1
|
Zong Y, Cui J, Han Y. Composition Conversion-Induced Disassembly of Amphiphilic ABA Triblock Copolymer Vesicles: A Monte Carlo Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3434-3443. [PMID: 39883422 DOI: 10.1021/acs.langmuir.4c04472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The composition conversion in block copolymer induced by external stimuli such as light and pH is an effective strategy to trigger the disassembly of vesicles experimentally. Based on this strategy, the disassembly behavior of the A2B12A2 triblock copolymer vesicle induced by the composition conversion from B block to C block was studied using Monte Carlo simulation. In this study, a part of the B block in the A2B12A2 triblock copolymer was converted to the new block C with weaker hydrophobicity, forming the A2B12-nCnA2 tetrablock copolymer. The composition conversion makes the originally stable vesicle unstable, and after sufficiently long simulation time, the system reached a new equilibrium state. The aggregate morphology of the new equilibrium state was highly dependent on the converted chain length (n). A variety of micelles with novel Janus-type phase-separated microstructures in their hydrophobic parts have been observed in the systems with different n. It should be noticed that those Janus-type micelles cannot be obtained via traditional self-assembly processes from homogeneous states of A2B12-nCnA2 tetrablock copolymers under the same conditions. The simulation results further indicated that the morphological transformation from ABA vesicle to ABCA micelles induced by the composition conversion is reversible.
Collapse
Affiliation(s)
- Yanqi Zong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Jie Cui
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Yuanyuan Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
2
|
Dong E, Huo Q, Zhang J, Han H, Cai T, Liu D. Advancements in nanoscale delivery systems: optimizing intermolecular interactions for superior drug encapsulation and precision release. Drug Deliv Transl Res 2025; 15:7-25. [PMID: 38573495 DOI: 10.1007/s13346-024-01579-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Nanoscale preparations, such as nanoparticles, micelles, and liposomes, are increasingly recognized in pharmaceutical technology for their high capability in tailoring the pharmacokinetics of the encapsulated drug within the body. These preparations have great potential in extending drug half-life, reducing dosing frequency, mitigating drug side effects, and enhancing drug efficacy. Consequently, nanoscale preparations offer promising prospects for the treatment of metabolic disorders, malignant tumors, and various chronic diseases. Nevertheless, the complete clinical potential of nanoscale preparations remains untapped due to the challenges associated with low drug loading degrees and insufficient control over drug release. In this review, we comprehensively summarize the vital role of intermolecular interactions in enhancing encapsulation and controlling drug release within nanoscale delivery systems. Our analysis critically evaluates the characteristics of common intermolecular interactions and elucidates the techniques employed to assess them. Moreover, we highlight the significant potential of intermolecular interactions in clinical translation, particularly in the screening and optimization of preparation prescriptions. By attaining a deeper understanding of intermolecular interaction properties and mechanisms, we can adopt a more rational approach to designing drug carriers, leading to substantial advancements in the application and clinical transformation of nanoscale preparations. Moving forward, continued research in this field offers exciting prospects for unlocking the full clinical potential of nanoscale preparations and revolutionizing the field of drug delivery.
Collapse
Affiliation(s)
- Enpeng Dong
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hanghang Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Cai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Li Y, Gao Q, Ruan Z. Effects of side-chain lengths on the structure and properties of anhydrides modified starch micelles: Experimental and DPD simulation studies. Carbohydr Polym 2024; 343:122451. [PMID: 39174130 DOI: 10.1016/j.carbpol.2024.122451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 08/24/2024]
Abstract
Anhydride-modified starch micelles have great potential in the delivery of hydrophobic guest molecules. This study aimed to experimentally explore the effects of side-chain lengths on the structure and properties of anhydride-modified starch micelles, and to visualize the self-assembly and loading process of these micelles through Dissipative particle dynamics (DPD) simulations. Starch micelles could only form when the carbon chain length exceeded four. The highly hydrophobic C18 starch micelle exhibited the minimum particle size (65 nm) and maximum loading capability (59.10 μg/mg). For each addition carbon atom in the anhydride side chains, the critical micelle concentration (CMC) of starch micelles decreased average of 1.79 %. Thermodynamic results showed that the micellization was an entropy-dominated driven process, and longer carbon chains enhanced the stability of starch micelles. DPD results showed that the starch chains formed the small clusters then spherical aggregates and finally core-shell structure spherical micelle. Curcumin was loaded into micelles by adjoint aggregation-micellization-adsorption mechanism. Overall, this study provides microscopic insight into the micellization and drug-loading mechanisms for anhydrides modified starch micelles.
Collapse
Affiliation(s)
- Yang Li
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China; Collaborative Innovation Center of Functional Food by Green Manufacturing, Xuchang, Henan Province 461000, PR China.
| | - Zheng Ruan
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, PR China
| |
Collapse
|
4
|
Li C, Guo L, Zheng W. Dissipative Particle Dynamics of Nano-Alumina Agglomeration in UV-Curable Inks. Polymers (Basel) 2024; 16:2609. [PMID: 39339073 PMCID: PMC11435484 DOI: 10.3390/polym16182609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Ultraviolet (UV) ink is a primary type of ink used in additive manufacturing with 3D inkjet printing. However, ink aggregation presents a challenge in nano-inkjet printing, affecting the stability and quality of the printing fluid and potentially leading to the clogging of nanometer-sized nozzles. This paper utilizes a Dissipative Particle Dynamics (DPD) simulation to investigate the aggregation behavior of alumina in a blend of 1,6-Hexanediol diacrylate (HDDA) and Trimethylolpropane triacrylate (TMPTA). By analyzing the effects of solid content, polymer component ratios, and dispersant concentration on alumina aggregation, the optimal ink formulation was identified. Compared to traditional experimental methods, DPD simulations not only reduce experimental costs and time but also reveal particle aggregation mechanisms that are difficult to explore through experimental methods, providing a crucial theoretical basis for optimizing ink formulations. This study demonstrates that alumina ceramic ink achieves optimal performance with a solid content of 20%, an HDDA-to-TMPTA ratio of 4:1, and 9% oleic acid as a dispersant.
