1
|
Santos SC, Custódio CA, Mano JF. Photocrosslinkable microgels derived from human platelet lysates: injectable biomaterials for cardiac cell culture. Biomater Sci 2024; 12:3112-3123. [PMID: 38738267 DOI: 10.1039/d3bm01933k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Cardiovascular diseases are a major global cause of morbidity and mortality, and they are often characterized by cardiomyocytes dead that ultimately leads to myocardial ischemia (MI). This condition replaces functional cardiac tissue with fibrotic scar tissue compromising heart function. Injectable systems for the in situ delivery of cells or molecules to assist during tissue repair have emerged as promising approaches for tissue engineering, particularly for myocardial repair. Methacryloyl platelet lysates (PLMA) have been employed for constructing full human-based 3D cell culture matrices and demonstrated potential for xeno-free applications. In this study, we propose using PLMA to produce microparticles (MPs) serving as anchors for cardiac and endothelial cells and ultimately as injectable systems for cardiac tissue repair. The herein reported PLMA MPs were produced by droplet microfluidics and showed great properties for cell attachment. More importantly, it is possible to show the capacity of PLMA MPs to serve as cell microcarriers even in the absence of animal-derived serum supplementation in the culture media.
Collapse
Affiliation(s)
- Sara C Santos
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal.
| | - Catarina A Custódio
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal.
| |
Collapse
|
2
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Sesena-Rubfiaro A, Prajapati NJ, Lou L, Ghimire G, Agarwal A, He J. Improving the development of human engineered cardiac tissue by gold nanorods embedded extracellular matrix for long-term viability. NANOSCALE 2024; 16:2983-2992. [PMID: 38259163 DOI: 10.1039/d3nr05422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
A myocardial infarction (MI), commonly called a heart attack, results in the death of cardiomyocytes (CMs) in the heart. Tissue engineering provides a promising strategy for the treatment of MI, but the maturation of human engineered cardiac tissue (hECT) still requires improvement. Conductive polymers and nanomaterials have been incorporated into the extracellular matrix to enhance the mechanical and electrical coupling between cardiac cells. Here we report a simple approach to incorporate gold nanorods (GNRs) into the fibrin hydrogel to form a GNR-fibrin matrix, which is used as the major component of the extracellular matrix for forming a 3D hECT construct suspended between two flexible posts. The hECTs made with GNR-fibrin hydrogel showed markers of maturation such as higher twitch force, synchronous beating activity, sarcomere maturation and alignment, t-tubule network development, and calcium handling improvement. Most importantly, the GNR-hECTs can survive over 9 months. We envision that the hECT with GNRs holds the potential to restore the functionality of the infarcted heart.
Collapse
Affiliation(s)
| | - Navin J Prajapati
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Lihua Lou
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Govinda Ghimire
- Department of Physics, Florida International University, Miami, FL 33199, USA.
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Jin He
- Department of Physics, Florida International University, Miami, FL 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
4
|
Wang Y, Li J, Han H, Huang H, Du H, Cheng L, Ma C, Cai Y, Li G, Tao J, Cheng P. Application of locally responsive design of biomaterials based on microenvironmental changes in myocardial infarction. iScience 2023; 26:107662. [PMID: 37670787 PMCID: PMC10475519 DOI: 10.1016/j.isci.2023.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Morbidity and mortality caused by acute myocardial infarction (AMI) are on the rise, posing a grave threat to the health of the general population. Up to now, interventional, surgical, and pharmaceutical therapies have been the main treatment methods for AMI. Effective and timely reperfusion therapy decreases mortality, but it cannot stimulate myocardial cell regeneration or reverse ventricular remodeling. Cell therapy, gene therapy, immunotherapy, anti-inflammatory therapy, and several other techniques are utilized by researchers to improve patients' prognosis. In recent years, biomaterials for AMI therapy have become a hot spot in medical care. Biomaterials furnish a microenvironment conducive to cell growth and deliver therapeutic factors that stimulate cell regeneration and differentiation. Biomaterials adapt to the complex microenvironment and respond to changes in local physical and biochemical conditions. Therefore, environmental factors and material properties must be taken into account when designing biomaterials for the treatment of AMI. This article will review the factors that need to be fully considered in the design of biological materials.
Collapse
Affiliation(s)
- Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China
| |
Collapse
|
5
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
6
|
Mu L, Dong R, Guo B. Biomaterials-Based Cell Therapy for Myocardial Tissue Regeneration. Adv Healthc Mater 2022; 12:e2202699. [PMID: 36572412 DOI: 10.1002/adhm.202202699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/11/2022] [Indexed: 12/28/2022]
Abstract
Cardiovascular diseases (CVDs) have been the leading cause of death worldwide during the past several decades. Cell loss is the main problem that results in cardiac dysfunction and further mortality. Cell therapy aiming to replenish the lost cells is proposed to treat CVDs especially ischemic heart diseases which lead to a big portion of cell loss. Due to the direct injection's low cell retention and survival ratio, cell therapy using biomaterials as cell carriers has attracted more and more attention because of their promotion of cell delivery and maintenance at the aiming sites. In this review, the three main factors involved in cell therapy for myocardial tissue regeneration: cell sources (somatic cells, stem cells, and engineered cells), chemical components of cell carriers (natural materials, synthetic materials, and electroactive materials), and categories of cell delivery materials (patches, microspheres, injectable hydrogels, nanofiber and microneedles, etc.) are systematically summarized. An introduction of the methods including magnetic resonance/radionuclide/photoacoustic and fluorescence imaging for tracking the behavior of transplanted cells in vivo is also included. Current challenges of biomaterials-based cell therapy and their future directions are provided to give both beginners and professionals a clear view of the development and future trends in this area.
Collapse
Affiliation(s)
- Lei Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ruonan Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.,State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Idumah CI, Nwuzor IC, Odera SR, Timothy UJ, Ngenegbo U, Tanjung FA. Recent advances in polymeric hydrogel nanoarchitectures for drug delivery applications. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Christopher Igwe Idumah
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - I. C. Nwuzor
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - S. R. Odera
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. J. Timothy
- Department of Polymer Engineering, Faculty of Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - U. Ngenegbo
- Department of Parasitology and Entomology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - F. A. Tanjung
- Faculty of Science and Technology, Universitas Medan Area, Medan, Indonesia
| |
Collapse
|
8
|
Li Q, Chang B, Dong H, Liu X. Functional microspheres for tissue regeneration. Bioact Mater 2022; 25:485-499. [PMID: 37056261 PMCID: PMC10087113 DOI: 10.1016/j.bioactmat.2022.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a new type of injectable biomaterials, functional microspheres have attracted increasing attention in tissue regeneration because they possess some advantageous properties compared to other biomaterials, including hydrogels. A variety of bio-inspired microspheres with unique structures and properties have been developed as cellular carriers and drug delivery vehicles in recent years. In this review, we provide a comprehensive summary of the progress of functional and biodegradable microspheres that have been used for tissue regeneration over the last two decades. First, we briefly introduce the biomaterials and general methods for microsphere fabrication. Next, we focus on the newly developed technologies for preparing functional microspheres, including macroporous microspheres, nanofibrous microspheres, hollow microspheres, core-shell structured microspheres, and surface-modified functional microspheres. After that, we discuss the application of functional microspheres for tissue regeneration, specifically for bone, cartilage, dental, neural, cardiac, and skin tissue regeneration. Last, we present our perspectives and future directions of functional microspheres as injectable carriers for the future advancement of tissue regeneration.
