1
|
Zondo NM, Sobia P, Sivro A, Ngcapu S, Mahomed S, Mansoor LE, Asare K, Lewis L, Ramsuran V, Archary D. Drug transporter mRNA expression and genital inflammation in South African women on oral pre-exposure prophylaxis (PrEP). AIDS Res Ther 2025; 22:18. [PMID: 39955595 PMCID: PMC11829381 DOI: 10.1186/s12981-025-00713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Globally HIV remains a major public health problem. In sub-Saharan Africa most new HIV infections occur in adolescent girls and young women. Previously tested antiretroviral drugs as different pre-exposure prophylaxis (PrEP) formulations have shown inconsistent levels of protection against HIV in African women. Besides adherence, biological factors such as drug transporter proteins are increasingly recognized as key modulators of PrEP levels. Drug transporter mRNA expression levels has been significantly correlated to altered PrEP levels in-vitro in different tissues, with inflammation identified as a further modifier of drug transporters mRNA expression and thus PrEP levels. We therefore, aimed to determine possible concordance between drug transporter mRNA expression in the female genital tract (FGT) and blood of N = 45 South African women taking oral PrEP-Truvada® [TDF/FTC)] over 6 months for HIV prevention. Additionally, we determined associations between drug transporter mRNA expression, genital inflammation, and blood-tenofovir diphosphate (TFV-DP). mRNA-expression of four efflux P-gp; MATE-1; MRP-2; MRP-4 and two influx OAT-1 and OAT-3 drug transporters were determined by qRT-PCR. Multiplexed technology was used to measure 27 cytokines to define genital inflammation. Significant positive correlations of mRNA expression for P-gp, MATE-1, MRP-2, and MRP-4 were observed between the FGT and blood at 3- and 6-months post-PrEP initiation (p < 0.05). For OAT-1 however, significant positive correlations were observed pre- and post-PrEP exposure (p < 0.05). Linear-mixed models showed moderate associations between FGT cytokines and drug transporter mRNA expression, with a direct relationship observed between MIP-1β concentration and MATE-1 mRNA expression. Similarly, PLS-DA showed that in women with genital inflammation, consistently higher mRNA expression of MATE-1 was observed compared to women without genital inflammation. No significant associations were observed between drug transporter mRNA expression and blood TFV-DP. Our results suggest that drug transporters may be similarly expressed in the FGT and blood. Furthermore, genital inflammation may modify PrEP levels by altering drug transporter mRNA expression. Collectively, our data may be used to better understand biological factors that may affect PrEP efficacy in African women who remain vulnerable to HIV.
Collapse
Affiliation(s)
- Nomusa M Zondo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-NatalCollege of Health SciencesKwa-Zulu Natal, Durban, 4075, South Africa
| | - Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-NatalCollege of Health SciencesKwa-Zulu Natal, Durban, 4075, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-NatalCollege of Health SciencesKwa-Zulu Natal, Durban, 4075, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, R3E 3L5, Canada
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-NatalCollege of Health SciencesKwa-Zulu Natal, Durban, 4075, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-NatalCollege of Health SciencesKwa-Zulu Natal, Durban, 4075, South Africa
| | - Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
- School of Nursing and Public Health, University of KwaZulu-NatalCollege of Health SciencesKwaZulu-Natal, Durban, 4075, South Africa
| | - Kwabena Asare
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-NatalCollege of Health SciencesKwa-Zulu Natal, Durban, 4075, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, Durban, 4075, South Africa.
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-NatalCollege of Health SciencesKwa-Zulu Natal, Durban, 4075, South Africa.
| |
Collapse
|
2
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
3
|
Duffey M, Shafer RW, Timm J, Burrows JN, Fotouhi N, Cockett M, Leroy D. Combating antimicrobial resistance in malaria, HIV and tuberculosis. Nat Rev Drug Discov 2024; 23:461-479. [PMID: 38750260 DOI: 10.1038/s41573-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance poses a significant threat to the sustainability of effective treatments against the three most prevalent infectious diseases: malaria, human immunodeficiency virus (HIV) infection and tuberculosis. Therefore, there is an urgent need to develop novel drugs and treatment protocols capable of reducing the emergence of resistance and combating it when it does occur. In this Review, we present an overview of the status and underlying molecular mechanisms of drug resistance in these three diseases. We also discuss current strategies to address resistance during the research and development of next-generation therapies. These strategies vary depending on the infectious agent and the array of resistance mechanisms involved. Furthermore, we explore the potential for cross-fertilization of knowledge and technology among these diseases to create innovative approaches for minimizing drug resistance and advancing the discovery and development of new anti-infective treatments. In conclusion, we advocate for the implementation of well-defined strategies to effectively mitigate and manage resistance in all interventions against infectious diseases.