Collapse
Affiliation(s)
- Chunlai Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Guo
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Weihan Zheng
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Xu Q, Wang Y, Zheng Y, Zhu Y, Li Z, Liu Y, Ding M. Polymersomes in Drug Delivery─From Experiment to Computational Modeling. Biomacromolecules 2024; 25:2114-2135. [PMID: 38011222 DOI: 10.1021/acs.biomac.3c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Polymersomes, composed of amphiphilic block copolymers, are self-assembled vesicles that have gained attention as potential drug delivery systems due to their good biocompatibility, stability, and versatility. Various experimental techniques have been employed to characterize the self-assembly behaviors and properties of polymersomes. However, they have limitations in revealing molecular details and underlying mechanisms. Computational modeling techniques have emerged as powerful tools to complement experimental studies and enabled researchers to examine drug delivery mechanisms at molecular resolution. This review aims to provide a comprehensive overview of the state of the art in the field of polymersome-based drug delivery systems, with an emphasis on insights gained from both experimental and computational studies. Specifically, we focus on polymersome morphologies, self-assembly kinetics, fusion and fission, behaviors in flow, as well as drug encapsulation and release mechanisms. Furthermore, we also identify existing challenges and limitations in this rapidly evolving field and suggest possible directions for future research.
Collapse
Affiliation(s)
- Qianru Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yiwei Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuling Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
6
|
Zhou J, Tang H, Wang R. Co-assembly of Amphiphilic Triblock Copolymers with Nanodrugs and Drug Release Kinetics in Solution. J Phys Chem B 2024; 128:2841-2852. [PMID: 38452254 DOI: 10.1021/acs.jpcb.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Polymeric vesicles present great potential in disease treatment as they can be featured as a structurally stable and easily functionalized drug carrier that can simultaneously encapsulate multiple drugs and release them on-demand. Based on the dissipative particle dynamics (DPD) simulation, the drug-loaded vesicles were designed by the co-assembly process of linear amphiphilic triblock copolymers and hydrophobic nanodrugs in solvents, and most importantly, the drug release behavior of drug-loaded vesicles were intensively investigated. The drug-loaded aggregates, such as vesicles, spherical micelles, and disk-like micelles, were observed by varying the size and concentration of nanodrugs and the length of the hydrophobic block. The distribution of nanodrugs in the vesicles was intensively analyzed. As the size of the nanodrugs increases, the localization of nanodrugs change from being unable to fully wrap in the vesicle wall to the uniform distribution and finally to the aggregation in the vesicles at the fixed concentration of nanodrugs. The membrane thickness of the drug-loaded polymeric vesicle can be increased, and the nanodrugs localized closer to the center of the vesicle by increasing the length of the hydrophobic block. The nanodrugs will be released from vesicles by varying the interactions between the nanodrug and the solvent or the hydrophobic block and the solvent, respectively. We found that the release kinetics conforms to the first-order kinetic model, which can be used to fit the cumulative release rate of nanodrugs over time. The results showed that increasing the size of nanodrugs, the length of hydrophobic block, and the interaction parameters between the hydrophobic block and the solvent will slow down the release rate of the nanodrug and change the drug release process from monophasic to biphasic release model.
Collapse
Affiliation(s)
- Junwei Zhou
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Tang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rong Wang
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Wang Z, Li F, Wang L, Liu Y, Li M, Cui N, Li C, Sun S, Hu S. A dissipative particle dynamics simulation of controlled loading and responsive release of theranostic agents from reversible crosslinked triblock copolymer vesicles. Phys Chem Chem Phys 2023; 26:304-313. [PMID: 38062783 DOI: 10.1039/d3cp04190e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
To control the transport stability and release efficiency of loaded theranostic drugs in triblock copolymer carriers, the reversible crosslinking ability is of great significance. A molecular level exploration of such a function is needed to extend existing stabilizing and responsive dissociation mechanisms of carriers. Here, dissipative particle dynamics simulations were used to first demonstrate the formation of triblock copolymer vesicular carriers. Chemical crosslinking was used to strengthen the structural stability of the vesicle shell to avoid drug leakage. Reversible decrosslinking along with dissociation of the vesicle and release of loaded drugs were then explored. The structural, energetic and dynamical properties of the system were discussed at the molecular level. The regulation mechanism of drug release patterns was revealed by systematically exploring the effect of intra and intermolecular repulsive interactions. The results indicate that the chemical crosslinking of copolymers enhanced the compactness of the vesicle shell with a strengthened microstructure, increased binding energy, and limited chain migration, thus achieving more stable delivery of drugs. In terms of drug release, we clarified how the pairwise interactions of beads in the solution system affect the responsive dissociation of the vesicle and associated release patterns (speed and amount) of drugs. More efficient delivery and smart release of theranostic drugs are achieved using such reversible crosslinked triblock copolymer vesicles.
Collapse
Affiliation(s)
- Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Fengting Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Li Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Yueqi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Miantuo Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Nannan Cui
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunling Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.
- Institute of Advanced Materials, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
8
|
Kehrein J, Gürsöz E, Davies M, Luxenhofer R, Bunker A. Unravel the Tangle: Atomistic Insight into Ultrahigh Curcumin-Loaded Polymer Micelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303066. [PMID: 37403298 DOI: 10.1002/smll.202303066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Amphiphilic ABA-triblock copolymers, comprised of poly(2-oxazoline) and poly(2-oxazine), can solubilize poorly water-soluble molecules in a structure-dependent manner forming micelles with exceptionally high drug loading. All-atom molecular dynamics simulations are conducted on previously experimentally characterized, curcumin-loaded micelles to dissect the structure-property relationships. Polymer-drug interactions for different levels of drug loading and variation in polymer structures of both the inner hydrophobic core and outer hydrophilic shell are investigated. In silico, the system with the highest experimental loading capacity shows the highest number of drug molecules encapsulated by the core. Furthermore, in systems with lower loading capacity outer A blocks show a greater extent of entanglement with the inner B blocks. Hydrogen bond analyses corroborate previous hypotheses: poly(2-butyl-2-oxazoline) B blocks, found experimentally to have reduced loading capacity for curcumin compared to poly(2-propyl-2-oxazine), establish fewer but longer-lasting hydrogen bonds. This possibly results from different sidechain conformations around the hydrophobic cargo, which is investigated by unsupervised machine learning to cluster monomers in smaller model systems mimicking different micelle compartments. Exchanging poly(2-methyl-2-oxazoline) with poly(2-ethyl-2-oxazoline) leads to increased drug interactions and reduced corona hydration; this suggests an impairment of micelle solubility or colloidal stability. These observations can help driving forward a more rational a priori nanoformulation design.