Collapse
|
9
|
Progress in the Development of Graphene-Based Biomaterials for Tissue Engineering and Regeneration. MATERIALS 2022; 15:ma15062164. [PMID: 35329615 PMCID: PMC8955908 DOI: 10.3390/ma15062164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Over the last few decades, tissue engineering has become an important technology for repairing and rebuilding damaged tissues and organs. The scaffold plays an important role and has become a hot pot in the field of tissue engineering. It has sufficient mechanical and biochemical properties and simulates the structure and function of natural tissue to promote the growth of cells inward. Therefore, graphene-based nanomaterials (GBNs), such as graphene and graphene oxide (GO), have attracted wide attention in the field of biomedical tissue engineering because of their unique structure, large specific surface area, good photo-thermal effect, pH response and broad-spectrum antibacterial properties. In this review, the structure and properties of typical GBNs are summarized, the progress made in the development of GBNs in soft tissue engineering (including skin, muscle, nerve and blood vessel) are highlighted, the challenges and prospects of the application of GBNs in soft tissue engineering have prospected.
Collapse
|
10
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
11
|
Zhang M, Bai Y, Xu C, Lin J, Jin J, Xu A, Lou JN, Qian C, Yu W, Wu Y, Qi Y, Tao H. Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Deliv 2021; 28:2548-2561. [PMID: 34854786 PMCID: PMC8648032 DOI: 10.1080/10717544.2021.2009937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Effective and accurate delivery of drugs to tissue with spinal cord injury (SCI) is the key to rehabilitating neurological deficits. Sustained-release microspheres (MS) have excellent degradability and can aid in the long-term release of drugs. However, the burst release phenomenon can cause unexpected side effects. Herein, we developed and optimized an injectable poly(lactic-co-glycolic acid) (PLGA) MS loaded with melatonin(Mel), which were mixed further with Laponite hydrogels (Lap/MS@Mel, a micro-gel compound) in order to reduce the burst release of MS. Thus, these MS were able to achieve stable and prolonged Mel release, as well as synergistic Lap hydrogel in order to repair neural function in SCI by in situ injection. In clinical practice, patients with SCI have complicated conditions and significant inter-individual differences, which means that a single route of administration does not meet actual clinical needs. Thus, the nanospheres are synthesized and subsequently coated with platelet membrane (PM) in order to form PM/MS@Mel (nano-PM compound) for sustained and precision-targeted delivery of Mel intravenously in the SCI. Notably, optimized microsphere delivery systems have improved Mel regulation polarization of spinal microglial/macrophages, which can reduce loss of biomaterials due to macrophage-induced immune response during implantation of spinal cord tissue. These two new delivery systems that are based on MS provide references for the clinical treatment of SCI, according to different requirements.
Collapse
Affiliation(s)
- Man Zhang
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Yang Bai
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China
| | - Chang Xu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China
| | - Jinti Lin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - JiaKang Jin
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Ankai Xu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Jia Nan Lou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Chao Qian
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Wei Yu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Yulian Wu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China
| | - Yiying Qi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| | - Huimin Tao
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou City, PR China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, PR China
| |
Collapse
|
12
|
Riaud M, Hilairet G, Sindji L, Perdomo L, Montero-Menei CN, Martinez MC. Pharmacology active microcarriers delivering HGF associated with extracellular vesicles for myocardial repair. Eur J Pharm Biopharm 2021; 169:268-279. [PMID: 34748934 DOI: 10.1016/j.ejpb.2021.10.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 01/20/2023]
Abstract
Despite the curative approaches developed against myocardial infarction, cardiac cell death causes dysfunctional heart contractions that depend on the extent of the ischemic area and the reperfusion period. Cardiac regeneration may allow neovascularization and limit the ventricular remodeling caused by the scar tissue. We have previously found that large extracellular vesicles, carrying Sonic Hedgehog (lEVs), displayed proangiogenic and antioxidant properties, and decreased myocardial infarction size when administrated by intravenous injection. We propose to associate lEVs with pharmacology active microcarriers (PAMs) to obtain a combined cardioprotective and regenerative action when administrated by intracardiac injection. PAMs made of poly-D,L-lactic-coglycolic acid-poloxamer 188-poly-D,L-lactic-coglycolic acid and covered by fibronectin/poly-D-lysine provided a biodegradable and biocompatible 3D biomimetic support for the lEVs. When compared with lEVs alone, lEVs-PAMs constructs possessed an enhanced in vitro pro-angiogenic ability. PAMs were designed to continuously release encapsulated hepatocyte growth factor (PAMsHGF) and thus, locally increase the activity of the lEVs by the combined anti-fibrotic properties and regenerative properties. Intracardiac administration of either lEVs alone or lEVs-PAMsHGF improved cardiac function in a similar manner, in a rat model of ischemia-reperfusion. Moreover, lEVs alone or the IEVs-PAMsHGF induced arteriogenesis, but only the latter reduced tissue fibrosis. Taken together, these results highlight a promising approach for lEVs-PAMsHGF in regenerative medicine for myocardial infarction.
Collapse
Affiliation(s)
- Melody Riaud
- SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, Angers, France; CRCINA, UMR 1232, INSERM, Université de Nantes, Université d'Angers, F-49933 Angers, France
| | | | - Laurence Sindji
- CRCINA, UMR 1232, INSERM, Université de Nantes, Université d'Angers, F-49933 Angers, France
| | | | - Claudia N Montero-Menei
- CRCINA, UMR 1232, INSERM, Université de Nantes, Université d'Angers, F-49933 Angers, France.
| | | |
Collapse
|
13
|
Oxygen Delivery Approaches to Augment Cell Survival After Myocardial Infarction: Progress and Challenges. Cardiovasc Toxicol 2021; 22:207-224. [PMID: 34542796 DOI: 10.1007/s12012-021-09696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Myocardial infarction (MI), triggered by blockage of a coronary artery, remains the most common cause of death worldwide. After MI, the capability of providing sufficient blood and oxygen significantly decreases in the heart. This event leads to depletion of oxygen from cardiac tissue and consequently leads to massive cardiac cell death due to hypoxemia. Over the past few decades, many studies have been carried out to discover acceptable approaches to treat MI. However, very few have addressed the crucial role of efficient oxygen delivery to the injured heart. Thus, various strategies were developed to increase the delivery of oxygen to cardiac tissue and improve its function. Here, we have given an overall discussion of the oxygen delivery mechanisms and how the current technologies are employed to treat patients suffering from MI, including a comprehensive view on three major technical approaches such as oxygen therapy, hemoglobin-based oxygen carriers (HBOCs), and oxygen-releasing biomaterials (ORBs). Although oxygen therapy and HBOCs have shown promising results in several animal and clinical studies, they still have a few drawbacks which limit their effectiveness. More recent studies have investigated the efficacy of ORBs which may play a key role in the future of oxygenation of cardiac tissue. In addition, a summary of conducted studies under each approach and the remaining challenges of these methods are discussed.