Collapse
Affiliation(s)
- Maëlle Duffey
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
- The Global Antibiotic Research & Development Partnership, Geneva, Switzerland
| | - Robert W Shafer
- Department of Medicine/Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | | | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
| | | | | | - Didier Leroy
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland.
| |
Collapse
|
4
|
Singh H, Dhotre K, Shyamveer, Choudhari R, Verma A, Mahajan SD, Ali N. ABCG2 polymorphisms and susceptibility to ARV-associated hepatotoxicity. Mol Genet Genomic Med 2024; 12:e2362. [PMID: 38451012 PMCID: PMC10955225 DOI: 10.1002/mgg3.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The ABCG2 421C/A polymorphism contributes significantly to the distribution and absorption of antiretroviral (ARV) regimens and is associated with the undesirable side effects of efavirenz. METHODS To investigate this, we examined ABCG2 34G/A (rs2231137) and 421C/A (rs2231142) genetic variations in 149 HIV-infected patients (116 without hepatotoxicity, 33 with ARV-induced hepatotoxicity) and 151 healthy controls through the PCR-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS AND DISCUSSION The ABCG2 34GA genotype and 34A allele indicated a risk for antiretroviral therapy-associated hepatotoxicity development (p = 0.09, OR = 1.58, 95% CI: 0.93-2.69; p = 0.06, OR = 1.50, 95% CI: 0.98-2.30). The haplotype GA was associated with hepatotoxicity (p = 0.042, OR = 2.37, 95% CI: 1.04-5.43; p = 0.042, OR = 2.49, 95% CI: 1.04-5.96). Moreover, when comparing HIV patients with hepatotoxicity to healthy controls, the haplotype GA had an association with an elevated risk for the development of hepatotoxicity (p = 0.041, OR = 1.73, 95% CI: 1.02-2.93). Additionally, the association of the ABCG2 34GA genotype with the progression of HIV (p = 0.02, OR = 1.97, 95% CI: 1.07-3.63) indicated a risk for advanced HIV infection. Furthermore, the ABCG2 421AA genotype was linked to tobacco users and featured as a risk factor for the progression of HIV disease (p = 0.03, OR = 11.07, 95% CI: 1.09-270.89). CONCLUSION The haplotype GA may enhance the risk of hepatotoxicity development and its severity. Individuals with the ABCG2 34A allele may also be at risk for the development of hepatotoxicity. Additionally, individuals with an advanced stage of HIV and the ABCG2 34GA genotype may be at risk for disease progression.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Kishore Dhotre
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Shyamveer
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Ranjana Choudhari
- Department of Molecular BiologyNational AIDS Research InstitutePuneIndia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical SciencesSam Higginbottom University of Agriculture, Technology and SciencesAllahabadIndia
| | - Supriya D. Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical SciencesUniversity at Buffalo's Clinical Translational Research CenterBuffaloNew YorkUSA
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| |
Collapse
|
5
|
Wong A, Chu Y, Chen H, Feng W, Ji L, Qin C, Stocks MJ, Marlow M, Gershkovich P. Distribution of lamivudine into lymph node HIV reservoir. Int J Pharm 2023; 648:123574. [PMID: 37935311 DOI: 10.1016/j.ijpharm.2023.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Efficient delivery of antiretroviral agents to lymph nodes is important to decrease the size of the HIV reservoir within the lymphatic system. Lamivudine (3TC) is used in first-line regimens for the treatment of HIV. As a highly hydrophilic small molecule, 3TC is not predicted to associate with chylomicrons and therefore should have negligible uptake into intestinal lymphatics following oral administration. Similarly, negligible amounts of 3TC are predicted to be transported into peripheral lymphatics following subcutaneous (SC) injection due to the faster flow rate of blood in comparison to lymph. In this work, we performed pharmacokinetic and biodistribution studies of 3TC in rats following oral lipid-based, oral lipid-free, SC, and intravenous (IV) administrations. In the oral administration studies, mesenteric lymph nodes (MLNs) had significantly higher 3TC concentrations compared to other lymph nodes, with mean tissue:serum ratios ranging from 1.4 to 2.9. However, cells and chylomicrons found in mesenteric lymph showed low-to-undetectable concentrations. In SC studies, administration-side (right) draining inguinal and popliteal lymph nodes had significantly higher concentrations (tissue:serum ratios as high as 3.2) than corresponding left-side nodes. In IV studies, lymph nodes had lower mean tissue:serum ratios ranging from 0.9 to 1.4. We hypothesize that following oral or SC administration, slower permeation of this hydrophilic molecule into blood capillaries may result in considerable passive 3TC penetration into lymphatic vessels. Further studies will be needed to clarify the mechanism of delivery of 3TC and similar antiretroviral drugs into the lymph nodes.