Collapse
Affiliation(s)
- Josef Kehrein
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Ekinsu Gürsöz
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Matthew Davies
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Robert Luxenhofer
- Soft Matter Chemistry, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, 00014, Finland
| | - Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
9
|
Rajput A, Sevalkar G, Pardeshi K, Pingale P. COMPUTATIONAL NANOSCIENCE AND TECHNOLOGY. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
11
|
Foo W, Cseresnyés Z, Rössel C, Teng Y, Ramoji A, Chi M, Hauswald W, Huschke S, Hoeppener S, Popp J, Schacher FH, Sierka M, Figge MT, Press AT, Bauer M. Tuning the corona-core ratio of polyplex micelles for selective oligonucleotide delivery to hepatocytes or hepatic immune cells. Biomaterials 2023; 294:122016. [PMID: 36702000 DOI: 10.1016/j.biomaterials.2023.122016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.
Collapse
Affiliation(s)
- WanLing Foo
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany
| | - Carsten Rössel
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Yingfeng Teng
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Mingzhe Chi
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Sophie Huschke
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Marek Sierka
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07743, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Faculty of Medicine, Kastanienstraße. 1, 07747, Jena, Germany.
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
12
|
Confinement-Induced Fractionation and Liquid-Liquid Phase Separation of Polymer Mixtures. Polymers (Basel) 2023; 15:polym15030511. [PMID: 36771812 PMCID: PMC9921168 DOI: 10.3390/polym15030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The formation of (bio)molecular condensates via liquid-liquid phase separation in cells has received increasing attention, as these aggregates play important functional and regulatory roles within biological systems. However, the majority of studies focused on the behavior of pure systems in bulk solutions, thus neglecting confinement effects and the interplay between the numerous molecules present in cells. To better understand the physical mechanisms driving condensation in cellular environments, we perform molecular simulations of binary polymer mixtures in spherical droplets, considering both monodisperse and polydisperse molecular weight distributions for the longer polymer species. We find that confinement induces a spatial separation of the polymers by length, with the longer ones moving to the droplet center. This partitioning causes a distinct increase in the local polymer concentration near the droplet center, which is more pronounced in polydisperse systems. Consequently, the confined systems exhibit liquid-liquid phase separation at average polymer concentrations where bulk systems are still in the one-phase regime.
Collapse
|
13
|
T A, Narayan R, Shenoy PA, Nayak UY. Computational modeling for the design and development of nano based drug delivery systems. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Improved anti-hepatocellular carcinoma effect by enhanced Co-delivery of Tim-3 siRNA and sorafenib via multiple pH triggered drug-eluting nanoparticles. Mater Today Bio 2022; 16:100350. [PMID: 35856043 PMCID: PMC9287642 DOI: 10.1016/j.mtbio.2022.100350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Effective systemic treatment for hepatocellular carcinoma (HCC) remains urgently needed. Sorafenib is the first FDA-approved systemic treatment for HCC. However, individual HCC patents’ response to sorafenib varies greatly. How to enhance the anti-HCC effect of sorafenib is still a significant challenge. T cell immunoglobulin mucin-3 (Tim-3) is a newly identified immune checkpoint molecule and a promising target for HCC treatment. Herein, we developed a novel pH-triggered drug-eluting nanoparticle (CC@SR&SF@PP) for simultaneously delivery of Tim-3 siRNA and sorafenib to HCC in situ. By a single emulsification method, a representative HCC targeted-therapeutic drug sorafenib (SF) was encapsulated into the pH-triggered positive-charged mPEG5K-PAE10K (PP) nanoparticles, followed by condensing of negative-charged Tim-3 siRNA. Then, carboxymethyl chitosan (CMCS), an amphoteric polysaccharide with negative charge in the physiological pH and positive charge in the acidic environment of the tumor, was eventually adsorbed onto the surface of nanoparticles. This co-delivery nanoparticle rapidly and specifically accumulated in the tumor site of the liver and enhanced the targeted, specific and multiple release of siRNA and sorafenib. Enhanced Tim-3 siRNA transfected into tumor cells can not only directly inhibit the growth of tumor cells by knock down the expression Tim-3, but also induce the immune response and enhance the recruitment of cytotoxic T cells to kill tumor cells. The following pH-triggered sorafenib release from SF@PP NPs greatly inhibited the tumor proliferation and angiogenesis, resulting in remarkable tumor growth inhibition in a mouse hepatoma 22 (H22) orthotopic tumor model. Thus, co-delivery of Tim-3 siRNA and sorafenib via this novel pH triggered drug-eluting nanoparticle enhances their anti-tumor efficacy. We expect that such combination treatment strategy will have great potential in future clinical applications.
Collapse
|
15
|
Wang X, Zhang Z, Hadjichristidis N. Poly(amino ester)s as an emerging synthetic biodegradable polymer platform: Recent developments and future trends. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Study on a novel enzymatic colon-targeted particle of total saponins of Pulsatilla by mechanical grinding technology in a solvent free system. Biomed Pharmacother 2022; 155:113645. [PMID: 36115109 DOI: 10.1016/j.biopha.2022.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Oral colon-targeting preparation can achieve targeted drug release in the lesion site and have a great application prospect. In this study, we presented the principle of particle design in the field of materials science into the preparation of colon-targeting preparation. Enzymatic Pulsatilla saponins Colon-targeting composite Microparticles (EPCM) were prepared by mechanical grinding without any organic solvent. Firstly, Response Surface Methodology (RSM) designed by Box-Behnken was used to optimize the preparation process of EPCM, and the structure of EPCM was characterized. All-Atomic and Molecular Dynamics (AAMD) was used to calculate the compatibility between drugs and coating materials before and after release, so as to explain the principle of colon- targeted drug release in this method. Then, colon-targeting characteristics of EPCM in vitro and in vivo were investigated by experiments. Finally, the pharmacodynamics effects of this composite microparticles on Ulcerative Colitis (UC) induced by DSS in C57BL/6 mice were evaluated. The results demonstrated that the colon-targeting composite microparticles could be prepared by mechanical grinding based on particle design principle. The composite microparticles have appropriate colon-targeting drug release performance in vitro and in vivo, and have good anti-ulcerative colitis effect. This study provides a new idea for the preparation of oral colon-targeting preparation of Traditional Chinese medicine, and has evident reference value for the study of coating isolation and powder modification of traditional Chinese medicine for other purposes.