Collapse
|
14
|
Trombino S, Curcio F, Cassano R, Curcio M, Cirillo G, Iemma F. Polymeric Biomaterials for the Treatment of Cardiac Post-Infarction Injuries. Pharmaceutics 2021; 13:1038. [PMID: 34371729 PMCID: PMC8309168 DOI: 10.3390/pharmaceutics13071038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac regeneration aims to reconstruct the heart contractile mass, preventing the organ from a progressive functional deterioration, by delivering pro-regenerative cells, drugs, or growth factors to the site of injury. In recent years, scientific research focused the attention on tissue engineering for the regeneration of cardiac infarct tissue, and biomaterials able to anatomically and physiologically adapt to the heart muscle have been proposed as valuable tools for this purpose, providing the cells with the stimuli necessary to initiate a complete regenerative process. An ideal biomaterial for cardiac tissue regeneration should have a positive influence on the biomechanical, biochemical, and biological properties of tissues and cells; perfectly reflect the morphology and functionality of the native myocardium; and be mechanically stable, with a suitable thickness. Among others, engineered hydrogels, three-dimensional polymeric systems made from synthetic and natural biomaterials, have attracted much interest for cardiac post-infarction therapy. In addition, biocompatible nanosystems, and polymeric nanoparticles in particular, have been explored in preclinical studies as drug delivery and tissue engineering platforms for the treatment of cardiovascular diseases. This review focused on the most employed natural and synthetic biomaterials in cardiac regeneration, paying particular attention to the contribution of Italian research groups in this field, the fabrication techniques, and the current status of the clinical trials.
Collapse
Affiliation(s)
| | | | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (S.T.); (F.C.); (G.C.); (F.I.)
| | | | | |
Collapse
|
15
|
Gibler P, Gimble J, Hamel K, Rogers E, Henderson M, Wu X, Olesky S, Frazier T. Human Adipose-Derived Stromal/Stem Cell Culture and Analysis Methods for Adipose Tissue Modeling In Vitro: A Systematic Review. Cells 2021; 10:1378. [PMID: 34204869 PMCID: PMC8227575 DOI: 10.3390/cells10061378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Human adipose-derived stromal/stem cells (hASC) are widely used for in vitro modeling of physiologically relevant human adipose tissue. These models are useful for the development of tissue constructs for soft tissue regeneration and 3-dimensional (3D) microphysiological systems (MPS) for drug discovery. In this systematic review, we report on the current state of hASC culture and assessment methods for adipose tissue engineering using 3D MPS. Our search efforts resulted in the identification of 184 independent records, of which 27 were determined to be most relevant to the goals of the present review. Our results demonstrate a lack of consensus on methods for hASC culture and assessment for the production of physiologically relevant in vitro models of human adipose tissue. Few studies have assessed the impact of different 3D culture conditions on hASC adipogenesis. Additionally, there has been a limited use of assays for characterizing the functionality of adipose tissue in vitro. Results from this study suggest the need for more standardized culture methods and further analysis on in vitro tissue functionality. These will be necessary to validate the utility of 3D MPS as an in vitro model to reduce, refine, and replace in vivo experiments in the drug discovery regulatory process.
Collapse
Affiliation(s)
- Peyton Gibler
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Jeffrey Gimble
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Katie Hamel
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Emma Rogers
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Michael Henderson
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Spencer Olesky
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
| | - Trivia Frazier
- Obatala Sciences Inc., New Orleans, LA 70148, USA; (P.G.); (K.H.); (E.R.); (M.H.); (X.W.); (S.O.); (T.F.)
- Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Patel M, Jha A, Patel R. Potential application of PLGA microsphere for tissue engineering. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02562-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Chen T, Jiang H, Zhu Y, Chen X, Zhang D, Li X, Shen F, Xia H, Min Y, Xie K. Highly Ordered 3D Tissue Engineering Scaffolds as a Versatile Culture Platform for Nerve Cells Growth. Macromol Biosci 2021; 21:e2100047. [PMID: 33893711 DOI: 10.1002/mabi.202100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/11/2021] [Indexed: 12/14/2022]
Abstract
Tissue engineering scaffolds provide an encouraging alternative for nerve injuries due to their biological support for nerve cell growth, which can be used for neuronal repair. Nerve cells have been reported to be mostly cultured on 2D scaffolds that cannot mimic the native extracellular matrix. Herein, highly ordered 3D scaffolds are fabricated for nerve cell culture by melt electrospinning writing, the microstructures and geometries of the scaffolds could be well modulated. An effective strategy for scaffold surface modification to promote nerve cell growth is proposed. The effects of scaffolds with different surface modifications, viz., plasma treatment, single poly-D-lysine (PDL) coating after plasma treatment, single laminin (LM) coating after plasma treatment, double PDL and LM coatings after plasma treatment, on PC12 cell growth are evaluated. Experiments show the scaffold modified with double PDL and LM coatings after plasma treatment facilitated the growth of PC12 cells most effectively, indicating the synergistic effect of PDL and LM on the growth of nerve cells. This is the first systematic and quantitative study of the effects of different scaffold surface modifications on nerve cell growth. The above results provide a versatile culture platform for growing nerve cells, and for recovery from peripheral nerve injury.
Collapse
Affiliation(s)
- Tingkuo Chen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiming Jiang
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yibin Zhu
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xueliu Chen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dao Zhang
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiang Li
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fangcheng Shen
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongyan Xia
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yonggang Min
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kang Xie
- Dongyuan Synergy Innovation Institute for Modern Industries of GDUT, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
18
|
Rmaidi A, Zelzer M, Sindji L, Dima R, Boury F, Delorme N, Montero-Menei CN. Impact of the physico-chemical properties of polymeric microspheres functionalized with cell adhesion molecules on the behavior of mesenchymal stromal cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111852. [DOI: 10.1016/j.msec.2020.111852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
|
19
|
Jumelle C, Sani ES, Taketani Y, Yung A, Gantin F, Chauhan SK, Annabi N, Dana R. Growth factor-eluting hydrogels for management of corneal defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111790. [PMID: 33545916 PMCID: PMC7867677 DOI: 10.1016/j.msec.2020.111790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/27/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
With 1.5-2.0 million new cases annually worldwide, corneal injury represents a common cause of vision loss, often from irreversible scarring due to surface corneal defects. In this study, we assessed the use of hepatocyte growth factor (HGF) loaded into an in situ photopolymerizable transparent gelatin-based hydrogel for the management of corneal defects. In vitro release kinetics showed that, in regard to the total amount of HGF released over a month, 55 ± 11% was released during the first 24 h, followed by a slow release profile for up to one month. The effect of HGF was assessed using an ex vivo model of pig corneal defect. After three days of organ culture, epithelial defects were found to be completely healed for 89% of the corneas treated with HGF, compared to only 11% of the corneas that had fully re-epithelialized when treated with the hydrogel without HGF. The thickness of the epithelial layer was found to be significantly higher for the HGF-treated group compared to the group treated with hydrogel without HGF (p = 0.0012). Finally, histological and immunostaining assessments demonstrated a better stratification and adhesion of the epithelial layer in the presence of HGF. These results suggest that the HGF-loaded hydrogel system represents a promising solution for the treatment of persistent corneal defects at risk of scarring.