Collapse
Affiliation(s)
- Abigail Wong
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Yenju Chu
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Haojie Chen
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Wanshan Feng
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Liuhang Ji
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Chaolong Qin
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Michael J Stocks
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Pavel Gershkovich
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
6
|
Zondo NM, Sobia P, Sivro A, Ngcapu S, Mansoor LE, Mahomed S, Lewis L, Ramsuran V, Archary D. Single-nucleotide polymorphisms in ABC drug transporters alter expression and circulating tenofovir in healthy South African women exposed to pre-exposure prophylaxis. Pharmacogenomics 2023; 24:599-613. [PMID: 37503696 DOI: 10.2217/pgs-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Aim: We investigated if single-nucleotide polymorphisms (SNPs) in ATP-binding cassette (ABC) drug transporters alter gene expression and tenofovir disposition in South African women taking Truvada® for HIV prevention. Materials & methods: In 393 women, real-time PCR was used to determine the associations between six SNPs in ABC transporter genes, mRNA expression and circulating-tenofovir. Results: Univariable and multivariable analyses showed that CT and TT relative to CC genotypes for the ABCC4(3463C/T) SNP had significantly higher tenofovir levels. In contrast, the AA genotype for the ABCC4(4976A/G) SNP showed significantly less tenofovir, while mRNA expression was increased. Conclusion: SNPs in the ABCC4 gene may differentially affect gene expression and circulating tenofovir. Their impact may inform on low pre-exposure prophylaxis efficacy and discern effective drugs in clinical trials of African women enriched for certain genotypes.
Collapse
Affiliation(s)
- Nomusa M Zondo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
- JC Wilt Infectious Disease Research Centre, National Microbiology laboratory, Public Health Agency of Canada, Winnipeg, MB, R3E 3L5, Canada
- University of Manitoba, Department of Medical Microbiology and Infectious Diseases, Winnipeg, R3E 3L5, Canada
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Leila E Mansoor
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Lara Lewis
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, Kwa-Zulu Natal, 4075, South Africa
- University of KwaZulu-Natal, Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Durban, Kwa-Zulu Natal, 4075, South Africa
| |
Collapse
|
7
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Zondo NM, Sobia P, Sivro A, Ngcapu S, Ramsuran V, Archary D. Pharmacogenomics of drug transporters for antiretroviral long-acting pre-exposure prophylaxis for HIV. Front Genet 2022; 13:940661. [PMID: 36246609 PMCID: PMC9557974 DOI: 10.3389/fgene.2022.940661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The use of antiretrovirals (ARVs) as oral, topical, or long-acting pre-exposure prophylaxis (PrEP) has emerged as a promising strategy for HIV prevention. Clinical trials testing Truvada® [tenofovir disoproxil fumarate (TDF)/tenofovir (TFV) and emtricitabine (FTC)] as oral or topical PrEP in African women showed mixed results in preventing HIV infections. Since oral and topical PrEP effectiveness is dependent on adequate drug delivery and availability to sites of HIV infection such as the blood and female genital tract (FGT); host biological factors such as drug transporters have been implicated as key regulators of PrEP. Drug transporter expression levels and function have been identified as critical determinants of PrEP efficacy by regulating PrEP pharmacokinetics across various cells and tissues of the blood, renal tissues, FGT mucosal tissues and other immune cells targeted by HIV. In addition, biological factors such as genetic polymorphisms and genital inflammation also influence drug transporter expression levels and functionality. In this review, drug transporters and biological factors modulating drug transporter disposition are used to explain discrepancies observed in PrEP clinical trials. This review also provides insight at a pharmacological level of how these factors further increase the susceptibility of the FGT to HIV infections, subsequently contributing to ineffective PrEP interventions in African women.