Collapse
|
17
|
pH-activated nanoplatform for visualized photodynamic and ferroptosis synergistic therapy of tumors. J Control Release 2022; 350:525-537. [PMID: 36055597 DOI: 10.1016/j.jconrel.2022.08.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
To overcome drug resistance and improve precision theranostics for hepatocellular carcinoma (HCC), a nanoplatform with an "off/on" function for multimodality imaging (near-infrared-II (NIR-II) fluorescence imaging, magnetic resonance imaging (MRI), and photoacoustic imaging) and synergistic therapy (photodynamic therapy and ferroptosis) activated by an acidic pH in the tumor microenvironment is proposed. Although many photosensitizers with photodynamic effects have been reported, very few of them have outstanding photodynamic effect and high stability with response to endogenous stimuli capable of NIR-II imaging. Herein, a new amphiphilic photosensitizer SR780 derived from croconaine dye, was developed with satisfactory photodynamic effects and pH-responsive NIR-II imaging. Interestingly, it was deactivated by coordination with Fe3+ (SR780@Fe) and activated during their release under mild acidic condition. Ferroptosis can generate hydroxyl free radical and lipid peroxide, which aggravate the oxidative stress of tumor cells and mediate their death while depleting glutathione (GSH) to enhance photodynamic effect. In situ pH-activatable theranostic nanoplatform, SR780@Fe-PAE-GP, was thus developed by loading SR780@Fe with pH-responsive polymers, modified by a glypican-3 (GPC-3) receptor-targeting peptide. The synergistic antitumor effects were confirmed both in vitro and in vivo, and the tumor inhibition rate of the SR780@Fe-PAE-GP + L treatment group reached 98%.
Collapse
|
18
|
Le AV, Xu M, Yang T, Barrows L, Fontaine DF, Huo S, Jakobsche CE. Contrasting solution-state properties within a family of amyloid-binding molecular tools. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Guo H. Dissipative particle dynamics simulation on phase behaviour of reduction-responsive polyprodrug amphiphile. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2037586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hongyu Guo
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, People’s Republic of China
| |
Collapse
|
20
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
21
|
Hao J, Wang J, Pan H, Sang Y, Wang D, Wang Z, Ai J, Lin B, Chen L. pH-redox responsive polymer-doxorubicin prodrug micelles studied by molecular dynamics, dissipative particle dynamics simulations and experiments. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Boodaghi M, Libring S, Solorio L, Ardekani AM. A Bayesian approach to estimate the diffusion coefficient of Rhodamine 6G in breast cancer spheroids. J Control Release 2021; 340:60-71. [PMID: 34634388 PMCID: PMC8671317 DOI: 10.1016/j.jconrel.2021.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/10/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Multicellular spheroids have emerged as a robust platform to model tumor growth and are widely used for studying drug sensitivity. Diffusion is the main mechanism for transporting nutrients and chemotherapeutic drugs into spheroids, since they are typically avascular. In this study, the Bayesian inference was used to solve the inverse problem of determining the light attenuation coefficient and diffusion coefficient of Rhodamine 6G (R6G) in breast cancer spheroids, as a mock drug for the tyrosine kinase inhibitor, Neratinib. Four types of breast cancer spheroids were formed and the diffusion coefficient was estimated assuming a linear relationship between the intensity and concentration. The mathematical model used for prediction is the solution to the diffusion problem in spherical coordinates, accounting for the light attenuation. The Gaussian likelihood was used to account for the error between the measurements and model predictions. The Markov Chain Monte Carlo algorithm (MCMC) was used to sample from the posterior. The posterior predictions for the diffusion and light attenuation coefficients were provided. The results indicate that the diffusion coefficient values do not significantly vary across a HER2+ breast cancer cell line as a function of transglutaminase 2 levels, even in the presence of fibroblast cells. However, we demonstrate that different diffusion coefficient values can be ascertained from tumorigenic compared to nontumorigenic spheroids and from nonmetastatic compared to post-metastatic breast cancer cells using this approach. We also report agreement between spheroid radius, attenuation coefficient, and subsequent diffusion coefficient to give evidence of cell packing in self-assembled spheroids. The methodology presented here will allow researchers to determine diffusion in spheroids to decouple transport and drug penetration changes from biological resistivity.
Collapse
Affiliation(s)
- Miad Boodaghi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Sarah Libring
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Abd-Algaleel SA, Metwally AA, Abdel-Bar HM, Kassem DH, Hathout RM. Synchronizing In Silico, In Vitro, and In Vivo Studies for the Successful Nose to Brain Delivery of an Anticancer Molecule. Mol Pharm 2021; 18:3763-3776. [PMID: 34460250 DOI: 10.1021/acs.molpharmaceut.1c00276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sesamol is a sesame seed constituent with reported activity against many types of cancer. In this work, two types of nanocarriers, solid lipid nanoparticles (SLNs) and polymeric nanoparticles (PNs), were exploited to improve sesamol efficiency against the glioma cancer cell line. The ability of the proposed systems for efficient brain targeting intranasally was also inspected. By the aid of two docking programs, the virtual loading pattern inside these nanocarriers was matched to the real experimental results. Interactions involved in sesamol-carrier binding were also assessed, followed by a discussion of how different scoring functions account for these interactions. The study is an extension of the computer-assisted drug formulation design series, which represents a promising initiative for an upcoming industrial innovation. The results proved the power of combined in silico tools in predicting members with the highest sesamol payload suitable for delivering a sufficient dose to the brain. Among nine carriers, glyceryl monostearate (GMS) and polycaprolactone (PCL) scored the highest sesamol payload practically and computationally. The EE % was 66.09 ± 0.92 and 61.73 ± 0.47 corresponding to a ΔG (binding energy) of -8.85 ± 0.16 and -5.04 ± 0.11, respectively. Dynamic light scattering evidenced the formation of 215.1 ± 7.2 nm and 414.25 ± 1.6 nm nanoparticles, respectively. Both formulations demonstrated an efficient cytotoxic effect and brain-targeting ability compared to the sesamol solution. This was evidenced by low IC50 (38.50 ± 10.37 μM and 27.81 ± 2.76 μM) and high drug targeting efficiency (7.64 ± 1.89-fold and 13.72 ± 4.1-fold) and direct transport percentages (86.12 ± 3.89 and 92.198 ± 2.09) for GMS-SLNs and PCL-PNs, respectively. The results also showed how different formulations, having different compositions and characteristics, could affect the cytotoxic and targeting ability.
