1
|
Chang RS, Walker J, Mujeeb AA, Kadiyala P, Pisupati K, Jamison J, Schwendeman A, Haggag Y, Antonetti DA, Castro MG, Schwendeman SP. Local controlled release of stabilized monoclonal antibodies. J Control Release 2025; 383:113743. [PMID: 40250626 DOI: 10.1016/j.jconrel.2025.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Monoclonal antibody (mAb) therapeutics have become widely successful for treatment of any number of diseases. However, for certain hard-to-reach tissues, e.g., eye, brain, tumors, and joints, local delivery is desired and long-term controlled release is necessary to avoid frequent injections and poor patient compliance. If local and sustained exposure of mAbs (or their Fab or nanobody fragments) could be accomplished by injectable polymer long-acting release (LAR) systems, the incredible potential of mAb therapeutics could be extended to additional diseases, e.g., neovascular age-related macular degeneration (wet AMD) and glioblastoma multiforme (GBM). In prior studies, long-acting delivery of mAbs has been limited by the inability to design a delivery system prepared from a biodegradable polymer used in FDA-approved LARs that achieves long-term continuous release of structurally stable and immunoreactive mAb with a low initial burst release that is easily injectable and avoids material build-up upon repeated injection. Here, we present for the first time a long-acting delivery system capable of delivering several different mAbs for multiple indications by developing a novel process to stabilize mAbs through the combination of formulation, micronization and encapsulation conditions, and to control stabilized mAb exposure in vivo for months by formulation with an appropriate biodegradable polymer (poly(lactic-co-glycolic acid) (PLGA)), utilization of a pH- and pore-modifying agent, and development of a novel PLGA coating layer to control osmotic pressure induced by elevated levels of critical co-encapsulated stabilizers, particularly mAb-stabilizing-trehalose. The resulting implants showed long-term efficacy in animal models for both wet AMD and GBM after single local injections. Although much more work needs to be done before their clinical application to these two diseases, the injectable PLGA platform meets several important benchmarks for controlled mAb delivery and can be developed further for delivery of a wide array of mAbs and other cofactors, offering an improved therapeutic option for treating diseases amenable to local antibody therapy. One Sentence Summary: A generalizable injectable biodegradable PLGA implant platform for site-specific and long-term slow and continuous release of stabilized monoclonal antibody drugs demonstrates improved in vivo efficacy for wet AMD and glioblastoma.
Collapse
Affiliation(s)
- Rae Sung Chang
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer Walker
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anzar A Mujeeb
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Padma Kadiyala
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Karthik Pisupati
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Anna Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yusuf Haggag
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - David A Antonetti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Maria G Castro
- Department of Neurosurgery and Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Kasse CM, Yu AC, Powell AE, Roth GA, Liong CS, Jons CK, Buahin A, Maikawa CL, Zhou X, Youssef S, Glanville JE, Appel EA. Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot. Biomater Sci 2023; 11:2065-2079. [PMID: 36723072 PMCID: PMC10012178 DOI: 10.1039/d2bm00819j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/21/2022] [Indexed: 01/31/2023]
Abstract
Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Catherine M Kasse
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Anthony C Yu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Abigail E Powell
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Celine S Liong
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Carolyn K Jons
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Awua Buahin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Xueting Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
| | - Sawsan Youssef
- Centivax Inc., 329 Oyster Point Drive, 3rd Floor South San Francisco, CA 94080, USA
| | - Jacob E Glanville
- Centivax Inc., 329 Oyster Point Drive, 3rd Floor South San Francisco, CA 94080, USA
| | - Eric A Appel
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.
- Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305 USA
- Institute for Immunity, Transplantation, & Infection, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics - Endocrinology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Chotera‐Ouda A, Jeziorna A, Kaźmierski S, Dolot R, Dudek MK, Potrzebowski MJ. “Crystal memory” Affects the Properties of Peptide Hydrogels – The Case of the Cyclic Tyr‐Tyr dipeptide. Chemistry 2022; 28:e202202005. [DOI: 10.1002/chem.202202005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Agata Chotera‐Ouda
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Agata Jeziorna
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
- Lodz Institute of Technology Łukasiewicz Research Network M. Sklodowskiej-Curie 19/27 90-570 Lodz Poland
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Marta K. Dudek
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| | - Marek J. Potrzebowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences Sienkiewicza 112 90-363 Lodz Poland
| |
Collapse
|
4
|
Nakahara H, Hagimori M, Mukai T, Shibata O. Interplay of long-chain tetrazine derivatives and biomembrane components at the air-water interface. BIOPHYSICS REVIEWS 2022; 3:021303. [PMID: 38505415 PMCID: PMC10903492 DOI: 10.1063/5.0083352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/05/2022] [Indexed: 03/21/2024]
Abstract
Tetrazine (Tz) is an emerging bioorthogonal ligand that is expected to have applications (e.g., bioimaging) in chemistry and chemical biology. In this review, we highlight the interactions of reduced tetrazine (rTz) derivatives insoluble in aqueous media with biological membrane constituents or their related lipids, such as dipalmitoyl-phosphatidylcholine, dipalmitoyl-phosphatidylethanolamine, dipalmitoyl-phosphatidylglycerol, palmitoyl-sphingomyelin, and cholesterol in the Langmuir monolayer state at the air-water interface. The two-component interaction was thermodynamically elucidated by measuring the surface pressure (π) and molecular area (A) isotherms. The monolayer miscibility between the two components was analyzed using the excess Gibbs energy of mixing and two-dimensional phase diagram. The phase behavior of the binary monolayers was studied using the Brewster angle, fluorescence, and atomic force microscopy. This study discusses the affinities of the rTz moieties for the hydrophilic groups of the lipids used.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku Fukuoka 815-8511, Japan
| | - Masayori Hagimori
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya 663-8179, Japan
| | - Takahiro Mukai
- Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Osamu Shibata
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
5
|
Kasse CM, Yu AC, Powell AE, Roth GA, Liong CS, Jons CK, Buahin A, Maikawa CL, Youssef S, Glanville JE, Appel EA. Subcutaneous delivery of an antibody against SARS-CoV-2 from a supramolecular hydrogel depot. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.24.493347. [PMID: 35665002 PMCID: PMC9164446 DOI: 10.1101/2022.05.24.493347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective. In this work, we develop a supramolecular hydrogel as an injectable, subcutaneous depot to encapsulate and deliver antibody drug cargo. This polymer-nanoparticle (PNP) hydrogel exhibits shear-thinning and self-healing properties that are required for an injectable drug delivery vehicle. In vitro drug release assays and diffusion measurements indicate that the PNP hydrogels prevent burst release and slow the release of encapsulated antibodies. Delivery of bnAbs against SARS-CoV-2 from PNP hydrogels is compared to standard routes of administration in a preclinical mouse model. We develop a multi-compartment model to understand the ability of these subcutaneous depot materials to modulate the pharmacokinetics of released antibodies; the model is extrapolated to explore the requirements needed for novel materials to successfully deliver relevant antibody therapeutics with different pharmacokinetic characteristics.