Collapse
Affiliation(s)
- Nomusa M. Zondo
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Parveen Sobia
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Mucosal Immunology Department, Durban, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Yang M, Xu X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin Drug Metab Toxicol 2022; 18:483-505. [PMID: 35975669 PMCID: PMC9506706 DOI: 10.1080/17425255.2022.2112175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Nucleoside analogs are an important class of antiviral agents. Due to the high hydrophilicity and limited membrane permeability of antiviral nucleoside/nucleotide analogs (AVNAs), transporters play critical roles in AVNA pharmacokinetics. Understanding the properties of these transporters is important to accelerate translational research for AVNAs. AREAS COVERED The roles of key transporters in the pharmacokinetics of 25 approved AVNAs were reviewed. Clinically relevant information that can be explained by the modulation of transporter functions is also highlighted. EXPERT OPINION Although the roles of transporters in the intestinal absorption and renal excretion of AVNAs have been well identified, more research is warranted to understand their roles in the distribution of AVNAs, especially to immune privileged compartments where treatment of viral infection is challenging. P-gp, MRP4, BCRP, and nucleoside transporters have shown extensive impacts in the disposition of AVNAs. It is highly recommended that the role of transporters should be investigated during the development of novel AVNAs. Clinically, co-administered inhibitors and genetic polymorphism of transporters are the two most frequently reported factors altering AVNA pharmacokinetics. Physiopathology conditions also regulate transporter activities, while their effects on pharmacokinetics need further exploration. Pharmacokinetic models could be useful for elucidating these complicated factors in clinical settings.
Collapse
Affiliation(s)
- Mengbi Yang
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Drug Metabolism and Pharmacokinetics, Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
10
|
Yin J, Li F, Li Z, Yu L, Zhu F, Zeng S. Feature, Function, and Information of Drug Transporter-Related Databases. Drug Metab Dispos 2022; 50:76-85. [PMID: 34426411 DOI: 10.1124/dmd.121.000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
With the rapid progress in pharmaceutical experiments and clinical investigations, extensive knowledge of drug transporters (DTs) has accumulated, which is valuable data for the understanding of drug metabolism and disposition. However, such data are largely dispersed in the literature, which hampers its utility and significantly limits its possibility for comprehensive analysis. A variety of databases have, therefore, been constructed to provide DT-related data, and they were reviewed in this study. First, several knowledge bases providing data regarding clinically important drugs and their corresponding transporters were discussed, which constituted the most important resources of DT-centered data. Second, some databases describing the general transporters and their functional families were reviewed. Third, various databases offering transporter information as part of their entire data collection were described. Finally, customized database functions that are available to facilitate DT-related research were discussed. This review provided an overview of the whole collection of DT-related databases, which might facilitate research on precision medicine and rational drug use. SIGNIFICANCE STATEMENT: A collection of well established databases related to drug transporters were comprehensively reviewed, which were organized according to their importance in drug absorption, distribution, metabolism, and excretion research. These databases could collectively contribute to the research on rational drug use.
Collapse
Affiliation(s)
- Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Fengcheng Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Zhaorong Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Feng Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| |
Collapse
|
11
|
Patel SK, Valicherla GR, Micklo AC, Rohan LC. Drug delivery strategies for management of women's health issues in the upper genital tract. Adv Drug Deliv Rev 2021; 177:113955. [PMID: 34481034 DOI: 10.1016/j.addr.2021.113955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023]
Abstract
The female upper genital tract (UGT) hosts important reproductive organs including the cervix, uterus, fallopian tubes, and ovaries. Several pathologies affect these organ systems such as infections, reproductive issues, structural abnormalities, cancer, and inflammatory diseases that could have significant impact on women's overall health. Effective disease management is constrained by the multifaceted nature of the UGT, complex anatomy and a dynamic physiological environment. Development of drug delivery strategies that can overcome mucosal and safety barriers are needed for effective disease management. This review introduces the anatomy, physiology, and mucosal properties of the UGT and describes drug delivery barriers, advances in drug delivery technologies, and opportunities available for new technologies that target the UGT.