Collapse
Affiliation(s)
| | - Abdelkader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy, Health Sciences Center, Kuwait University, Safat, 13110 Kuwait, Kuwait
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menofia 32897, Egypt
| | - Dina H Kassem
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
24
|
Interplay of distributions of multiple guest molecules in block copolymer micelles: A dissipative particle dynamics study. J Colloid Interface Sci 2021; 607:1142-1152. [PMID: 34571301 DOI: 10.1016/j.jcis.2021.09.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 01/09/2023]
Abstract
HYPOTHESIS Delivery of multiple payloads using the same micelle is of significance to achieve multifunctional or synergistic effects. The interacting distribution of different payloads in micelles is expected to influence the loading stability and capacity. It is highly desirable to explore how intermolecular interactions affect the joint distribution of multi-payloads. EXPERIMENTS Dissipative Particle Dynamics simulations were performed to probe the loading of three payloads: decane with a linear carbon chain, butylbenzene with an aromatic ring connected to carbon chain, and naphthalene with double aromatic rings, within poly(β-amino ester)-b-poly(ethylene glycol) micelles. Properties of core-shell micelles, e.g., morphological evolution, radial density distribution, mean square displacement, and contact statistics, were analyzed to reveal payloads loading stability and capacity. Explorations were extended to vesicular, multi-compartment, double helix, and layer-by-layer micelles with more complex inner structures. FINDINGS Different payloads have their own preferred locations. Decane locates at the hydrophilic/hydrophobic interface, butylbenzene occupies both the hydrophilic/hydrophobic interface and the hydrophobic core, while naphthalene enters the hydrophobic core. More efficient delivery of multi-payloads is achieved since the competition of payloads occupying preferred locations is minimized. The fusion of micelles encapsulating different payloads suggests that specific payloads will move to their preferred positions without interfering other payloads.
Collapse
|
25
|
Yang Z, Zhao H, Wang D, Yin L, Cai K, Lin Z, Chen T, Yang C. DPD simulations on mixed polymeric DOX-loaded micelles assembled from PCL-SS-PPEGMA/PDEA-PPEGMA and their dual pH/reduction-responsive release. Phys Chem Chem Phys 2021; 23:19011-19021. [PMID: 34612439 DOI: 10.1039/d1cp02750f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The design of mixed polymeric micelles by a combination of two or more dissimilar polymers is a potential strategy to achieve multiple stimuli-response for anti-cancer drug delivery. However, their drug loading co-micellization behavior and multiple stimuli-responsive drug release mechanism have been poorly understood at the mesoscopic level, especially in the system that involves reduction-response due to the difficulty of simulation on the cleavage of chemical bonds. In this work, the co-micellization behavior, drug distribution regularities and dual pH/reduction-responsive drug release process of mixed micelles formed by disulfide-linked polycaprolactone-b-polyethylene glycol methyl ether methacrylate (PCL-SS-PPEGMA) and poly(ethylene glycol) methyl ether-b-poly(N,N-diethylamino ethyl methacrylate) (PDEA-PPEGMA) were studied by dissipative particle dynamics (DPD) mesoscopic simulations. A dedicated bond-breaking script was employed to accomplish the disulfide bond-breaking simulations. The results showed that PCL55-SS-PPEGMA10 and PDEA34-PPEGMA11 could be well mixed to form superior DOX-loaded micelles with good drug-loading capacity and drug-controlled release performance. To prepare the DOX-loaded micelles with optimized properties, the simulation results suggested the feed ratio of DOX:PCL55-SS-PPEGMA10:PDEA34-PPEGMA11 set to 3:4:4. Compared with the two single stimuli-response, the dual pH/reduction-response process perfectly combined both pH-response and reduction-response together, providing a higher release rate of DOX. Therefore, this study provides theoretical guidance aimed at the property optimization and micellar structure design of the dual pH/reduction-responsive mixed micelles.
Collapse
Affiliation(s)
- Zexiong Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shah N, Hussain M, Rehan T, Khan A, Khan ZU. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr Pharm Des 2021; 28:352-367. [PMID: 34514984 DOI: 10.2174/1381612827666210910104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Polyethylene glycols (PEG) are water-soluble nonionic polymeric molecules. PEG and PEG-based materials are used for various important applications such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications specifically their use in drug delivery.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Manzoor Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, KP 45000. Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Zubair Ullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| |
Collapse
|
27
|
Li M, Yu X, Zhu L, Jin Y, Wu Z. Ocular lamellar crystalline gels for sustained release and enhanced permeation of resveratrol against corneal neovascularization. Drug Deliv 2021; 28:206-217. [PMID: 33472443 PMCID: PMC7832990 DOI: 10.1080/10717544.2021.1872739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Corneal neovascularization (CNV) is the major cause of blindness after eye injury; however, only several drugs can be applied and the invasive administration ways (i.e., intravitreal injection and subconjunctival injection) are used. Resveratrol is a highly effective anti-VEGF agent against CNV. However, its applications are limited due to its strong hydrophobicity and instability. Here, we developed a resveratrol-loaded ocular lamellar crystalline gel (ROLG) for high inhibition of CNV. ROLGs were composed of resveratrol, glyceryl monooleate (GMO), ethanol, and water, and their lamellar crystalline structures were identified by polarizing light microscopy and small-angle X-ray scattering. High drug loading (4.4 mg/g) of ROLGs was achieved due to the hydrogen bonding between GMO and resveratrol. Resveratrol showed sustained release with 67% accumulative release in 7 h, which was attributed to the slow erosion of gels. Resveratrol in ROLGs had a high corneal permeation 3 times higher than resveratrol in hyaluronic acid suspensions (RHSs). ROLGs were administered to rats only once a day because of their strong retention on the cornea surface. ROLGs were safe due to the very little contact of ethanol in ROLGs to the cornea. CNV post-rat corneal alkaline injury was highly inhibited by ROLGs, resulting from the attenuation of corneal VEGF expression and then corneal healing was improved. The ROLG was a promising ocular medicine for the prevention of CNV.
Collapse
Affiliation(s)
- Minshu Li
- Jinzhou Medical University, Jinzhou, China.,Department of Ophtalmology, the Third Medical Centre, Chinese PLA General Hospital, Beijing, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Huzhou Central Hospital, Huzhou, China
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhihong Wu
- Jinzhou Medical University, Jinzhou, China.,Department of Ophtalmology, the Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
29
|
Šindelka K, Limpouchová Z, Procházka K. Solubilization of Charged Porphyrins in Interpolyelectrolyte Complexes: A Computer Study. Polymers (Basel) 2021; 13:502. [PMID: 33562022 PMCID: PMC7915837 DOI: 10.3390/polym13040502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 11/21/2022] Open
Abstract
Using coarse-grained dissipative particle dynamics (DPD) with explicit electrostatics, we performed (i) an extensive series of simulations of the electrostatic co-assembly of asymmetric oppositely charged copolymers composed of one (either positively or negatively charged) polyelectrolyte (PE) block A and one water-soluble block B and (ii) studied the solubilization of positively charged porphyrin derivatives (P+) in the interpolyelectrolyte complex (IPEC) cores of co-assembled nanoparticles. We studied the stoichiometric mixtures of 137 A10+B25 and 137 A10-B25 chains with moderately hydrophobic A blocks (DPD interaction parameter aAS=35) and hydrophilic B blocks (aBS=25) with 10 to 120 P+ added (aPS=39). The P+ interactions with other components were set to match literature information on their limited solubility and aggregation behavior. The study shows that the moderately soluble P+ molecules easily solubilize in IPEC cores, where they partly replace PE+ and electrostatically crosslink PE- blocks. As the large P+ rings are apt to aggregate, P+ molecules aggregate in IPEC cores. The aggregation, which starts at very low loadings, is promoted by increasing the number of P+ in the mixture. The positively charged copolymers repelled from the central part of IPEC core partially concentrate at the core-shell interface and partially escape into bulk solvent depending on the amount of P+ in the mixture and on their association number, AS. If AS is lower than the ensemble average ⟨AS⟩n, the copolymer chains released from IPEC preferentially concentrate at the core-shell interface, thus increasing AS, which approaches ⟨AS⟩n. If AS>⟨AS⟩n, they escape into the bulk solvent.