Collapse
|
6
|
Nakahara H, Hagimori M, Kannaka K, Mukai T, Shibata O. Inverse electron-demand diels-alder reactions of tetrazine and norbornene at the air-water interface. Colloids Surf B Biointerfaces 2022; 211:112333. [PMID: 35038654 DOI: 10.1016/j.colsurfb.2022.112333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 01/25/2023]
Abstract
The surface chemistry of the inverse electron-demand Diels-Alder (IEDDA) reaction at the air-water interface is elucidated. Tetrazine (C18-Tz) and norbornene derivatives (C16-NCA) were used as the reactants. Langmuir monolayers of C18-Tz, C16-NCA, and their binary mixtures were prepared on aqueous substrates. The surface properties were analyzed using the surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms, as well as fluorescence microscopy to monitor the progress of the reaction. First, to provide comparison data to evaluate the reaction on the surface, the two components were mixed in stock solutions of organic solvents for the IEDDA reaction. The Langmuir monolayer spread from the reaction solution was characterized as a function of the reaction time. In the subsequent experiments, the Langmuir monolayers were deposited onto the surface of the substrate solutions by spreading from separate stock solutions of C18-Tz and C16-NCA. The variation of the surface behavior of the monolayers with the molecular area, surface composition of the two components, compression speed of the monolayers, and the temperature was studied. We discuss the effects of the air phase in the reaction field on the reaction efficiency by comparing the results obtained from the two methods.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Masayori Hagimori
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyubancho, Nishinomiya 663-8179, Japan
| | - Kento Kannaka
- Laboratoory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Takahiro Mukai
- Laboratoory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyama Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Osamu Shibata
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| |
Collapse
|
7
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
8
|
Tian H, Guo A, Li K, Tao B, Lei D, Deng Z. Effects of a novel self-assembling peptide scaffold on bone regeneration and controlled release of two growth factors. J Biomed Mater Res A 2021; 110:943-953. [PMID: 34873824 DOI: 10.1002/jbm.a.37342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/12/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
RADA16 is a self-assembling peptide material with good bioactivity. To improve the bioactivity of a material, some specific functional motifs can be added to its peptide sequence. Here, we report a self-assembling peptide nanogel, RADA16-RGD, that has better bioactivity than RADA16 and can simultaneously carry and control the release of two growth factors, VEGF and BMP-2, which have synergistic effects on bone formation. The peptide materials were characterized by transmission electron microscopy and scanning electron microscopy. The mechanical properties of the peptides were evaluated by the rheology test. The biocompatibility of the materials was evaluated via the use of the CCK-8 test, live/dead staining and confocal laser scanning microscopy. Osteogenesis capability in vitro was evaluated by means of ALP staining, extracellular matrix mineralization and detection of osteogenic markers. The controlled release of growth factors was examined by ELISA. The results showed that RADA16-RGD exhibited a better ability than RADA16 to promote cell proliferation, adhesion and bone formation. In addition, RADA16-RGD had good biocompatibility and exhibited effective controlled release of VEGF and BMP-2. More importantly, compared with RADA16-RGD loaded with single growth factor or without growth factors, RADA16-RGD loaded with two growth factors exhibited a stronger ability to promote cell proliferation and osteogenesis. This study provides a promising strategy for the application of self-assembling peptides to promote osteogenesis and controlled release of proteins.
Collapse
Affiliation(s)
- Hongchuan Tian
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Li
- Department of Orthopaedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
9
|
Bayer IS. A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines 2021; 9:1612. [PMID: 34829843 PMCID: PMC8615759 DOI: 10.3390/biomedicines9111612] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
10
|
Ziegler CE, Graf M, Nagaoka M, Lehr H, Goepferich AM. In Situ Forming iEDDA Hydrogels with Tunable Gelation Time Release High-Molecular Weight Proteins in a Controlled Manner over an Extended Time. Biomacromolecules 2021; 22:3223-3236. [PMID: 34270216 DOI: 10.1021/acs.biomac.1c00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Off-target interactions between reactive hydrogel moieties and drug cargo as well as slow reaction kinetics and the absence of controlled protein release over an extended period of time are major drawbacks of chemically cross-linked hydrogels for biomedical applications. In this study, the inverse electron demand Diels-Alder (iEDDA) reaction between norbornene- and tetrazine-functionalized eight-armed poly(ethylene glycol) (PEG) macromonomers was used to overcome these obstacles. Oscillatory shear experiments revealed that the gel point of a 15% (w/v) eight-armed PEG hydrogel with a molecular weight of 10 kDa was less than 15 s, suggesting the potential for fast in situ gelation. However, the high-speed reaction kinetics result in a risk of premature gel formation that complicates the injection process. Therefore, we investigated the effect of polymer concentration, temperature, and chemical structure on the gelation time. The cross-linking reaction was further characterized regarding bioorthogonality. Only 11% of the model protein lysozyme was found to be PEGylated by the iEDDA reaction, whereas 51% interacted with the classical Diels-Alder reaction. After determination of the mesh size, fluorescein isothiocyanate-dextran was used to examine the release behavior of the hydrogels. When glucose oxidase was embedded into 15% (w/v) hydrogels, a controlled release over more than 250 days was achieved. Overall, the PEG-based hydrogels cross-linked via the fast iEDDA reaction represent a promising material for the long-term administration of biologics.
Collapse
Affiliation(s)
- Christian E Ziegler
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Moritz Graf
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Makoto Nagaoka
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Heike Lehr
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
11
|
Jiang T, Ma Y, Xu X, Ji Q, Feng M, Cheng C, Feng Y, He B, Mo R. Enzyme-instructed hybrid nanogel/nanofiber oligopeptide hydrogel for localized protein delivery. Acta Pharm Sin B 2021; 11:2070-2079. [PMID: 34386339 PMCID: PMC8343108 DOI: 10.1016/j.apsb.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 11/09/2022] Open
Abstract
Enzyme-catalysis self-assembled oligopeptide hydrogel holds great interest in drug delivery, which has merits of biocompatibility, biodegradability and mild gelation conditions. However, its application for protein delivery is greatly limited by inevitable degradation of enzyme on the encapsulated proteins leading to loss of protein activity. Moreover, for the intracellularly acted proteins, cell membrane as a primary barrier hinders the transmembrane delivery of proteins. The internalized proteins also suffer from acidic and enzymatic degradation in endosomes and lysosomes. We herein develop a protease-manipulated hybrid nanogel/nanofiber hydrogel for localized delivery of intracellularly acted proteins. The embedded polymeric nanogels (CytoC/aNGs) preserve activity of cytochrome c (CytoC) that is an intracellular activator for cell apoptosis as a model protein against proteolysis, and do not affect the gelation properties of the protease-catalysis assembled hydrogels. The injectable hydrogel (CytoC/aNGs/Gel) serves as a reservoir to enhance intratumoral retention and realize sustainable release of CytoC/aNGs. The released CytoC/aNGs increase cellular uptake of CytoC and enhance its intracellular delivery to its target site, cytoplasm, resulting in favorable apoptosis-inducing and cytotoxic effects. We show that a single local administration of CytoC/aNGs/Gel efficiently inhibit the tumor growth in the breast tumor mouse model.