Collapse
Affiliation(s)
- Clotilde Jumelle
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Ann Yung
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Fanny Gantin
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States
| | - Nasim Annabi
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, United States.
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
20
|
Riaud M, Martinez MC, Montero-Menei CN. Scaffolds and Extracellular Vesicles as a Promising Approach for Cardiac Regeneration after Myocardial Infarction. Pharmaceutics 2020; 12:E1195. [PMID: 33317141 PMCID: PMC7763019 DOI: 10.3390/pharmaceutics12121195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Clinical studies have demonstrated the regenerative potential of stem cells for cardiac repair over the past decades, but their widespread use is limited by the poor tissue integration and survival obtained. Natural or synthetic hydrogels or microcarriers, used as cell carriers, contribute to resolving, in part, the problems encountered by providing mechanical support for the cells allowing cell retention, survival and tissue integration. Moreover, hydrogels alone also possess mechanical protective properties for the ischemic heart. The combined effect of growth factors with cells and an appropriate scaffold allow a therapeutic effect on myocardial repair. Despite this, the effects obtained with cell therapy remain limited and seem to be equivalent to the effects obtained with extracellular vesicles, key actors in intercellular communication. Extracellular vesicles have cardioprotective effects which, when combined proangiogenic properties with antiapoptotic and anti-inflammatory actions, make it possible to act on all the damages caused by ischemia. The evolution of biomaterial engineering allows us to envisage their association with new major players in cardiac therapy, extracellular vesicles, in order to limit undesirable effects and to envisage a transfer to the clinic. This new therapeutic approach could be associated with the release of growth factors to potentialized the beneficial effect obtained.
Collapse
Affiliation(s)
- Melody Riaud
- SOPAM, U1063, INSERM, UNIV Angers, SFR ICAT, F-49800 Angers, France;
- CRCINA, UMR 1232, INSERM, Université de Nantes, Université d’Angers, F-49933 Angers, France
| | | | | |
Collapse
|
21
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
22
|
He Q, Liao Y, Zhang J, Yao X, Zhou W, Hong Y, Ouyang H. "All-in-One" Gel System for Whole Procedure of Stem-Cell Amplification and Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906539. [PMID: 32141227 DOI: 10.1002/smll.201906539] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Microsphere (MS)-based systems provides great advantages for cell expansion and transplantation due to their high surface-to-volume ratio and biomimetic environment. However, a MS-based system that includes cell attachment, proliferation, passage, harvest, cryopreservation, and tissue engineering together has not been realized yet. An "all-in-one" gel MS-based system is established for human adipose-derived mesenchymal stem cells (hADSCs), realizing real 3D culture with enhanced expansion efficiency and simplified serial cell culture operations, and construction of macrotissues with uniform cell distribution and specific function. A 3D digital light-processing technology is developed to fabricate gel MSs in an effective way. The printed MSs present a suitable environment with rough surface architecture and the mechanical properties of soft tissues, leading to high cell viability, attachment, proliferation, activity, and differentiation potential. Further, convenient standard operation procedures, including cell passage, detachment, and cryopreservation, are established for cell culture on the gel MSs. Finally, hADSCs-loaded gel MSs form macrotissues through a "bottom-up" approach, which demonstrates the potential applications for tissue engineering. These findings exhibit the feasibility and beauty of "all-in-one" stem cell culture and tissue engineering system.
Collapse
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, 530021, China
| | - Jingwei Zhang
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xudong Yao
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wenyan Zhou
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi Hong
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital and Zhejiang University-University of Edinburgh Institute and School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
23
|
Liao X, Yang X, Deng H, Hao Y, Mao L, Zhang R, Liao W, Yuan M. Injectable Hydrogel-Based Nanocomposites for Cardiovascular Diseases. Front Bioeng Biotechnol 2020; 8:251. [PMID: 32296694 PMCID: PMC7136457 DOI: 10.3389/fbioe.2020.00251] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), including a series of pathological disorders, severely affect millions of people all over the world. To address this issue, several potential therapies have been developed for treating CVDs, including injectable hydrogels as a minimally invasive method. However, the utilization of injectable hydrogel is a bit restricted recently owing to some limitations, such as transporting the therapeutic agent more accurately to the target site and prolonging their retention locally. This review focuses on the advances in injectable hydrogels for CVD, detailing the types of injectable hydrogels (natural or synthetic), especially that complexed with stem cells, cytokines, nano-chemical particles, exosomes, genetic material including DNA or RNA, etc. Moreover, we summarized the mainly prominent mechanism, based on which injectable hydrogel present excellent treating effect of cardiovascular repair. All in all, it is hopefully that injectable hydrogel-based nanocomposites would be a potential candidate through cardiac repair in CVDs treatment.
Collapse
Affiliation(s)
- Xiaoshan Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xushan Yang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hong Deng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuting Hao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lianzhi Mao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Rongjun Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
Abstract
Cardiovascular diseases (CVDs) pose a serious threat to human health, which are characterized by high disability and mortality rate globally such as myocardial infarction (MI), atherosclerosis, and heart failure. Although stem cells transplantation and growth factors therapy are promising, their low survival rate and loss at the site of injury are major obstacles to this therapy. Recently, the development of hydrogel scaffold materials provides a new way to solve this problem, which have shown the potential to treat CVD. Among these scaffold materials, environmentally responsive hydrogels have great prospects in repairing the microenvironment of cardiovascular tissues and vascular regeneration. They provide a new method for the treatment of cardiovascular tissue repair and space-time control for the release of various therapeutic drugs, including small-molecule drugs, growth factors, and stem cells. Herein, this article reviews the occurrence and current treatment of CVD, as well as the repair of cardiovascular injury by several environmental responsive hydrogels systems currently used, mainly focusing on the delivery of growth factors or the application of cell therapy to revascularization. In addition, we will also discuss the enormous potential and personal perspectives of environmentally responsive hydrogels in cardiovascular repair.