Collapse
Affiliation(s)
- Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Czech Academy of Sciences, Institute of Chemical Process Fundamentals, Rozvojová 1, 165 02 Prague, Czech Republic;
| | - Zuzana Limpouchová
- Department of Physical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic;
| | - Karel Procházka
- Department of Physical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic;
| |
Collapse
|
30
|
Zeng S, Quan X, Zhu H, Sun D, Miao Z, Zhang L, Zhou J. Computer Simulations on a pH-Responsive Anticancer Drug Delivery System Using Zwitterion-Grafted Polyamidoamine Dendrimer Unimolecular Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1225-1234. [PMID: 33417464 DOI: 10.1021/acs.langmuir.0c03217] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unimolecular micelles have attracted wide attention in the field of drug delivery because of their thermodynamic stability and uniform size distribution. However, their drug loading/release mechanisms at the molecular level have been poorly understood. In this work, the stability and drug loading/release behaviors of unimolecular micelles formed using generation-5 polyamidoamine-graft-poly(carboxybetaine methacrylate) (PAMAM(G5)-PCBMA) were studied by dissipative particle dynamics simulations. In addition, the unimolecular micelles formed using generation-5 polyamidoamine-graft-poly(ethyleneglycol methacrylate) (PAMAM(G5)-PEGMA) were used as a comparison. The simulation results showed that PAMAM(G5)-PCBMA can spontaneously form core-shell unimolecular micelles. The PAMAM(G5) dendrimer constitutes a hydrophobic core to load the doxorubicin (DOX), while the zwitterionic PCBMA serves as a protective shell to improve the stability of the unimolecular micelle. The DOX can be encapsulated into the cavity of PAMAM(G5) at the physiological pH 7.4. The drug loading efficiency and drug loading content showed some regularities with the increase in the drug concentration. At the acidic pH 5.0, the loaded DOX can be released gradually from the hydrophobic core. The comparison of DOX-loaded morphologies between the PAMAM(G5)-PCBMA system and PAMAM(G5)-PEGMA system showed that the former has better monodisperse stability. This work could offer theoretical guidance for the design and development of promising unimolecular micelles for drug delivery.
Collapse
Affiliation(s)
- Sijun Zeng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huilin Zhu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Delin Sun
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
31
|
Wu J, Wang H, Li B. Structure-aided ACEI-capped remdesivir-loaded novel PLGA nanoparticles: toward a computational simulation design for anti-SARS-CoV-2 therapy. Phys Chem Chem Phys 2021; 22:28434-28439. [PMID: 33305304 DOI: 10.1039/d0cp04389c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The sudden arrival of novel coronavirus disease 2019 (COVID-19) has stunned the world with its rapidly spreading virus. Remdesivir, a broad spectrum anti-viral drug, is now under in vitro and in vivo investigation as a potential agent against SARS-CoV-2. However, the results of this therapy were recently equivocal due to no significant benefit in the clinical trial. Herein, combination molecular docking with dissipative particle dynamics (DPD) simulations is used to theoretically design angiotensin-converting enzyme inhibitor (ACEI)-containing remdesivir-loaded PLGA nanoparticles (NPs) for anti-SARS-CoV-2 therapy. Based on the therapeutic and lung protective effect of ACEI, the classical lisinopril molecule covalently grafted onto PLGA (L-PLGA) has been used to encapsulate remdesivir. A binding model is used to confirm the interactions between lisinopril and ACE on the surface of cells, as well as remdesivir and its intracellular targeting protein (RNA-dependent RNA polymerase (RdRp)). Furthermore, DPD simulations are applied to study the nano-aggregation of drug-free L-PLGA, and remdesivir loaded in L-PLGA. The lisinopril molecules were directly demonstrated to be on the surface of L-PLGA NPs. Molecular docking proved that hydrogen bonding was decisive for the encapsulation of remdesivir. With an increase in concentration, remdesivir loaded L-PLGA formed spherical NPs, and then underwent precipitation. Similar to the above conditions, high remdesivir loading was also observed to cause precipitation formation. Thus, the optimized remdesivir NPs in our study give insights into a rational platform for formulation design against this global pandemic.
Collapse
Affiliation(s)
- Juanping Wu
- Department of Pharmacy, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, P. R. China.
| | | | | |
Collapse
|
32
|
De Luca S, Treny J, Chen F, Seal P, Stenzel MH, Smith SC. Enhancing Cationic Drug Delivery with Polymeric Carriers: The Coulomb‐pH Switch Approach. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sergio De Luca
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| | - Jennifer Treny
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Prasenjit Seal
- Department of Chemistry University of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sean C. Smith
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
33
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Simulation study of the pH sensitive directed self-assembly of rheins for sustained drug release hydrogel. Colloids Surf B Biointerfaces 2020; 195:111260. [DOI: 10.1016/j.colsurfb.2020.111260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
|
35
|
Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv Drug Deliv Rev 2020; 156:80-118. [PMID: 32980449 DOI: 10.1016/j.addr.2020.09.009] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/04/2023]
Abstract
Over the last three decades, polymeric micelles have emerged as a highly promising drug delivery platform for therapeutic compounds. Particularly, poorly soluble small molecules with high potency and significant toxicity were encapsulated in polymeric micelles. Polymeric micelles have shown improved pharmacokinetic profiles in preclinical animal models and enhanced efficacy with a superior safety profile for therapeutic drugs. Several polymeric micelle formulations have reached the clinical stage and are either in clinical trials or are approved for human use. This furthers interest in this field and underscores the need for additional learning of how to best design and apply these micellar carriers to improve the clinical outcomes of many drugs. In this review, we provide detailed information on polymeric micelles for the solubilization of poorly soluble small molecules in topics such as the design of block copolymers, experimental and theoretical analysis of drug encapsulation in polymeric micelles, pharmacokinetics of drugs in polymeric micelles, regulatory approval pathways of nanomedicines, and current outcomes from micelle formulations in clinical trials. We aim to describe the latest information on advanced analytical approaches for elucidating molecular interactions within the core of polymeric micelles for effective solubilization as well as for analyzing nanomedicine's pharmacokinetic profiles. Taking into account the considerations described within, academic and industrial researchers can continue to elucidate novel interactions in polymeric micelles and capitalize on their potential as drug delivery vehicles to help improve therapeutic outcomes in systemic delivery.