Collapse
|
12
|
Karavasili C, Fatouros DG. Self-assembling peptides as vectors for local drug delivery and tissue engineering applications. Adv Drug Deliv Rev 2021; 174:387-405. [PMID: 33965460 DOI: 10.1016/j.addr.2021.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular self-assembly has forged a new era in the development of advanced biomaterials for local drug delivery and tissue engineering applications. Given their innate biocompatibility and biodegradability, self-assembling peptides (SAPs) have come in the spotlight of such applications. Short and water-soluble SAP biomaterials associated with enhanced pharmacokinetic (PK) and pharmacodynamic (PD) responses after the topical administration of the therapeutic systems, or improved regenerative potential in tissue engineering applications will be the focus of the current review. SAPs are capable of generating supramolecular structures using a boundless array of building blocks, while peptide engineering is an approach commonly pursued to encompass the desired traits to the end composite biomaterials. These two elements combined, expand the spectrum of SAPs multi-functionality, constituting them potent biomaterials for use in various biomedical applications.
Collapse
|
13
|
Lyu Y, Azevedo HS. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021; 26:873. [PMID: 33562215 PMCID: PMC7914635 DOI: 10.3390/molecules26040873] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications. This review describes various types of supramolecular hydrogels using a repertoire of diverse building blocks, their use for protein delivery and their further application in TE contexts. By reviewing the recent literature on this topic, the merits of supramolecular hydrogels are highlighted as well as their limitations, with high expectations for new advances they will provide for TE in the near future.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| |
Collapse
|
14
|
Raspa A, Carminati L, Pugliese R, Fontana F, Gelain F. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. J Control Release 2021; 330:1208-1219. [DOI: 10.1016/j.jconrel.2020.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
|
15
|
Zhang M, Liang J, Yang Y, Liang H, Jia H, Li D. Current Trends of Targeted Drug Delivery for Oral Cancer Therapy. Front Bioeng Biotechnol 2020; 8:618931. [PMID: 33425881 PMCID: PMC7793972 DOI: 10.3389/fbioe.2020.618931] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022] Open
Abstract
Oral cancer is an aggressive tumor that invades the local tissue and can cause metastasis and high mortality. Conventional treatment strategies, e.g., surgery, chemotherapy, and radiation therapy alone or in combinations, possess innegligible issues, and significant side and adverse effects for the clinical applications. Currently, targeting drug delivery is emerging as an effective approach for oral delivery of different therapeutics. Herein we provide a state-of-the-art review on the current progress of targeting drug delivery for oral cancer therapy. Variously oral delivery systems including polymeric/inorganic nanoparticles, liposomes, cyclodextrins, nanolipids, and hydrogels-based forms are emphasized and discussed, and biomimetic systems with respect to oral delivery like therapeutic vitamin, exosomes, proteins, and virus-like particles are also described with emphasis on the cancer treatment. A future perspective is also provided to highlight the existing challenges and possible resolution toward clinical translation of current oral cancer therapies.
Collapse
Affiliation(s)
- Mingming Zhang
- Strategic Support Force Characteristic Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Jianqin Liang
- The 8th Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Huize Liang
- Strategic Support Force Characteristic Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Huaping Jia
- Strategic Support Force Characteristic Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Dawei Li
- The 4th Medical Center, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
16
|
Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020; 120:13434-13460. [DOI: 10.1021/acs.chemrev.0c00690] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, Milan 20162, Italy
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
17
|
Locally Controlled Diffusive Release of Bone Morphogenetic Protein-2 Using Micropatterned Gelatin Methacrylate Hydrogel Carriers. BIOCHIP JOURNAL 2020; 14:405-420. [PMID: 33250969 PMCID: PMC7680086 DOI: 10.1007/s13206-020-4411-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
In this work, a novel and simple bone morphogenetic protein (BMP)-2 carrier is developed, which enables localized and controlled release of BMP-2 and facilitates bone regeneration. BMP-2 is localized in the gelatin methacrylate (GelMA) micropatterns on hydrophilic semi-permeable membrane (SNM), and its controlled release is regulated by the concentration of GelMA hydrogel and BMP-2. The controlled release of BMP-2 is verified using computational analysis and quantified using fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) diffusion model. The osteogenic differentiation of osteosarcoma MG-63 cells is manipulated by localized and controlled BMP-2 release. The calcium deposits are significantly higher and the actin skeletal networks are denser in MG-63 cells cultured in the BMP-2-immobilized GelMA micropattern than in the absence of BMP-2. The proposed BMP-2 carrier is expected to not only act as a barrier membrane that can prevent invasion of connective tissue during bone regeneration, but also as a carrier capable of localizing and controlling the release of BMP-2 due to GelMA micropatterning on SNM. This approach can be extensively applied to tissue engineering, including the localization and encapsulation of cells or drugs.
Collapse
|
18
|
Zhang S. Self-assembling peptides: From a discovery in a yeast protein to diverse uses and beyond. Protein Sci 2020; 29:2281-2303. [PMID: 32939884 PMCID: PMC7586918 DOI: 10.1002/pro.3951] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Well-defined nanofiber scaffold hydrogels made of self-assembling peptides have found their way into various 3D tissue culture and clinical products. I reflect initial puzzlement of the unexpected discovery, gradual understanding of how these peptides undergo self-assembly, to eventually translating designer biological scaffolds into commercial products. Peptides are ubiquitous in nature and useful in many fields. They are found as hormones, pheromones, antibacterial, and antifungal agents in innate immunity systems, toxins, as well anti-inset pesticides. However, the concept of peptides as materials was not recognized until 1990 when a self-assembling peptide as a repeating segment in a yeast protein was serendipitously discovered. The peptide materials have bona fide materials properties and are made from simple amino acids with well-ordered nanostructures under physiological conditions. Some current applications include: (a) Real 3D tissue cell cultures of diverse tissue cells and various stem cells; (b) reparative and regenerative medicine as well as tissue engineering; (c) 3D tissue printing; (d) sustained releases of small molecules, growth factors and monoclonal antibodies; and (e) accelerated wound healing of skin and diabetic ulcers as well as instant hemostasis in surgery. Self-assembling peptide nanobiotechnology will likely continue to expand in many directions in the coming years. I will also briefly introduce my current research using a simple QTY code for membrane protein design. I am greatly honored and humbled to be invited to contribute an Award Winner Recollection of the 2020 Emil Thomas Kaiser Award from the Protein Society.