Collapse
|
25
|
He Q, Zhang J, Liao Y, Alakpa EV, Bunpetch V, Zhang J, Ouyang H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol Adv 2019; 39:107459. [PMID: 31682922 DOI: 10.1016/j.biotechadv.2019.107459] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Qiulin He
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingwei Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Youguo Liao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Enateri Verissarah Alakpa
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Varitsara Bunpetch
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiayan Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Department of Orthopaedic Surgery, Second Affiliated Hospital & Zhejiang University-University of Edinburgh Institute & School of Basic Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China.; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.; China Orthopedic Regenerative Medicine Group (CORMed), China..
| |
Collapse
|
26
|
Pooria A, Pourya A, Gheini A. Animal- and human-based evidence for the protective effects of stem cell therapy against cardiovascular disorders. J Cell Physiol 2019; 234:14927-14940. [PMID: 30811030 DOI: 10.1002/jcp.28330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The increasing rate of mortality and morbidity because of cardiac diseases has called for efficient therapeutic needs. With the advancement in cell-based therapies, stem cells are abundantly studied in this area. Nearly, all sources of stem cells are experimented to treat cardiac injuries. Tissue engineering has also backed this technique by providing an advantageous platform to improve stem cell therapy. After in vitro studies, primary treatment-based research studies comprise small and large animal studies. Furthermore, these studies are implemented in human models in the form of clinical trials. Purpose of this review is to highlight the animal- and human-based studies, exploiting various stem cell sources, to treat cardiovascular disorders.
Collapse
Affiliation(s)
- Ali Pooria
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Afsoun Pourya
- Student of Research committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gheini
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| |
Collapse
|
27
|
Liang Q, Song X, She S, Wang Z, Wang C, Jiang D. Development of dual delivery antituberculotic system containing rifapentine microspheres and adipose stem cells seeded in hydroxyapatite/tricalcium phosphate. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:373-384. [PMID: 30705585 PMCID: PMC6342215 DOI: 10.2147/dddt.s190696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Low drug concentration in the tuberculosis (TB) lesion and bone defects or nonunion after debridement are two major problems that occur in the course of treating osteo-articular TB. Thus, the combination of drug-delivery system and bone tissue repair appears to be the most promising option for osteoarticular TB treatment. Materials and methods Herein, we report a novel anti-TB dual delivery system based on rifapentine polylactic acid microspheres (RPMs) to treat infections, with the addition of adipose-derived mesenchymal stem cells (ASCs) seeded in hydroxyapatite/tricalcium phosphate (HA/TCP) to promote bone formation. Cell proliferation, osteogenesis, and apoptosis were performed to investigate the effects of rifapentine on ASCs. The RPMs were synthesized by emulsion-solvent evaporation method, and then the monolayer composite (ASC + RPM) and three-dimensional (3D) composite scaffold (ASC + RPM + HA/TCP) were constructed, respectively. The alkaline phosphatase (ALP) activity and real-time PCR were used for determining the osteogenic differentiation. The concentrations of rifapentine resulting from the composites were detected. Results The results showed that rifapentine has no influence on ASCs proliferation and osteogenesis when the drug concentration was below 20 µg/mL, which was significantly higher than minimal inhibitory concentration. The drug loading and encapsulation efficiency of RPMs were 40.56%±2.63% and 70.24%±2.18%, respectively. The proliferation of the cells in monolayer was higher than that in 3D composite, and the addition of RPMs slightly increased the proliferation. The ALP activity and gene expression of osteocalcin and osteopontin were higher in the 3D composite than those in the monolayer. Good biocompatibility was observed by microscopic image and H&E stain. The release tests revealed that the 3D composite exhibited sustained release profiles of rifapentine for 76 days. The dual delivery systems in 3D composite could moderate the burst release and extend the length of release time when compared to single delivery in monolayers. Conclusion In conclusion, such dual delivery antituberculotic scaffold represents a potential new strategy for TB infections and bone defects.
Collapse
Affiliation(s)
- Qiuzhen Liang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China,
| | - Xinghua Song
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China,
| | - Shengli She
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China,
| | - Zhen Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China,
| | - Chong Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China,
| | - Dawei Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China,
| |
Collapse
|
28
|
Li X, Su X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J Mater Chem B 2018; 6:4714-4730. [PMID: 32254299 DOI: 10.1039/c8tb01078a] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years, clinical applications have been proposed for various hydrogel products. Hydrogels can be derived from animal tissues, plant extracts and/or adipose tissue extracellular matrices; each type of hydrogel presents significantly different functional properties and may be used for many different applications, including medical therapies, environmental pollution treatments, and industrial materials. Due to complicated preparation techniques and the complexities associated with the selection of suitable materials, the applications of many host-guest supramolecular polymeric hydrogels are limited. Thus, improvements in the design and construction of smart materials are highly desirable in order to increase the lifetimes of functional materials. Here, we summarize different functional hydrogels and their varied preparation methods and source materials. The multifunctional properties of hydrogels, particularly their unique ability to adapt to certain environmental stimuli, are chiefly based on the incorporation of smart materials. Smart materials may be temperature sensitive, pH sensitive, pH/temperature dual sensitive, photoresponsive or salt responsive and may be used for hydrogel wound repair, hydrogel bone repair, hydrogel drug delivery, cancer therapy, and so on. This review focuses on the recent development of smart hydrogels for tissue engineering applications and describes some of the latest advances in using smart materials to create hydrogels for cancer therapy.
Collapse
Affiliation(s)
- Xian Li
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, 1 Tong Dao Street, Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China.
| | | |
Collapse
|
29
|
Combined therapy for critical limb ischaemia: Biomimetic PLGA microcarriers potentiates the pro-angiogenic effect of adipose tissue stromal vascular fraction cells. J Tissue Eng Regen Med 2018; 12:1363-1373. [DOI: 10.1002/term.2667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/28/2018] [Indexed: 11/07/2022]
|
30
|
Flégeau K, Pace R, Gautier H, Rethore G, Guicheux J, Le Visage C, Weiss P. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Colloid Interface Sci 2017; 247:589-609. [PMID: 28754381 DOI: 10.1016/j.cis.2017.07.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/21/2023]
Abstract
Repairing or replacing damaged human tissues has been the ambitious goal of regenerative medicine for over 25years. One promising approach is the use of hydrated three-dimensional scaffolds, known as hydrogels, which have had good results repairing tissues in pre-clinical trials. Benefiting from breakthrough advances in the field of biology, and more particularly regarding cell/matrix interactions, these hydrogels are now designed to recapitulate some of the fundamental cues of native environments to drive the local tissue regeneration. We highlight the key parameters that are required for the development of smart and biomimetic hydrogels. We also review the wide variety of polymers, crosslinking methods, and manufacturing processes that have been developed over the years. Of particular interest is the emergence of supramolecular chemistries, allowing for the development of highly functional and reversible biohydrogels. Moreover, advances in computer assisted design and three-dimensional printing have revolutionized the production of macroporous hydrogels and allowed for more complex designs than ever before with the opportunity to develop fully reconstituted organs. Today, the field of biohydrogels for regenerative medicine is a prolific area of research with applications for most bodily tissues. On top of these applications, injectable hydrogels and macroporous hydrogels (foams) were found to be the most successful. While commonly associated with cells or biologics as drug delivery systems to increase therapeutic outcomes, they are steadily being used in the emerging fields of organs-on-chip and hydrogel-assisted cell therapy. To highlight these advances, we review some of the recent developments that have been achieved for the regeneration of tissues, focusing on the articular cartilage, bone, cardiac, and neural tissues. These biohydrogels are associated with improved cartilage and bone defects regeneration, reduced left ventricular dilation upon myocardial infarction and display promising results repairing neural lesions. Combining the benefits from each of these areas reviewed above, we envision that an injectable biohydrogel foam loaded with either stem cells or their secretome is the most promising hydrogel solution to trigger tissue regeneration. A paradigm shift is occurring where the combined efforts of fundamental and applied sciences head toward the development of hydrogels restoring tissue functions, serving as drug screening platforms or recreating complex organs.