Collapse
Affiliation(s)
- Duhyeong Hwang
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Jacob D Ramsey
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
36
|
Brighenti R, Li Y, Vernerey FJ. Smart Polymers for Advanced Applications: A Mechanical Perspective Review. FRONTIERS IN MATERIALS 2020; 7. [DOI: 10.3389/fmats.2020.00196] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
|
38
|
Chen Y, Liu Y, Xing T, Sun B, Feng Z, Li P, Yang Z, Li S, Chen S. Effects of salt concentration on the structure and properties of composite fiber of carboxymethyl cellulose/N-2-hydroxylpropyl trimethyl ammonium chloride chitosan prepared by polyelectoyte complexation-freeze drying. Int J Biol Macromol 2020; 151:1030-1039. [PMID: 31760008 DOI: 10.1016/j.ijbiomac.2019.11.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Abstract
The conventional electrospinning process for the preparation of fibers usually require complex equipment and complicated preparation processes, as well as chemical crosslinkers and organic solvents, which limits its application in the preparation of biomedical materials. In the current study, carboxymethyl cellulose/N-2-hydroxylpropyl trimethyl ammonium chloride chitosan (CMC/HACC) composite fibers were fabricated by polyelectrolyte complexation (PEC) and freeze drying coupled method in both pure water and NaCl solution. The structures of the as-prepared fibers and the effects of NaCl concentration on the structures of fibers were studied by FTIR, solid 13C NMR, XRD, XPS and SEM. The formation mechanism of the composite fiber and the effects of NaCl concentration on structure and properties of the composite fiber were simulated in the Materials Studio software and discussed. The swelling properties and the thermal decomposition kinetics of the composite fiber were studied. The results suggest that the addition of NaCl electrolyte to the complexing system significantly affects the structure and properties of the PEC fiber. Our work has provided a new preparation route to the composite fibers of natural polymers with controllable structures and properties by the combination of PEC and freeze drying techniques using NaCl with desired concentration as the electrolyte.
Collapse
Affiliation(s)
- Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Yang Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tao Xing
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Boyang Sun
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China; Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Puwang Li
- Agriculture Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China
| | - Ziming Yang
- Agriculture Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China
| | - Sidong Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524001, PR China
| | - Shusen Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
39
|
Feng YH, Zhang XP, Zhao ZQ, Guo XD. Dissipative Particle Dynamics Aided Design of Drug Delivery Systems: A Review. Mol Pharm 2020; 17:1778-1799. [DOI: 10.1021/acs.molpharmaceut.0c00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Ze Qiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
40
|
Li J, Ying S, Ren H, Dai J, Zhang L, Liang L, Wang Q, Shen Q, Shen JW. Molecular dynamics study on the encapsulation and release of anti-cancer drug doxorubicin by chitosan. Int J Pharm 2020; 580:119241. [PMID: 32197982 DOI: 10.1016/j.ijpharm.2020.119241] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/29/2022]
Abstract
Doxorubicin (DOX) is a broad-spectrum anti-tumor drug, but it has certain limitations in its therapeutic effects due to poor tumor selectivity. Chitosan-based pH-sensitive polymers drug delivery systems could improve DOX's activity and selectivity against tumor cells. Understanding the atomic interaction mechanism between chitosan and DOX at different pH levels is important in the design and application of chitosan-based drug delivery systems. In this study, molecular dynamics simulations were performed to investigate the encapsulation and release of DOX by chitosan at different pH levels. Our results show that the protonation state of amine groups of chitosan and the π-π stacking interaction between the conjugated anthraquinone ring of DOX regulate the interaction behavior between chitosan and DOX. Moreover, DOX could gradually release from chitosan at acidic pH environment in tumor tissue. These results revealed the underlying atomic interaction mechanism between DOX and chitosan at various pH levels and may provide novel ideas for the design and application of chitosan-based drug delivery system.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Shibo Ying
- Hangzhou Medical College, Hangzhou 310013, People's Republic of China
| | - Hao Ren
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Junhao Dai
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Li Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lijun Liang
- College of Automation & College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Qi Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Qiying Shen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| | - Jia-Wei Shen
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| |
Collapse
|
41
|
Zhao J, Xing T, Li Q, Chen Y, Yao W, Jin S, Chen S. Preparation of chitosan and carboxymethylcellulose‐based polyelectrolyte complex hydrogel via SD‐A‐SGT method and its adsorption of anionic and cationic dye. J Appl Polym Sci 2020. [DOI: 10.1002/app.48980] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Zhao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
- Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy TechnologyTsinghua University Beijing China
| | - Tao Xing
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Qin Li
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Yu Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Weishang Yao
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Shaohua Jin
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| | - Shusen Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing China
| |
Collapse
|
42
|
Fatemi SM, Fatemi SJ, Abbasi Z. PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-03076-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Meso- and molecular-scale modeling to provide new insights into interfacial and structural properties of hydrocarbon/water/surfactant systems. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Che L, Liu Z, Wang D, Xu C, Zhang C, Meng J, Zheng J, Yuan H, Zhao G, Zhou X. Computer-assisted engineering of programmed drug releasing multilayer nanomedicine via indomethacin-mediated ternary complex for therapy against a multidrug resistant tumor. Acta Biomater 2019; 97:461-473. [PMID: 31344512 DOI: 10.1016/j.actbio.2019.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
Abstract
Nanomedicine with programmed drug release can give full play to the synergistic effect of multi-component system in complicated tumor environment. However, the construction of these programmed drug delivery systems often depends on the sophisticated materials design and synthesis. In this study, we successfully designed an indomethacin (IND)-mediated ternary complex system based on a PEG cleavable polyethyleneimine (PEI), indomethacin (IND) and benzene ring containing chemotherapeutic drugs (such as paclitaxel (PTX), doxorubicin and docetaxel). Based on the difference of hydrophobicity in these components, these components were one-pot self-assembled into drug-loaded IND mediated PEGylation cleavable nanoassemblies (IPCNs) in multilayer structure. In drug-loaded IPCNs, PEG fragments, PEI/IND, and chemotherapeutic drug were respectively distributed from the out layer to core of nanomedicine. When drug-loaded IPCNs reached tumor site through EPR effect, the PEG fragment would firstly responsively release to the acidic tumor microenvironment to expose the intermediate layer of drug-loaded IPCNs that composed by mixture of PEI and IND for increasing the surface potential to promote the uptake by tumor cells. After entering cells, IND would be released faster than chemotherapeutic drug encapsulated in core to efficiently inhibit the expression of multidrug resistance protein 1 to reverse MDR of tumor cells before chemotherapeutic drug releasing. Contributed by the staged responsively releasing of PEG fragments, IND and encapsulated chemotherapeutic drug, the drug-loaded IPCNs exhibited a superior antitumor efficacy against A549/MDR tumor cells both in vitro and in vivo. STATEMENT OF SIGNIFICANCE: The way to develop programmed released drug delivery system is commonly relied on complicated material design and synthesis. Herein, under the computer-assist design, we successfully designed a ternary complex derived from indomethacin (IND), paclitaxel (PTX) and a pH-responsive PEGylated polyethyleneimine (PEG-s-PEI), and employed this ternary complex to successfully prepare a high drug loading and multilayer structured nanomedicine of PTX (PTX IPCNs). Contribute by the different location of PTX, IND and PEG-s-PEI in PTX IPCNs, PEG fragments, IND and PTX molecules could programmed release after reaching tumor for perfectly realizing the synergistic anti-tumor effect of tumor targeting, reversal of MDR and chemotherapy. Based on a fusion of these multiple mechanisms, PTX IPCNs showed a superior antitumor efficacy in mice loading A549/MDR tumor.
