex combinations. Most nanotherapeutics targeting the TRAIL pathway are aimed at tumor therapy and theranostics. However, given the wide spectrum of action of TRAIL due to its natural role in immune system homeostasis, other therapeutic areas are also involved, such as liver fibrosis, rheumatoid arthritis, Alzheimer's disease, and inflammatory diseases caused by bacterial infections. This review summarizes the recent innovative developments in the design of nanodelivery systems modified with TRAIL pathway-targeting ligands.
Collapse
Affiliation(s)
- Anne V. Yagolovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| | - Marine E. Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
45
|
Kim H, Kwak M. Structures and Applications of Nucleic Acid-Based Micelles for Cancer Therapy. Int J Mol Sci 2023; 24:1592. [PMID: 36675110 PMCID: PMC9861421 DOI: 10.3390/ijms24021592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Nucleic acids have become important building blocks in nanotechnology over the last 30 years. DNA and RNA can sequentially build specific nanostructures, resulting in versatile drug delivery systems. Self-assembling amphiphilic nucleic acids, composed of hydrophilic and hydrophobic segments to form micelle structures, have the potential for cancer therapeutics due to their ability to encapsulate hydrophobic agents into their core and position functional groups on the surface. Moreover, DNA or RNA within bio-compatible micelles can function as drugs by themselves. This review introduces and discusses nucleic acid-based spherical micelles from diverse amphiphilic nucleic acids and their applications in cancer therapy.
Collapse
Affiliation(s)
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| |
Collapse
|
46
|
Liu Y, Shen Y. Applications of Nanoparticles in Alzheimer's Disease. J Alzheimers Dis 2023; 96:459-471. [PMID: 37807779 DOI: 10.3233/jad-230098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
With the rapid aging of the global population, the prevalence of neurodegenerative diseases has become a significant concern, with Alzheimer's disease (AD) being the most common. However, the clinical trials of many drugs targeting AD have failed due to the challenges posed by the blood-brain barrier (BBB), which makes intracerebral administration of drugs difficult. However, nanoparticles (NPs) may aid in the delivery of such drugs. NPs are materials with sizes between 1-100 nm that offer several advantages, such as improving biocompatibility, prolonging half-life, transporting large molecules, crossing the BBB to deliver to the central nervous system, and exhibiting good targeting ability. In addition to drug delivery, NPs also have excellent diagnostic potential, and multifunctional NPs can integrate the advantages of diagnosis, targeting, and treatment. This mini-review article provides an overview of NPs, including the composition of the carrier, strategies for crossing the BBB, and different targets of AD pathology, with the aim of providing guidance for the development prospects of NPs.
Collapse
Affiliation(s)
- Yiming Liu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
47
|
Chmelyuk NS, Oda VV, Gabashvili AN, Abakumov MA. Encapsulins: Structure, Properties, and Biotechnological Applications. BIOCHEMISTRY (MOSCOW) 2023; 88:35-49. [PMID: 37068871 PMCID: PMC9937530 DOI: 10.1134/s0006297923010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In 1994 a new class of prokaryotic compartments was discovered, collectively called "encapsulins" or "nanocompartments". Encapsulin shell protomer proteins self-assemble to form icosahedral structures of various diameters (24-42 nm). Inside of nanocompartments shells, one or several cargo proteins, diverse in their functions, can be encapsulated. In addition, non-native cargo proteins can be loaded into nanocompartments, and shell surfaces can be modified via various compounds, which makes it possible to create targeted drug delivery systems, labels for optical and MRI imaging, and to use encapsulins as bioreactors. This review describes a number of strategies of encapsulins application in various fields of science, including biomedicine and nanobiotechnologies.
Collapse
Affiliation(s)
- Nelly S Chmelyuk
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117977, Russia
| | - Vera V Oda
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Anna N Gabashvili
- National University of Science and Technology "MISIS", Moscow, 119049, Russia
| | - Maxim A Abakumov
- National University of Science and Technology "MISIS", Moscow, 119049, Russia.
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117977, Russia
| |
Collapse
|
48
|
Prasanthan P, Kishore N. HSA nanoparticles in drug recognition: mechanistic insights with naproxen, diclofenac and methimazole. J Biomol Struct Dyn 2022; 40:11057-11069. [PMID: 34296662 DOI: 10.1080/07391102.2021.1953605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Protein-based nanoparticles offer a suitable targeted delivery platform to drugs in terms of biocompatibility, biodegradability and abundance in nature. Physicochemical understanding of drug encapsulation by protein nanoparticles and their impact on protein aggregation is essential. In this work, we have examined quantitative aspects of encapsulation of non-steroidal anti-inflammatory drugs naproxen and diclofenac sodium, and anti-thyroid drug methimazole in nanoparticles of human serum albumin (HSA NPs) by using ultrasensitive calorimetry. Thermodynamic signatures accompanying the interactions revealed that the partitioning of all these drugs in HSA NPs is primarily driven via contributions from desolvation of highly hydrated nanoparticles surface. Furthermore, the effect of these nanoparticles on fibrillation of HSA has also been studied. HSA NPs are determined to be ineffective towards inhibition of fibrillation under employed conditions. However, the extent of inhibition by HSA NPs varies depending upon the structural characteristics of the drugs. Such studies help to gain mechanistic aspects on drug loading into protein-based nanoparticles and are expected to provide useful insights into improving existing nano-drug carriers and their efficiency in preventing protein fibrillation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Prasanthan
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
49
|
Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022; 41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Research on porphyrin-based photosensitizing drugs is becoming increasingly popular. They possess unique diagnostic capabilities and therapeutic effects that have gained wide recognition in oncology drug development. In recent years, the rapid growth of nanotechnology has brought great hope for nanopharmaceutical formulations. By combining porphyrins with various nanomaterials, people have improved the properties of porphyrin compounds, making drug delivery easier. Porphyrin-based nanoparticles can enhance the effect of photodynamic therapy for cancer treatment, providing opportunities for achieving complex targeting strategies and versatility with promising applications in drug carriers, tumor imaging, and treatment. This paper reviews recent porphyrin nanodrugs, including inorganic-organic hybrid nanoparticles, nanomicelles, self-assembled nanoparticles, and combination therapeutic nanodrugs, and their actions and effects on cancer cells when performing photodynamic therapy. It also discusses the drawbacks as well as the prospects for development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Wenli Xiao
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lei Shi
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Ying Wang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yujie Liu
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
50
|
Braatz D, Cherri M, Tully M, Dimde M, Ma G, Mohammadifar E, Reisbeck F, Ahmadi V, Schirner M, Haag R. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angew Chem Int Ed Engl 2022; 61:e202203942. [PMID: 35575255 PMCID: PMC10091760 DOI: 10.1002/anie.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.
Collapse
Affiliation(s)
- Daniel Braatz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mariam Cherri
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Tully
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mathias Dimde
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Guoxin Ma
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ehsan Mohammadifar
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Felix Reisbeck
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Vahid Ahmadi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Schirner
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|