Collapse
|
31
|
Nanoprecipitated catestatin released from pharmacologically active microcarriers (PAMs) exerts pro-survival effects on MSC. Int J Pharm 2017; 523:506-514. [PMID: 27887883 DOI: 10.1016/j.ijpharm.2016.11.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022]
Abstract
Catestatin (CST), a fragment of Chromogranin-A, exerts angiogenic, arteriogenic, vasculogenic and cardioprotective effects. CST is a very promising agent for revascularization purposes, in "NOOPTION" patients. However, peptides have a very short half-life after administration and must be conveniently protected. Fibronectin-coated pharmacologically active microcarriers (FN-PAM), are biodegradable and biocompatible polymeric microspheres that can convey mesenchymal stem cell (MSCs) and therapeutic proteins delivered in a prolonged manner. In this study, we first evaluated whether a small peptide such as CST could be nanoprecipitated and incorporated within FN-PAMs. Subsequently, whether CST may be released in a prolonged manner by functionalized FN-PAMs (FN-PAM-CST). Finally, we assessed the effect of CST released by FN-PAM-CST on the survival of MSCs under stress conditions of hypoxia-reoxygenation. An experimental design, modifying three key parameters (ionic strength, mixing and centrifugation time) of protein nanoprecipitation, was used to define the optimum condition for CST. An optimal nanoprecipitation yield of 76% was obtained allowing encapsulation of solid CST within FN-PAM-CST, which released CST in a prolonged manner. In vitro, MSCs adhered to FN-PAMs, and the controlled release of CST from FN-PAM-CST greatly limited hypoxic MSC-death and enhanced MSC-survival in post-hypoxic environment. These results suggest that FN-PAM-CST are promising tools for cell-therapy.
Collapse
|
32
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
33
|
Gorabi AM, Tafti SHA, Soleimani M, Panahi Y, Sahebkar A. Cells, Scaffolds and Their Interactions in Myocardial Tissue Regeneration. J Cell Biochem 2017; 118:2454-2462. [DOI: 10.1002/jcb.25912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Masoud Soleimani
- Faculty of Medical Sciences; Hematology Department; Tarbiat Modarres University; Tehran Iran
| | - Yunes Panahi
- Chemical Injuries Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
34
|
Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model. J Control Release 2017; 249:23-31. [DOI: 10.1016/j.jconrel.2017.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 12/22/2022]
|
35
|
Pharmacologically active microcarriers delivering BDNF within a hydrogel: Novel strategy for human bone marrow-derived stem cells neural/neuronal differentiation guidance and therapeutic secretome enhancement. Acta Biomater 2017; 49:167-180. [PMID: 27865962 DOI: 10.1016/j.actbio.2016.11.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 12/29/2022]
Abstract
Stem cells combined with biodegradable injectable scaffolds releasing growth factors hold great promises in regenerative medicine, particularly in the treatment of neurological disorders. We here integrated human marrow-isolated adult multilineage-inducible (MIAMI) stem cells and pharmacologically active microcarriers (PAMs) into an injectable non-toxic silanized-hydroxypropyl methylcellulose (Si-HPMC) hydrogel. The goal is to obtain an injectable non-toxic cell and growth factor delivery device. It should direct the survival and/or neuronal differentiation of the grafted cells, to safely transplant them in the central nervous system, and enhance their tissue repair properties. A model protein was used to optimize the nanoprecipitation conditions of the neuroprotective brain-derived neurotrophic factor (BDNF). BDNF nanoprecipitate was encapsulated in fibronectin-coated (FN) PAMs and the in vitro release profile evaluated. It showed a prolonged, bi-phasic, release of bioactive BDNF, without burst effect. We demonstrated that PAMs and the Si-HPMC hydrogel increased the expression of neural/neuronal differentiation markers of MIAMI cells after 1week. Moreover, the 3D environment (PAMs or hydrogel) increased MIAMI cells secretion of growth factors (b-NGF, SCF, HGF, LIF, PlGF-1, SDF-1α, VEGF-A & D) and chemokines (MIP-1α & β, RANTES, IL-8). These results show that PAMs delivering BDNF combined with Si-HPMC hydrogel represent a useful novel local delivery tool in the context of neurological disorders. It not only provides neuroprotective BDNF but also bone marrow-derived stem cells that benefit from that environment by displaying neural commitment and an improved neuroprotective/reparative secretome. It provides preliminary evidence of a promising pro-angiogenic, neuroprotective and axonal growth-promoting device for the nervous system. STATEMENT OF SIGNIFICANCE Combinatorial tissue engineering strategies for the central nervous system are scarce. We developed and characterized a novel injectable non-toxic stem cell and protein delivery system providing regenerative cues for central nervous system disorders. BDNF, a neurotrophic factor with a wide-range effect, was nanoprecipitated to maintain its structure and released in a sustained manner from novel polymeric microcarriers. The combinatorial 3D support, provided by fibronectin-microcarriers and the hydrogel, to the mesenchymal stem cells guided the cells towards a neuronal differentiation and enhanced their tissue repair properties by promoting growth factors and cytokine secretion. The long-term release of physiological doses of bioactive BDNF, combined to the enhanced secretion of tissue repair factors from the stem cells, constitute a promising therapeutic approach.
Collapse
|
36
|
Jennings CL, Perry EK, Dziubla TD, Puleo DA. Sequential Release of Multiple Drugs from Flexible Drug Delivery Films. INT J POLYM MATER PO 2017; 66:569-576. [PMID: 28736462 PMCID: PMC5515595 DOI: 10.1080/00914037.2016.1252352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sequential release of drugs aligned with the phases of tissue healing could reduce scarring. To achieve this aim, layered film devices comprising cellulose acetate phthalate (CAP) and Pluronic F-127 (Pluronic) were loaded with ketoprofen, quercetin, and pirfenidone. Citrate plasticizers were added to impart flexibility. Release of two or three drugs in sequence over several days was obtained for all multilayered devices tested. Mechanical analysis showed that elongation increased and modulus decreased with increasing plasticizer content. Release profiles can be tailored by order of layers, plasticizer concentration, and drug loaded, making CAP-Pluronic an appealing system for inhibiting scar tissue formation.