Collapse
Affiliation(s)
- Shuguang Zhang
- Laboratory of Molecular ArchitectureMedia Lab, Massachusetts Institute of Technology77 Massachusetts Avenue E15‐391CambridgeMassachusetts02139‐4306USA
| |
Collapse
|
19
|
Zhai H, Zhou J, Xu J, Sun X, Xu Y, Qiu X, Zhang C, Wu Z, Long H, Bai Y, Quan D. Mechanically strengthened hybrid peptide-polyester hydrogel and potential applications in spinal cord injury repair. Biomed Mater 2020; 15:055031. [DOI: 10.1088/1748-605x/ab9e45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Roy K, Pandit G, Chetia M, Sarkar AK, Chowdhuri S, Bidkar AP, Chatterjee S. Peptide Hydrogels as Platforms for Sustained Release of Antimicrobial and Antitumor Drugs and Proteins. ACS APPLIED BIO MATERIALS 2020; 3:6251-6262. [DOI: 10.1021/acsabm.0c00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Eleftheriadis GK, Katsiotis CS, Bouropoulos N, Koutsopoulos S, Fatouros DG. FDM-printed pH-responsive capsules for the oral delivery of a model macromolecular dye. Pharm Dev Technol 2020; 25:517-523. [PMID: 31903821 DOI: 10.1080/10837450.2019.1711396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To this day, the oral delivery of biomacromolecules remains a major developmentally-oriented challenge. A combinatorial approach was followed at this study, to formulate an efficient carrier for the in vitro delivery of a model macromolecule, fluorescein isothiocyanate-dextran 4 kDa (FD4). The model macromolecule was formulated in a self-assembling peptide hydrogel (ac-(RADA)4-CONH2), prior to deposition in a hydroxypropyl methylcellulose-phthalate (HPMCP)-based 3D-printed capsule. Loading of FD4 was investigated for potential alterations on the structural (AFM) and gelling properties of the peptide carrier. Thermal analysis and morphological properties of the 3D-printed capsules were assessed by TGA, DSC and microscopy studies. For the peptide hydrogel, similar release profiles of FD4 were recorded in simulated gastric fluid pH 1.2 and phosphate buffer saline pH 7.4, indicating the need for a structural barrier, to protect the peptide carrier from the acidic environment of the stomach. The pH responsive character of the HPMCP-based capsule was evidenced in the release profiles of FD4 in a sequence of release media, i.e. simulated gastric fluid pH 1.2, simulated intestinal fluid pH 6.8 and phosphate buffer saline pH 7.4. The results supported the combinatorial formulation approach as a promising system for the efficient oral delivery of biomacromolecules.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Katsiotis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, Patras, Greece.,Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, Greece
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Wang K, Hao Y, Wang Y, Chen J, Mao L, Deng Y, Chen J, Yuan S, Zhang T, Ren J, Liao W. Functional Hydrogels and Their Application in Drug Delivery, Biosensors, and Tissue Engineering. INT J POLYM SCI 2019; 2019:1-14. [DOI: 10.1155/2019/3160732] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025] Open
Abstract
Hydrogel is a new class of functional polymer materials with a promising potential in the biomedical field. The purpose of this article is to review recent advancements in several types of biomedical hydrogels, including conductive hydrogels, injectable hydrogels, double network hydrogels, responsive hydrogels, nanocomposite hydrogels, and sliding hydrogels. In comparison with traditional hydrogels, these advanced hydrogels exhibit significant advantages in structure, mechanical properties, and applications. The article focuses on different methods used to prepare advanced biomedical hydrogels and their diversified applications as drug delivery systems, wound dressings, biosensors, contact lenses, and tissue replacement. These advances are rapidly overcoming current limitations of hydrogels, and we anticipate that further research will lead to the development of advanced hydrogels with ubiquitous roles in biomedicine and tissue replacement and regeneration.
Collapse
Affiliation(s)
- Ke Wang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou 510515, China
| | - Yingna Wang
- Guangzhou Sanxing Biotechnology Co. Ltd., No. 14, Shayuan Shang Street, Sixian Village, Xinzhuang Town, Panyu District, Guangzhou 511436, China
| | - Jinyuan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou 510515, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou 510515, China
| | - Yudi Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou 510515, China
| | - Junlin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou 510515, China
| | - Sijie Yuan
- Department of Endocrinology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Tiantian Zhang
- College of Food Science and Engineering, Ocean University of China, No.5 Yushan Road, Qingdao 266003, China
| | - Jiaoyan Ren
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, No. 1023 South Shatai Road, Guangzhou 510515, China
| |
Collapse
|
23
|
Zhao L, Skwarczynski M, Toth I. Polyelectrolyte-Based Platforms for the Delivery of Peptides and Proteins. ACS Biomater Sci Eng 2019; 5:4937-4950. [PMID: 33455241 DOI: 10.1021/acsbiomaterials.9b01135] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of peptides and proteins in the pharmaceutical field has increased dramatically over recent years. They have been especially relevant to advances in the treatment of cancer, rheumatoid arthritis, leukemia, and cardiovascular, ophthalmological, metabolic, and infectious diseases. Despite the great potential of peptides and proteins, their use in pharmaceuticals has failed to reach its full potential because of some outstanding challenges. They are unstable under storage conditions and in biological milieus, and their high molecular weight limits permeation through biological membranes. A variety of delivery systems have been investigated to overcome these limitations. Polyelectrolytes (PEs) are molecules that bear multiple negative or positive charges. These molecules play an important role in various platforms relating to the delivery of peptide/protein-based drugs and subunit vaccines. The most commonly utilized PEs include chitosan, alginate, chondroitin sulfate, and poly(γ-glutamic acid). PE-based delivery systems, such as polyelectrolyte complexes (PECs), PE-coated nanocarriers, and PE multilayers, were designed to protect peptides and proteins from degradation and facilitate their absorption. These delivery systems are especially effective when administered orally or intranasally. This review emphasizes the important role of PEs and PE-based delivery vehicles in peptide/protein-based drugs and vaccines.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
24
|
Ketabat F, Pundir M, Mohabatpour F, Lobanova L, Koutsopoulos S, Hadjiiski L, Chen X, Papagerakis P, Papagerakis S. Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics 2019; 11:E302. [PMID: 31262096 PMCID: PMC6680655 DOI: 10.3390/pharmaceutics11070302] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Meenakshi Pundir
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Fatemeh Mohabatpour
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Liubov Lobanova
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
| | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lubomir Hadjiiski
- Departmnet of Radiology, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, Saskatoon, SK S7N 5E4, Canada
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer - Personalized Diagnostics and Therapeutics, Department of Surgery - Division of Head and Neck Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7K 5A9, Canada.
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev 2019; 146:267-288. [PMID: 30075168 DOI: 10.1016/j.addr.2018.07.019] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Chronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds. Recent advances in biomaterials and stem cell research presented in this review provide novel ways to tackle different molecular and cellular culprits responsible for chronic and nonhealing wounds by delivering therapeutic agents in direct or indirect ways. Careful integration of different approaches presented in the current article could lead to the development of new therapeutic platforms that can address multiple pathophysiologic abnormalities and facilitate wound healing in patients with diabetes.