Collapse
|
12
|
HERRERA C, HARMAN S, ALDON Y, ROGERS P, ARMANASCO N, ZIPRIN P, STIEH D, NUTTALL J, SHATTOCK RJ. The entry inhibitor DS003 (BMS-599793): a BMS-806 analogue, provides superior activity as a pre-exposure prophylaxis candidate. AIDS 2021; 35:1907-1917. [PMID: 34101626 PMCID: PMC8416713 DOI: 10.1097/qad.0000000000002974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Small molecule inhibitors able to bind to gp120 and prevent CD4+-induced HIV-1 envelope conformational change provide an important class of inhibitors. Currently, only Fostemsavir is approved for HAART, which makes this class of inhibitors attractive candidates for prevention. We assessed the activity of DS003 (BMS-599793), an analogue of BMS-378806, in different mucosal tissues and elucidated its mechanism of action. DESIGN Preclinical analysis was performed with human mucosal tissue models as surrogates of in-vivo activity. METHODS Antiviral efficacy of DS003 was assessed in mucosal tissue explants (ecto-cervical, penile and colorectal) and in trans-infection models (co-cultures of dendritic or mucosal migratory cells with CD4+ T cells) with several dosing times (2, 24 h and sustained) and in combination with a fusion inhibitor. Binding of DS003 to gp120 was assessed by flow cytometry and bio-layer interferometry and further probed in competitive studies using soluble CD4+ (sCD4+) and an anti-CD4+ induced antibody, 17b. RESULTS In all models, the inhibitory activity of DS003 was increased with longer periods of exposure and by combination with a fusion inhibitor. Pre-exposure to sCD4+ impeded DS003 binding to viral envelope. In contrast, DS003 did not impact subsequent binding of sCD4+. Furthermore, sCD4+-induced epitope exposure as assessed by 17b binding was significantly reduced in the presence of DS003. CONCLUSION DS003 inhibits HIV-1 infection by binding to or near the CD4+ binding site of gp120, preventing CD4+-induced conformational change essential for viral fusion. These data highlight the potential of DS003 for development as a pre-exposure prophylaxis candidate.
Collapse
Affiliation(s)
- Carolina HERRERA
- Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, UK. Current address: Section of Infectious Diseases, Faculty of Medicine, St Mary’s Campus, Imperial College, UK
| | - Sarah HARMAN
- Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, UK. Current address: London School of Hygiene and Tropical Medicine, London, UK
| | - Yoann ALDON
- Section of Infectious Diseases, Faculty of Medicine, St Mary’s Campus, Imperial College, UK. Current address: Amsterdam UMC, Netherlands
| | - Paul ROGERS
- Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, UK. Current address: Section of Infectious Diseases, Faculty of Medicine, St Mary’s Campus, Imperial College, UK
| | - Naomi ARMANASCO
- Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, UK. Current address: Section of Infectious Diseases, Faculty of Medicine, St Mary’s Campus, Imperial College, UK
| | - Paul ZIPRIN
- Department of Surgery and Cancer, St Mary’s Hospital, Imperial College London, UK
| | - Daniel STIEH
- Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, UK. Current address: Janssen Vaccines & Prevention B.V. Leiden, Netherlands
| | - Jeremy NUTTALL
- International Partnership for Microbicides, Silver Spring, MD, USA
| | - Robin J. SHATTOCK
- Centre for Infection, Division of Cellular & Molecular Medicine, St George’s University of London, UK. Current address: Section of Infectious Diseases, Faculty of Medicine, St Mary’s Campus, Imperial College, UK
| |
Collapse
|
13
|
Nunes R, Bogas S, Faria MJ, Gonçalves H, Lúcio M, Viseu T, Sarmento B, das Neves J. Electrospun fibers for vaginal administration of tenofovir disoproxil fumarate and emtricitabine in the context of topical pre-exposure prophylaxis. J Control Release 2021; 334:453-462. [PMID: 33961916 DOI: 10.1016/j.jconrel.2021.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Women are particularly vulnerable to sexual HIV-1 transmission. Oral pre-exposure prophylaxis (PrEP) with tenofovir disoproxil fumarate and emtricitabine (TDF/FTC) is highly effective in avoiding new infections in men, but protection has only been shown to be moderate in women. Such differences have been associated, at least partially, to poor drug penetration of the lower female genital tract and the need for strict adherence to continuous daily oral intake of TDF/FTC. On-demand topical microbicide products could help circumvent these limitations. We developed electrospun fibers based on polycaprolactone (PCL fibers) or liposomes associated to poly(vinyl alcohol) (liposomes-in-PVA fibers) for the vaginal co-delivery of TDF and FTC, and assessed their pharmacokinetics in mice. PCL fibers and liposomes-in-PVA fibers were tested for morphological and physicochemical properties using scanning electron microscopy, differential scanning calorimetry and X-ray diffractometry. Fibers featured organoleptic and mechanical properties compatible with their suitable handling and vaginal administration. Fluorescent quenching of mucin in vitro - used as a proxy for mucoadhesion - was intense for PCL fibers, but mild for liposomes-in-PVA fibers. Both fibers were shown safe in vitro and able to rapidly release drug content (15-30 min) under sink conditions. Liposomes-in-PVA fibers allowed increasing genital drug concentrations after a single intravaginal administration when compared to continuous daily treatment for five days with 25-times higher oral doses. For instance, the levels of tenofovir and FTC in vaginal lavage were around 4- and 29-fold higher, respectively. PCL fibers were also superior to oral treatment, although to a minor extent (approximately 2-fold higher drug concentrations in lavage). Vaginal tissue drug levels were generally low for all treatments, while systemic drug exposure was negligible in the case of fibers. These data suggest that proposed fibers may provide an interesting alternative or an ancillary option to oral PrEP in women.