Collapse
Affiliation(s)
- Cheryl L. Jennings
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Ellis K. Perry
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Thomas D. Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - David A. Puleo
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
37
|
Kondiah PJ, Choonara YE, Kondiah PPD, Marimuthu T, Kumar P, du Toit LC, Pillay V. A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering. Molecules 2016; 21:E1580. [PMID: 27879635 PMCID: PMC6272998 DOI: 10.3390/molecules21111580] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Collapse
Affiliation(s)
- Pariksha J Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Thashree Marimuthu
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
38
|
Morille M, Toupet K, Montero-Menei CN, Jorgensen C, Noël D. PLGA-based microcarriers induce mesenchymal stem cell chondrogenesis and stimulate cartilage repair in osteoarthritis. Biomaterials 2016; 88:60-9. [PMID: 26945456 DOI: 10.1016/j.biomaterials.2016.02.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
In the present study, we aimed at evaluating the ability of novel PLGA-P188-PLGA-based microspheres to induce the differentiation of mesenchymal stem/stromal cells (MSC) into chondrocytes. To this aim, we tested microspheres releasing TGFβ3 (PAM-T) in vitro and in situ, in a pathological osteoarthritic (OA) environment. We first evaluated the chondrogenic differentiation of human MSCs seeded onto PAM-T in vitro and confirmed the up-regulation of chondrogenic markers while the secretome of the cells was not changed by the 3D environment. We then injected human MSC seeded onto PAM-T in the knee joints of mice with collagenase-induced OA. After 6 weeks, histological analysis revealed that formation of a cartilage-like tissue occurred at the vicinity of PAM-T that was not observed when MSCs were seeded onto PAM. We also noticed that the endogenous articular cartilage was less degraded. The extent of cartilage protection was further analysed by confocal laser microscopy. When MSCs seeded onto PAM-T were injected early after OA induction, protection of cartilage against degradation was evidenced and this effect was associated to a higher survival of MSCs in presence of TGFβ3. This study points to the interest of using MSCs seeded onto PAM for cartilage repair and stimulation of endogenous cartilage regeneration.
Collapse
Affiliation(s)
- Marie Morille
- Inserm, U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université MONTPELLIER, UFR de Médecine, Montpellier, F-34000, France
| | - Karine Toupet
- Inserm, U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université MONTPELLIER, UFR de Médecine, Montpellier, F-34000, France
| | | | - Christian Jorgensen
- Inserm, U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université MONTPELLIER, UFR de Médecine, Montpellier, F-34000, France; Service d'immuno-Rhumatologie, Hôpital Lapeyronie, Montpellier, F-34295, France
| | - Danièle Noël
- Inserm, U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université MONTPELLIER, UFR de Médecine, Montpellier, F-34000, France; Service d'immuno-Rhumatologie, Hôpital Lapeyronie, Montpellier, F-34295, France.
| |
Collapse
|
39
|
Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM. Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery. Biomacromolecules 2015; 17:225-36. [PMID: 26636618 DOI: 10.1021/acs.biomac.5b01328] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Tunable erosion of polymeric materials is an important aspect of tissue engineering for reasons that include cell infiltration, controlled release of therapeutic agents, and ultimately to tissue healing. In general, the biological response to proteinaceous polymeric hydrogels is favorable (e.g., minimal inflammatory response). However, unlike synthetic polymers, achieving tunable erosion with natural materials is a challenge. Keratins are a class of intermediate filament proteins that can be obtained from several sources, including human hair, and have gained increasing levels of use in tissue engineering applications. An important characteristic of keratin proteins is the presence of a large number of cysteine residues. Two classes of keratins with different chemical properties can be obtained by varying the extraction techniques: (1) keratose by oxidative extraction and (2) kerateine by reductive extraction. Cysteine residues of keratose are "capped" by sulfonic acid and are unable to form covalent cross-links upon hydration, whereas cysteine residues of kerateine remain as sulfhydryl groups and spontaneously form covalent disulfide cross-links. Here, we describe a straightforward approach to fabricate keratin hydrogels with tunable rates of erosion by mixing keratose and kerateine. SEM imaging and mechanical testing of freeze-dried materials showed similar pore diameters and compressive moduli, respectively, for each keratose-kerateine mixture formulation (∼1200 kPa for freeze-dried materials and ∼1.5 kPa for hydrogels). However, the elastic modulus (G') determined by rheology varied in proportion with the keratose-kerateine ratios, as did the rate of hydrogel erosion and the release rate of thiol from the hydrogels. The variation in keratose-kerateine ratios also led to tunable control over release rates of recombinant human insulin-like growth factor 1.
Collapse
Affiliation(s)
- Trevor R Ham
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States.,Department of Biomedical Engineering, University of Akron , Auburn Science and Engineering Center 275, West Tower, Akron, Ohio 44325, United States
| | - Ryan T Lee
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Sangheon Han
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Salma Haque
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Junnan Gu
- Department of Food Science and Technology, The Ohio State University , 2015 Fyffe Court, Columbus, Ohio 43210, United States
| | - Luke R Burnett
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Seth Tomblyn
- KeraNetics, LLC , 200 East First Street, Box 4, Suite 102, Winston-Salem, North Carolina 27101, United States
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University , 650 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
40
|
Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2054-2130. [PMID: 28347111 PMCID: PMC5304774 DOI: 10.3390/nano5042054] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.
Collapse
Affiliation(s)
- Fuli Zhao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Dan Yao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ruiwei Guo
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
41
|
Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2015; 97:338-49. [DOI: 10.1016/j.ejpb.2015.05.017] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/07/2015] [Accepted: 05/21/2015] [Indexed: 11/21/2022]
|
42
|
Swed A, Cordonnier T, Dénarnaud A, Boyer C, Guicheux J, Weiss P, Boury F. Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Rambhia KJ, Ma PX. Controlled drug release for tissue engineering. J Control Release 2015; 219:119-128. [PMID: 26325405 DOI: 10.1016/j.jconrel.2015.08.049] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/19/2022]
Abstract
Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed.