Collapse
|
45
|
Allen C, Bannigan P. Does artificial intelligence have the potential to transform drug formulation development? J Control Release 2019; 311-312:326-327. [DOI: 10.1016/j.jconrel.2019.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Lin W, Xue Z, Wen L, Li Y, Liang Z, Xu J, Yang C, Gu Y, Zhang J, Zu X, Luo H, Yi G, Zhang L. Mesoscopic simulations of drug-loaded diselenide crosslinked micelles: Stability, drug loading and release properties. Colloids Surf B Biointerfaces 2019; 182:110313. [DOI: 10.1016/j.colsurfb.2019.06.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
|
47
|
Shamsi M, Mohammadi A, Manshadi MK, Sanati-Nezhad A. Mathematical and computational modeling of nano-engineered drug delivery systems. J Control Release 2019; 307:150-165. [DOI: 10.1016/j.jconrel.2019.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
|
48
|
Iesavand H, Rahmati M, Afzali D, Modiri S. Investigation on absorption and release of mercaptopurine anticancer drug from modified polylactic acid as polymer carrier by molecular dynamic simulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110010. [PMID: 31546426 DOI: 10.1016/j.msec.2019.110010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/10/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022]
Abstract
The absorption and release of 6-mercaptopurine anticancer drug was investigated in biodegradable and biocompatible polymer of polylactic acid (PLA) using molecular dynamics simulation. For this purpose, the amount of mixing energy, radius of gyration, mean squared displacement and radial distribution function were computed and compared in concentrations of 5-36 wt% of 6-mercaptopurine drug. The simulation results show that increasing the concentration of the drug reduces mixing energy and PLA polymer carrier is able to carry 35.8 wt% of 6-mercaptopurine anticancer drug. Based on these results, the amount of 6-mercaptopurine release from PLA carrier 35.8 wt% of it in water environment is zero due to hydrophobic property of PLA and 6-mercaptopurine. Finally, polyethylene glycol (PEG) polymer with different percentages (10-30 wt%) was used to modify PLA carrier. The simulation results show that the rate of drug release increases by increasing the concentration of PEG polymer in the modified PLA carrier and also with increasing the percentage of drug loaded in the carrier and also the optimum weight percentage of PEG in modified PLA carrier for 35.8 wt% of drug concentration is 11 wt% and the rate of drug release is slower and equal to 4.4 molecules/ns.
Collapse
Affiliation(s)
- Homa Iesavand
- Department of Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Mahmoud Rahmati
- Department of Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran.
| | - Dariush Afzali
- Department of Environment, Institute of Science and High Technology and Environmental Sciences, Kerman, Iran
| | - Sina Modiri
- Department of Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
49
|
Yu X, Zhou W, Wang H, Lu S, Jin Y, Fu J. Transdermal metformin hydrochloride-loaded cubic phases: in silico formulation optimization, preparation, properties, and application for local treatment of melanoma. Drug Deliv 2019; 26:376-383. [PMID: 30905216 PMCID: PMC6442100 DOI: 10.1080/10717544.2019.1587046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metformin hydrochloride (Met) is commonly used for antidiabetic therapy though its antimelanoma action is also reported. Conventional oral administration method of Met is not appropriate for therapy of melanoma because of large dose, adverse reactions, and low efficiency. Here, a transdermal Met-loaded cubic phase was developed for local treatment of melanoma. In silico formulation optimization of the cubic phases was done, and the corresponding formulations were prepared and characterized. The optimized formulations were screened based on the stable microstructure and proper fluidity. Highly efficient mouse skin permeability of Met was found with the cubic phases compared to Met solutions. High antimelanoma effect of transdermal Met-loaded cubic phases also was shown by the significant decrease of tumor volume and the improvement of melanoma cell apoptosis on the B16 melanoma mice. Met-loaded cubic phases are a promising topically applied medication for local therapies of melanoma.
Collapse
Affiliation(s)
- Xiang Yu
- a Department of Pharmacy, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University , Huzhou , China.,b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Wei Zhou
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Hongmei Wang
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Sheng Lu
- a Department of Pharmacy, First Hospital of Huzhou, First Affiliated Hospital of Huzhou University , Huzhou , China
| | - Yiguang Jin
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| | - Junhui Fu
- b Department of Pharmaceutical Sciences , Beijing Institute of Radiation Medicine , Beijing , China
| |
Collapse
|
50
|
Luo X, Wang S, Xu S, Lang M. Relevance of the Polymeric Prodrug and Its Drug Loading Efficiency: Comparison between Computer Simulation and Experiment. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xueli Luo
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shenchun Wang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sishi Xu
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Meidong Lang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|