Collapse
Affiliation(s)
- Hongkwan Cho
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD, USA.
| |
Collapse
|
26
|
Karavasili C, Andreadis DA, Katsamenis OL, Panteris E, Anastasiadou P, Kakazanis Z, Zoumpourlis V, Markopoulou CK, Koutsopoulos S, Vizirianakis IS, Fatouros DG. Synergistic Antitumor Potency of a Self-Assembling Peptide Hydrogel for the Local Co-delivery of Doxorubicin and Curcumin in the Treatment of Head and Neck Cancer. Mol Pharm 2019; 16:2326-2341. [DOI: 10.1021/acs.molpharmaceut.8b01221] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K
| | | | | | | | | | | | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
27
|
Leach DG, Young S, Hartgerink JD. Advances in immunotherapy delivery from implantable and injectable biomaterials. Acta Biomater 2019; 88:15-31. [PMID: 30771535 PMCID: PMC6632081 DOI: 10.1016/j.actbio.2019.02.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Macroscale biomaterials, such as preformed implantable scaffolds and injectable soft materials, possess powerful synergies with anti-cancer immunotherapies. Immunotherapies on their own typically have poor delivery properties, and often require repeated high-dose injections that result in serious off-tumor effects and/or limited efficacy. Rationally designed biomaterials allow for discrete localization and controlled release of immunotherapeutic agents, and have been shown in a large number of applications to improve outcomes in the treatment of cancers via immunotherapy. Among various strategies, macroscale biomaterial delivery systems can take the form of robust tablet-like scaffolds that are surgically implanted into a tumor resection site, releasing programmed immune cells or immunoregulatory agents. Alternatively they can be developed as soft gel-like materials that are injected into solid tumors or sites of resection to stimulate a potent anti-tumor immune response. Biomaterials synthesized from diverse components such as polymers and peptides can be combined with any immunotherapy in the modern toolbox, from checkpoint inhibitors and stimulatory adjuvants, to cancer antigens and adoptive T cells, resulting in unique synergies and improved therapeutic efficacy. The field is growing rapidly in size as publications continue to appear in the literature, and biomaterial-based immunotherapies are entering clinical trials and human patients. It is unarguably an exciting time for cancer immunotherapy and biomaterial researchers, and further work seeks to understand the most critical design considerations in the development of the next-generation of immunotherapeutic biomaterials. This review will discuss recent advances in the delivery of immunotherapies from localized biomaterials, focusing on macroscale implantable and injectable systems. STATEMENT OF SIGNIFICANCE: Anti-cancer immunotherapies have shown exciting clinical results in the past few decades, yet they suffer from a few distinct limitations, such as poor delivery kinetics, narrow patient response profiles, and systemic side effects. Biomaterial systems are now being developed that can overcome many of these problems, allowing for localized adjuvant delivery, focused dose concentrations, and extended therapy presentation. The field of biocompatible carrier materials is uniquely suited to be combined with immunotherapy, promising to yield significant improvements in treatment outcomes and clinical care. In this review, the first pioneering efforts and most recent advances in biomaterials for immunotherapeutic applications are explored, with a specific focus on implantable and injectable biomaterials such as porous scaffolds, cryogels, and hydrogels.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, TX 77054, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Department of Bioengineering, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
28
|
Ferreira NN, Caetano BL, Boni FI, Sousa F, Magnani M, Sarmento B, Ferreira Cury BS, Daflon Gremião MP. Alginate-Based Delivery Systems for Bevacizumab Local Therapy: In Vitro Structural Features and Release Properties. J Pharm Sci 2019; 108:1559-1568. [DOI: 10.1016/j.xphs.2018.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
|
29
|
Scelsi A, Bochicchio B, Smith A, Workman VL, Castillo Diaz LA, Saiani A, Pepe A. Tuning of hydrogel stiffness using a two-component peptide system for mammalian cell culture. J Biomed Mater Res A 2019; 107:535-544. [PMID: 30456777 PMCID: PMC6587839 DOI: 10.1002/jbm.a.36568] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023]
Abstract
Self-assembling peptide hydrogels (SAPHs) represent emerging cell cultures systems in several biomedical applications. The advantages of SAPHs are mainly ascribed to the absence of toxic chemical cross-linkers, the presence of ECM-like fibrillar structures and the possibility to produce hydrogels with a large range of different mechanical properties. We will present a two-component peptide system with tuneable mechanical properties, consisting of a small pentapeptide (SFFSF-NH2 , SA5N) that acts as a gelator and a larger 21-mer peptide (SFFSF-GVPGVGVPGVG-SFFSF, SA21) designed as a physical cross-linker. The hydrogels formed by different mixtures of the two peptides are made up mainly of antiparallel β-sheet nanofibers entangling in an intricate network. The effect of the addition of SA21 on the morphology of the hydrogels was investigated by atomic force microscopy and transmission electron microscopy and correlated to the mechanical properties of the hydrogel. Finally, the biocompatibility of the hydrogels using 2D cell cultures was tested. © 2018 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 535-544, 2019.
Collapse
Affiliation(s)
- Alessandra Scelsi
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
- PhD School of Science, University of BasilicataPotenzaItaly
| | - Brigida Bochicchio
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| | - Andrew Smith
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Victoria L. Workman
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Luis A. Castillo Diaz
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
- Biotecnología Médica y Farmacéutica. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ)GuadalajaraMexico
| | - Alberto Saiani
- School of Materials and Manchester Institute of Biotechnology, The University of ManchesterManchesterUnited Kingdom
| | - Antonietta Pepe
- Laboratory of Bioinspired Materials, Department of ScienceUniversity of BasilicataPotenzaItaly
| |
Collapse
|
30
|
Xue K, Zhao X, Zhang Z, Qiu B, Tan QSW, Ong KH, Liu Z, Parikh BH, Barathi VA, Yu W, Wang X, Lingam G, Hunziker W, Su X, Loh XJ. Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomater Sci 2019; 7:4603-4614. [DOI: 10.1039/c9bm01049a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyurethane thermogels show sustained delivery of bioactive anti-VEGFs therapeutics to the eye.
Collapse
|
31
|
Johnson L, Faidra Angelerou MG, Surikutchi BT, Allen S, Zelzer M, Marlow M. Low Molecular Weight Nucleoside Gelators: A Platform for Protein Aggregation Inhibition. Mol Pharm 2018; 16:462-467. [DOI: 10.1021/acs.molpharmaceut.8b01013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Litty Johnson
- School of Pharmacy, University of Nottingham, University Park
Campus, Nottingham NG72RD, United Kingdom
| | | | - Bhanu Teja Surikutchi
- School of Pharmacy, University of Nottingham, University Park
Campus, Nottingham NG72RD, United Kingdom
| | - Stephanie Allen
- School of Pharmacy, University of Nottingham, University Park
Campus, Nottingham NG72RD, United Kingdom
| | - Mischa Zelzer
- School of Pharmacy, University of Nottingham, University Park
Campus, Nottingham NG72RD, United Kingdom
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, University Park
Campus, Nottingham NG72RD, United Kingdom
| |
Collapse
|
32
|
Colloidal characteristics and functionality of rationally designed esculin-loaded hydrogel microcapsules. J Colloid Interface Sci 2018; 530:444-458. [DOI: 10.1016/j.jcis.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023]
|
33
|
Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma. Pharm Res 2018; 35:166. [DOI: 10.1007/s11095-018-2442-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/07/2018] [Indexed: 01/04/2023]
|
34
|
Del Borgo MP, Kulkarni K, Tonta MA, Ratcliffe JL, Seoudi R, Mechler AI, Perlmutter P, Parkington HC, Aguilar MI. β3-tripeptides act as sticky ends to self-assemble into a bioscaffold. APL Bioeng 2018; 2:026104. [PMID: 31069301 PMCID: PMC6481712 DOI: 10.1063/1.5020105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Peptides comprised entirely of β3-amino acids, commonly referred to as β-foldamers, have been shown to self-assemble into a range of materials. Previously, β-foldamers have been functionalised via various side chain chemistries to introduce function to these materials without perturbation of the self-assembly motif. Here, we show that insertion of both rigid and flexible molecules into the backbone structure of the β-foldamer did not disturb the self-assembly, provided that the molecule is positioned between two β3-tripeptides. These hybrid β3-peptide flanked molecules self-assembled into a range of structures. α-Arginlyglycylaspartic acid (RGD), a commonly used cell attachment motif derived from fibronectin in the extracellular matrix, was incorporated into the peptide sequence in order to form a biomimetic scaffold that would support neuronal cell growth. The RGD-containing sequence formed the desired mesh-like scaffold but did not encourage neuronal growth, possibly due to over-stimulation with RGD. Mixing the RGD peptide with a β-foldamer without the RGD sequence produced a well-defined scaffold that successfully encouraged the growth of neurons and enabled neuronal electrical functionality. These results indicate that β3-tripeptides can form distinct self-assembly units separated by a linker and can form fibrous assemblies. The linkers within the peptide sequence can be composed of a bioactive α-peptide and tuned to provide a biocompatible scaffold.