Collapse
Affiliation(s)
- Kunal J Rambhia
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Madonna R, Petrov L, Teberino MA, Manzoli L, Karam JP, Renna FV, Ferdinandy P, Montero-Menei CN, Ylä-Herttuala S, De Caterina R. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovasc Res 2015; 108:39-49. [PMID: 26187727 DOI: 10.1093/cvr/cvv197] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/30/2015] [Indexed: 11/14/2022] Open
Abstract
RATIONALE Engraftment and survival of transplanted stem or stromal cells in the microenvironment of host tissues may be improved by combining such cells with scaffolds to delay apoptosis and enhance regenerative properties. AIMS We examined whether poly(lactic-co-glycolic acid) pharmacologically active microcarriers (PAMs) releasing vascular endothelial growth factor (VEGF) enhance survival, differentiation, and angiogenesis of adipose tissue-mesenchymal stromal cells (AT-MSCs). We analysed the efficacy of transplanted AT-MSCs conjugated with PAMs in a murine model of acute myocardial infarction (AMI). METHODS AND RESULTS We used fibronectin-coated (empty) PAMs or VEGF-releasing PAMs covered with murine AT-MSCs. Twelve-month-old C57 mice underwent coronary artery ligation to induce AMI, and were randomized into five treatment groups: AMI control (saline 20 µL, n = 7), AMI followed by intramyocardial injection with AT-MSCs (2.5 × 10(5) cells/20 µL, n = 5), or concentrated medium (CM) from AT-MSCs (20 µL, n = 8), or AT-MSCs (2.5 × 10(5) cells/20 µL) conjugated with empty PAMs (n = 7), or VEGF-releasing PAMs (n = 8). Sham-operated mice (n = 7) were used as controls. VEGF-releasing PAMs increased proliferation and angiogenic potential of AT-MSCs, but did not impact their osteogenic or adipogenic differentiation. AT-MSCs conjugated with VEGF-releasing PAMs inhibited apoptosis, decreased fibrosis, increased arteriogenesis and the number of cardiac-resident Ki-67 positive cells, and improved myocardial fractional shortening compared with AT-MSCs alone when transplanted into the infarcted hearts of C57 mice. With the exception of fractional shortening, all such effects of AT-MSCs conjugated with VEGF-PAMs were paralleled by the injection of CM. CONCLUSIONS AT-MSCs conjugated with VEGF-releasing PAMs exert paracrine effects that may have therapeutic applications.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti, Italy
| | - Lyubomir Petrov
- Biocenter Kuopio, A. I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Maria Anna Teberino
- Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, 'G. d'Annunzio' University, Chieti, Italy
| | - Lamberto Manzoli
- Department of Medicine and Aging Sciences, 'G. d'Annunzio' University, Chieti, Italy
| | - Jean-Pierre Karam
- INSERM U 1066, Micro et nanomédecine biomimétiques, LUNAM, Université d'Angers, Angers, France
| | - Francesca Vera Renna
- Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, 'G. d'Annunzio' University, Chieti, Italy
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Claudia N Montero-Menei
- INSERM U 1066, Micro et nanomédecine biomimétiques, LUNAM, Université d'Angers, Angers, France
| | - Seppo Ylä-Herttuala
- Biocenter Kuopio, A. I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Raffaele De Caterina
- Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti, Italy Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, 'G. d'Annunzio' University, Chieti, Italy
| |
Collapse
|
45
|
Holt-Casper D, Theisen JM, Moreno AP, Warren M, Silva F, Grainger DW, Bull DA, Patel AN. Novel xeno-free human heart matrix-derived three-dimensional scaffolds. J Transl Med 2015; 13:194. [PMID: 26084398 PMCID: PMC4505384 DOI: 10.1186/s12967-015-0559-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 12/05/2022] Open
Abstract
Rationale Myocardial infarction (MI) results in damaged heart tissue which can progress to severely reduce cardiac function, leading to death. Recent studies have injected dissociated, suspended cardiac cells into coronary arteries to restore function with limited results attributed to poor cell retention and cell death. Extracellular matrix (ECM) injected into damaged cardiac tissue sites show some promising effects. However, combined use of human cardiac ECM and cardiac cells may produce superior benefits to restore cardiac function. Objective This study was designed to assess use of new three-dimensional human heart ECM-derived scaffolds to serve as vehicles to deliver cardiac-derived cells directly to damaged heart tissue and improve cell retention at these sites while also providing biomechanical support and attracting host cell recruitment. Methods and Results ECM-derived porous protein scaffolds were fabricated from human heart tissues. These scaffolds were designed to carry, actively promote and preserve cardiac cell phenotype, viability and functional retention in tissue sites. ECM scaffolds were optimized and were seeded with human cardiomyocytes, cultured and subsequently implanted ex vivo onto infarcted murine epicardium. Seeded human cardiomyocytes readily adhered to human cardiac-derived ECM scaffolds and maintained representative phenotypes including expression of cardiomyocyte-specific markers, and remained electrically synchronous within the scaffold in vitro. Ex vivo, cardiomyocyte-seeded ECM scaffolds spontaneously adhered and incorporated into murine ventricle. Conclusions Decellularized human cardiac tissue-derived 3D ECM scaffolds are effective delivery vehicles for human cardiac cells to directly target ischemic heart tissue and warrant further studies to assess their therapeutic potential in restoring essential cardiac functions. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0559-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dolly Holt-Casper
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Jeff M Theisen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Alonso P Moreno
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Francisco Silva
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - David W Grainger
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - David A Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Amit N Patel
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, UT, 84112, USA. .,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112-5000, USA. .,Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA. .,University of Utah, 30 N 1900 E SOM 3c127, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
46
|
Fu C, Ren F, Zhang Q, Lao G, Zhang LM. Effects of collagen incorporation on thermogelation and hydrogel characteristics of aqueous Pluronic F127 copolymer system. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3573-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
47
|
Savi M, Bocchi L, Fiumana E, Karam JP, Frati C, Bonafé F, Cavalli S, Morselli PG, Guarnieri C, Caldarera CM, Muscari C, Montero-Menei CN, Stilli D, Quaini F, Musso E. Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats. J Biomed Mater Res A 2015; 103:3012-25. [DOI: 10.1002/jbm.a.35442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Monia Savi
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
| | - Leonardo Bocchi
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
| | - Emanuela Fiumana
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Jean-Pierre Karam
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
- UMR S-1066 F-49933; LUNAM University; Angers France
- INSERM U1066; MINT “Micro Et Nanomédecines Biomimétiques” F-49933; Angers France
| | - Caterina Frati
- Department of Clinical and Experimental Medicine; University of Parma; Via A. Gramsci 14 43126 Parma Italy
| | - Francesca Bonafé
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Stefano Cavalli
- Department of Clinical and Experimental Medicine; University of Parma; Via A. Gramsci 14 43126 Parma Italy
| | - Paolo G. Morselli
- Department of Specialist; Diagnostic and Experimental Medicine, University of Bologna; Bologna Italy
| | - Carlo Guarnieri
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Claudio M. Caldarera
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Claudio Muscari
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Biomedical and Neuromotor Sciences; University of Bologna; Via Irnerio 48, 40126 Bologna Italy
| | - Claudia N. Montero-Menei
- UMR S-1066 F-49933; LUNAM University; Angers France
- INSERM U1066; MINT “Micro Et Nanomédecines Biomimétiques” F-49933; Angers France
| | - Donatella Stilli
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
- National Institute for Cardiovascular Research; Bologna Italy
| | - Federico Quaini
- National Institute for Cardiovascular Research; Bologna Italy
- Department of Clinical and Experimental Medicine; University of Parma; Via A. Gramsci 14 43126 Parma Italy
| | - Ezio Musso
- Department of Life Sciences; University of Parma; Parco Area delle Scienze 11/A 43124 Parma Italy
- National Institute for Cardiovascular Research; Bologna Italy
| |
Collapse
|
48
|
Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem 2014; 71:141-53. [DOI: 10.1007/s13105-014-0373-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 01/21/2023]
|