Collapse
Affiliation(s)
- Mark P. Del Borgo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Mary A. Tonta
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Jessie L. Ratcliffe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Rania Seoudi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Adam I. Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | | | - Helena C. Parkington
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
35
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|
36
|
Cinar G, Ozdemir A, Hamsici S, Gunay G, Dana A, Tekinay AB, Guler MO. Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels. Biomater Sci 2018; 5:67-76. [PMID: 27819087 DOI: 10.1039/c6bm00656f] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications. Doxorubicin (Dox), as a widely used chemotherapeutic drug for breast cancer treatment, was encapsulated within the PA gels prepared at different concentrations. Physical and chemical properties of the gels were characterized, and slow release of the Dox molecules through the supramolecular PA nanofiber gels was studied. In addition, the diffusion constants of the drug molecules within the PA nanofiber gels were estimated using fluorescence recovery after the photobleaching (FRAP) method. The PA nanofiber gels did not show any cytotoxicity and the encapsulation strategy enhanced the activity of drug molecules on cellular viability through prolonged release compared to direct administration under in vitro conditions. Moreover, the local in vivo injection of the Dox encapsulated PA nanofiber gels (Dox/PA) to the tumor site demonstrated the lowest tumor growth rate compared to the direct Dox injection and increased the apoptotic cells within the tumor tissue for local drug release through the PA nanofiber gels under in vivo conditions.
Collapse
Affiliation(s)
- Goksu Cinar
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse Ozdemir
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Gokhan Gunay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Aykutlu Dana
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800, Turkey.
| |
Collapse
|
37
|
Tang JD, Lampe KJ. From de novo peptides to native proteins: advancements in biomaterial scaffolds for acute ischemic stroke repair. Biomed Mater 2018; 13:034103. [DOI: 10.1088/1748-605x/aaa4c3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Betush RJ, Urban JM, Nilsson BL. Balancing hydrophobicity and sequence pattern to influence self-assembly of amphipathic peptides. Biopolymers 2018; 110. [PMID: 29292825 DOI: 10.1002/bip.23099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 01/25/2023]
Abstract
Amphipathic peptides with alternating polar and nonpolar amino acid sequences efficiently self-assemble into functional β-sheet fibrils as long as the nonpolar residues have sufficient hydrophobicity. For example, the Ac-(FKFE)2 -NH2 peptide rapidly self-assembles into β-sheet bilayer nanoribbons, while Ac-(AKAE)2 -NH2 fails to self-assemble under similar conditions due to the significantly reduced hydrophobicity and β-sheet propensity of Ala relative to Phe. Herein, we systematically explore the effect of substituting only two of the four Ala residues at various positions in the Ac-(AKAE)2 -NH2 peptide with amino acids of increasing hydrophobicity, β-sheet potential, and surface area (including Phe, 1-naphthylalanine (1-Nal), 2-naphthylalanine (2-Nal), cyclohexylalanine (Cha), and pentafluorophenylalanine (F5 -Phe)) on the self-assembly propensity of the resulting sequences. It was found that double Phe variants, regardless of the position of substitution, failed to self-assemble under the conditions used in this study. In contrast, all double 1-Nal and 2-Nal variants readily self-assembled, albeit at differing rates depending on the substitution patterns. To determine whether this was due to hydrophobicity or side chain surface area, we also prepared double Cha and F5 -Phe variant peptides (both side chain groups are more hydrophobic than Phe). Each of these variants also underwent effective self-assembly, with the aromatic F5 -Phe peptides doing so with greater efficiency. These findings provide insight into the role of amino acid hydrophobicity and sequence pattern on self-assembly proclivity of amphipathic peptides and on how targeted substitutions of nonpolar residues in these sequences can be exploited to tune the characteristics of the resulting self-assembled materials.
Collapse
Affiliation(s)
- Ria J Betush
- Department of Chemistry, Gannon University, Erie, Pennsylvania
| | - Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, New York
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York
| |
Collapse
|
39
|
Fu M, Zhang C, Dai Y, Li X, Pan M, Huang W, Qian H, Ge L. Injectable self-assembled peptide hydrogels for glucose-mediated insulin delivery. Biomater Sci 2018; 6:1480-1491. [DOI: 10.1039/c8bm00006a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Closed-loop glucose-responsive insulin delivery with excellent biocompatibility has the potential to improve the health and quality of life of diabetic patients.
Collapse
Affiliation(s)
- Mian Fu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Chenyu Zhang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Yuxuan Dai
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Xue Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Miaobo Pan
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Wenlong Huang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease
| | - Hai Qian
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- PR China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease
| | - Liang Ge
- Department of Pharmaceutical
- China Pharmaceutical University
- Nanjing 210009
- PR China
| |
Collapse
|
40
|
Karavasili C, Komnenou A, Katsamenis OL, Charalampidou G, Kofidou E, Andreadis D, Koutsopoulos S, Fatouros DG. Self-Assembling Peptide Nanofiber Hydrogels for Controlled Ocular Delivery of Timolol Maleate. ACS Biomater Sci Eng 2017; 3:3386-3394. [PMID: 33445378 DOI: 10.1021/acsbiomaterials.7b00706] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The self-assembling peptides Ac-(RADA)4-CONH2 and Ac-(IEIK)3I-CONH2, which form hydrogels in physiological conditions, were evaluated as carriers for ocular delivery of the β-blocker timolol maleate. Electron microscopy studies revealed that hydrogels contain nanofibers, whereas rheological studies showed that the Ac-(IEIK)3I-CONH2 self-assembles in a stiffer hydrogel compared with the Ac-(RADA)4-CONH2 peptide. The in vitro release and ex vivo permeation studies demonstrated controlled release and transport of the drug through the cornea, which depended on the self-assembling peptide sequence. In vivo studies in rabbits showed significant increase in the area under the concentration-time curve (AUC) after administration of the drug through the Ac-(RADA)4-CONH2 hydrogel compared to drug solution, whereas a sustained reduction of intraocular pressure for up to 24 h after instillation was achieved for both drug-loaded hydrogels. Histological studies revealed good ocular tolerability upon application of the formulations, suggesting that self-assembling peptide hydrogels are promising systems for sustained ocular drug delivery.
Collapse
Affiliation(s)
| | | | - Orestis L Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | | | | | - Sotirios Koutsopoulos
- Center for Biomedical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | |
Collapse
|
41
|
Abstract
Peptides are ubiquitous in nature and useful in many fields, from agriculture as pesticides, in medicine as antibacterial and antifungal drugs founded in the innate immune systems, to medicinal chemistry as hormones. However, the concept of peptides as materials was not recognized until 1990 when a self-assembling peptide as a repeating segment in a yeast protein was serendipitously discovered. Peptide materials are so called because they have bona fide materials property and are made from simple amino acids with well-ordered nanostructures under physiological conditions. These structures include well-ordered nanofibres, nanotubes and nanovesicles. These peptide materials have been used for: (i) three-dimensional tissue cell cultures of primary cells and stem cells, (ii) three-dimensional tissue printing, (iii) sustained releases of small molecules, growth factors, monoclonal antibody and siRNA, (iv) accelerated wound healing in reparative and regenerative medicine as well as tissue engineering, (v) used to stabilize membrane proteins including difficult G-protein coupled receptors and photosystem I for designing nanobiodevices, (vi) a few self-assembling peptides have been used in human clinical trials for accelerated wound healings in surgical uses and (vii) in human clinical trials for siRNA delivery for treatment of cancers. It is likely that these self-assembling peptides will open doors for more and more diverse uses. The field of self-assembling peptides is growing in a number of directions in areas of materials, synthetic biology, and clinical medicine and beyond.
Collapse
Affiliation(s)
- Shuguang Zhang
- Laboratory of Molecular Architecture, Canter for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
42
|
Su H, Wang Y, Anderson CF, Koo JM, Wang H, Cui H. Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Li M, Li H, Li X, Zhu H, Xu Z, Liu L, Ma J, Zhang M. A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22160-22175. [PMID: 28640580 PMCID: PMC5979260 DOI: 10.1021/acsami.7b04428] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biopolymeric hydrogels have drawn increasing research interest in biomaterials due to their tunable physical and chemical properties for both creating bioactive cellular microenvironment and serving as sustainable therapeutic reagents. Inspired by a naturally occurring hydrogel secreted from the carnivorous Sundew plant for trapping insects, here we have developed a bioinspired hydrogel to deliver mitsugumin 53 (MG53), an important protein in cell membrane repair, for chronic wound healing. Both chemical compositions and micro-/nanomorphological properties inherent from the natural Sundew hydrogel were mimicked using sodium alginate and gum arabic with calcium ion-mediated cross-linking. On the basis of atomic force microscopy (AFM) force measurements, an optimal sticky hydrogel scaffold was obtained through orthogonal experimental design. Imaging and mechanical analysis showed the distinct correlation between structural morphology, adhesion characteristics, and mechanical properties of the Sundew-inspired hydrogel. Combined characterization and biochemistry techniques were utilized to uncover the underlying molecular composition involved in the interactions between hydrogel and protein. In vitro drug release experiments confirmed that the Sundew-inspired hydrogel had a biphasic-kinetics release, which can facilitate both fast delivery of MG53 for improving the reepithelization process of the wounds and sustained release of the protein for treating chronic wounds. In vivo experiments showed that the Sundew-inspired hydrogel encapsulating with rhMG53 could facilitate dermal wound healing in mouse model. Together, these studies confirmed that the Sundew-inspired hydrogel has both tunable micro-/nanostructures and physicochemical properties, which enable it as a delivery vehicle for chronic wounding healing. The research may provide a new way to develop biocompatible and tunable biomaterials for sustainable drug release to meet the needs of biological activities.
Collapse
Affiliation(s)
- Mi Li
- Department of Biomedical Engineering, College of Engineering, Columbus, Ohio 43210, United States
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Haichang Li
- Dorothy M. Davis Heart & Lung Research Institute, Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiangguang Li
- Dorothy M. Davis Heart & Lung Research Institute, Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hua Zhu
- Dorothy M. Davis Heart & Lung Research Institute, Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zihui Xu
- Department of Biomedical Engineering, College of Engineering, Columbus, Ohio 43210, United States
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jianjie Ma
- Dorothy M. Davis Heart & Lung Research Institute, Wexner Medical Center, Columbus, Ohio 43210, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mingjun Zhang
- Department of Biomedical Engineering, College of Engineering, Columbus, Ohio 43210, United States
- Dorothy M. Davis Heart & Lung Research Institute, Wexner Medical Center, Columbus, Ohio 43210, United States
- Interdisciplinary Biophysics Graduate Program, Columbus, Ohio 43210, United States
| |
Collapse
|
44
|
Self-Assembling RADA16-I Peptide Hydrogel Scaffold Loaded with Tamoxifen for Breast Reconstruction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3656193. [PMID: 28691024 PMCID: PMC5485292 DOI: 10.1155/2017/3656193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/11/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
More and more breast cancer patients prefer autologous fat tissue transfer following lumpectomy to maintain perfect female characteristics. However, the outcome was not satisfactory due to the transplanted fat absorption. In this study, we prepared two RADA16-I peptide scaffolds with and without tamoxifen. Both scaffolds were transparent, porous, and hemisphere-shaped. The hADSCs isolated from liposuction were attached to the scaffold. The growth inhibition of the hADSCs induced by TAM in 2-demensional (2D) culture was higher than that in TAM-loaded hydrogel scaffold 3D culture (P < 0.05); however, the same outcomes were not observed in MCF-7 cells. Correspondingly, the apoptosis of the hADSCs induced by TAM was significantly increased in 2D culture compared to that in scaffold 3D culture (P < 0.05). Yet the outcomes of the aoptosis in MCF-7 were contrary. Apoptosis-related protein Bcl-2 was involved in the process. In vivo experiments showed that both scaffolds formed a round mass after subcutaneous implantation and it retained its shape after being pressed slightly. The implantation had no effect on the weight and activity of the animals. The results suggested that TAM-loaded RADA16-I hydrogel scaffolds both provide support for hADSCs cells attachment/proliferation and retain cytotoxic effect on MCF-7 cells, which might be a promising therapeutic breast tissue following lumpectomy.
Collapse
|
45
|
Li X, Fu M, Wu J, Zhang C, Deng X, Dhinakar A, Huang W, Qian H, Ge L. pH-sensitive peptide hydrogel for glucose-responsive insulin delivery. Acta Biomater 2017; 51:294-303. [PMID: 28069504 DOI: 10.1016/j.actbio.2017.01.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/13/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022]
Abstract
Glucose-responsive system is one of important options for self-regulated insulin delivery to treat diabetes, which has become an issue of great public health concern in the world. In this study, we developed a novel and biocompatible glucose-responsive insulin delivery system using a pH-sensitive peptide hydrogel as a carrier loaded with glucose oxidase, catalase and insulin. The peptide could self-assemble into hydrogel under physiological conditions. When hypoglycemia is encountered, neighboring alkaline amino acid side chains are significantly repulsed due to reduced local pH by the enzymatic conversion of glucose into gluconic acid. This is followed by unfolding of individual hairpins, disassembly and release of insulin. The glucose-responsive hydrogel system was characterized on the basis of structure, conformation, rheology, morphology, acid-sensitivity and the amount of consistent release of insulin in vitro and vivo. The results illustrated that our system can not only regulate the blood glucose levels in vitro but also in mice models having STZ-induced diabetes. STATEMENT OF SIGNIFICANCE In this report, we have shown the following significance supported by the experimental results. 1. We successfully developed, characterized and screened a novel pH-responsive peptide. 2. We successfully developed a novel and biocompatible pH-sensitive peptide hydrogel as glucose-responsive insulin delivery system loaded with glucose oxidase, catalase and insulin. 3. We successfully confirmed that the hydrogel platform could regulate the blood glucose level in vitro and in vivo. Overall, we have shown enough significance and novelty with this smart hydrogel platform in terms of biomaterials, peptide chemistry, self-assembly, hydrogel and drug delivery. So we believe this manuscript is suitable for Acta Biomaterialia.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Mian Fu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guang Dong Province, School of Engineering, Sun Yat-sen University, Guangzhou 510006, PR China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Chenyu Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xin Deng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Arvind Dhinakar
- University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Wenlong Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hai Qian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Liang Ge
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
46
|
Leiro V, Moreno P, Sarmento B, Durão J, Gales L, Pêgo A, Barrias C. Design and preparation of biomimetic and bioinspired materials. BIOINSPIRED MATERIALS FOR MEDICAL APPLICATIONS 2017:1-44. [DOI: 10.1016/b978-0-08-100741-9.00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Yan LP, Oliveira JM, Oliveira AL, Reis RL. Core-shell silk hydrogels with spatially tuned conformations as drug-delivery system. J Tissue Eng Regen Med 2016; 11:3168-3177. [DOI: 10.1002/term.2226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/16/2016] [Accepted: 04/19/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Le-Ping Yan
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Ana L. Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
- CBQF - Center for Biotechnology and Fine Chemistry, School of Biotechnology; Portuguese Catholic University; Porto Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics; University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
48
|
Li Y, Wang F, Cui H. Peptide-Based Supramolecular Hydrogels for Delivery of Biologics. Bioeng Transl Med 2016; 1:306-322. [PMID: 28989975 PMCID: PMC5629974 DOI: 10.1002/btm2.10041] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
The demand for therapeutic biologics has rapidly grown over recent decades, creating a dramatic shift in the pharmaceutical industry from small molecule drugs to biological macromolecular therapeutics. As a result of their large size and innate instability, the systemic, topical, and local delivery of biologic drugs remains a highly challenging task. Although there exist many types of delivery vehicles, peptides and peptide conjugates have received continuously increasing interest as molecular blocks to create a great diversity of supramolecular nanostructures and hydrogels for the effective delivery of biologics, due to their inherent biocompatibility, tunable biodegradability, and responsiveness to various biological stimuli. In this context, we discuss the design principles of supramolecular hydrogels using small molecule peptides and peptide conjugates as molecular building units, and review the recent effort in using these materials for protein delivery and gene delivery.
Collapse
Affiliation(s)
- Yi Li
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Feihu Wang
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
| | - Honggang Cui
- Dept. of Chemical and Biomolecular EngineeringThe Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Institute for NanoBioTechnology, The Johns Hopkins University3400 N Charles StreetBaltimoreMD21218
- Dept. of Oncology and Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMD21205
- Center for NanomedicineThe Wilmer Eye Institute, The Johns Hopkins University School of Medicine400 North BroadwayBaltimoreMD21231
| |
Collapse
|
49
|
Liu W, Saunders MJ, Bagia C, Freeman EC, Fan Y, Gawalt ES, Waggoner AS, Meng WS. Local retention of antibodies in vivo with an injectable film embedded with a fluorogen-activating protein. J Control Release 2016; 230:1-12. [PMID: 27038493 DOI: 10.1016/j.jconrel.2016.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/25/2016] [Accepted: 03/22/2016] [Indexed: 11/17/2022]
Abstract
Herein we report an injectable film by which antibodies can be localized in vivo. The system builds upon a bifunctional polypeptide consisting of a fluorogen-activating protein (FAP) and a β-fibrillizing peptide (βFP). The FAP domain generates fluorescence that reflects IgG binding sites conferred by Protein A/G (pAG) conjugated with the fluorogen malachite green (MG). A film is generated by mixing these proteins with molar excess of EAK16-II, a βFP that forms β-sheet fibrils at high salt concentrations. The IgG-binding, fluorogenic film can be injected in vivo through conventional needled syringes. Confocal microscopic images and dose-response titration experiments showed that loading of IgG into the film was mediated by pAG(MG) bound to the FAP. Release of IgG in vitro was significantly delayed by the bioaffinity mechanism; 26% of the IgG were released from films embedded with pAG(MG) after five days, compared to close to 90% in films without pAG(MG). Computational simulations indicated that the release rate of IgG is governed by positive cooperativity due to pAG(MG). When injected into the subcutaneous space of mouse footpads, film-embedded IgG were retained locally, with distribution through the lymphatics impeded. The ability to track IgG binding sites and distribution simultaneously will aid the optimization of local antibody delivery systems.
Collapse
Affiliation(s)
- Wen Liu
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Matthew J Saunders
- Molecular Biosensor and Imaging Center and Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Christina Bagia
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Eric C Freeman
- College of Engineering, University of Georgia, Athens, GA 30602, United States
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA 15212, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States; McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15213, United States
| | - Alan S Waggoner
- Molecular Biosensor and Imaging Center and Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States.
| |
Collapse
|
50
|
Lu L, Unsworth LD. pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds. Biomacromolecules 2016; 17:1425-36. [PMID: 26938197 DOI: 10.1021/acs.biomac.6b00040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Self-assembling peptide based hydrogels have a wide range of applications in the field of tissue repair and tissue regeneration. Because of its physicochemical properties, (RADA)4 has been studied as a potential platform for 3D cell culture, drug delivery, and tissue engineering. Despite some small molecule and protein release studies with this system, there is a lack of work investigating the controlled release of hydrophobic compounds (i.e., anti-inflammatory, anticancer, antibacterial drugs, etc.) that are important for many clinical therapies. Attempts to incorporate hydrophobic compounds into self-assembling matrices usually inhibited nanofiber formation, rather resulting in a peptide-drug complex or microcrystal formation. Herein, a self-assembling chitosan/carboxymethyl-β-cyclodextrin nanoparticle system was used to load dexamethasone, which formed within a self-assembling (RADA)4 nanoscaffold matrix. Nanoparticles dispersed within the matrix were stabilized by the nanofibers within. The in vitro release of dexamethasone from the hybrid system was observed to be pH sensitive. At pH 7, release was observed for more than 8 days, with three distinct kinetic domains in the first 6 days. Data suggest that the deprotonation of chitosan at a solution pH > 6.8 leads to nanoparticle dissociation and ultimately the release of dexamethasone from the hybrid system. This system has the potential to form a multifunctional scaffold that can self-assemble with the ability to control the release of hydrophobic drugs for a wide variety of applications.
Collapse
Affiliation(s)
- Lei Lu
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada.,National Institute for Nanotechnology, National Research Council (Canada) , Edmonton, Alberta T6G 2M9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta , Edmonton, Alberta T6G 2V4, Canada.,National Institute for Nanotechnology, National Research Council (Canada) , Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|