Collapse
Affiliation(s)
- Rute Nunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - Sarah Bogas
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | - Maria João Faria
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | | | - Marlene Lúcio
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal; CBMA - Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal.
| | - Teresa Viseu
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, Braga, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal.
| |
Collapse
|
14
|
Donnelly M, Tsakalozou E, Sharan S, Straubinger T, Bies R, Zhao L. Review of Complex Generic Drugs Delivered Through the Female Reproductive Tract: The Current Competitive Landscape and Emerging Role of Physiologically Based Pharmacokinetic Modeling to Support Development and Regulatory Decisions. J Clin Pharmacol 2020; 60 Suppl 2:S26-S33. [PMID: 33274513 DOI: 10.1002/jcph.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Mark Donnelly
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Eleftheria Tsakalozou
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Satish Sharan
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Thomas Straubinger
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Robert Bies
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Liang Zhao
- Division of Quantitative Methods and Modeling (DQMM), Office of Research and Standards (ORS), Office of Generic Drugs (OGD), Center for Drug Evaluation and Research (CDER), US Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| |
Collapse
|
15
|
Pharmacokinetic and Pharmacodynamic Impacts of Depot Medroxyprogesterone Acetate Use on HIV Pre-exposure Prophylaxis in Women. J Acquir Immune Defic Syndr 2020; 85:182-188. [PMID: 32568766 DOI: 10.1097/qai.0000000000002421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Depot medroxyprogesterone acetate (DMPA) is a commonly used contraceptive in areas where use of tenofovir disoproxil fumarate and emtricitabine for HIV pre-exposure prophylaxis (PrEP) is increasing. OBJECTIVES We aimed to investigate the impact of DMPA on PrEP drug pharmacokinetics and pharmacodynamics in women using PrEP before and after DMPA administration. METHODS In this pilot study, 12 HIV-negative women ages 18-45 underwent biological sample collection at 3 time points: before study drug, after 2 weeks of daily PrEP use alone, and after 2 weeks of daily PrEP and concomitant DMPA use. We measured drug and drug metabolites in plasma, peripheral blood mononuclear cells, cervicovaginal fluid, cervical tissue, and rectal fluid after each 2-week course of PrEP. We measured HIV replication ex vivo in genital tissue biopsies and innate anti-HIV activity in cervicovaginal fluid before PrEP and after both courses. We compared drug concentrations after PrEP alone to after PrEP and DMPA in the same participant using Wilcoxon signed-rank tests. We used mixed effects linear regression models to compare pharmacodynamic measures for each participant at predrug baseline, after PrEP alone, and after PrEP and DMPA. RESULTS We found no significant differences in PrEP drug and drug metabolite concentrations in any compartment during concomitant DMPA use compared with use of PrEP alone, except for a reduction in emtricitabine concentration in cervical tissue. We found no difference in HIV replication in cervical tissue or anti-HIV activity in cervicovaginal fluid during concomitant DMPA and PrEP use compared with during PrEP use alone. CONCLUSIONS Concomitant use of DMPA does not clinically alter pharmacokinetics or pharmacodynamics of PrEP in women. These data support the safety of DMPA use in women using PrEP.
Collapse
|
16
|
Hijazi K, Iannelli F, Cuppone AM, Desjardins D, Caldwell A, Dereuddre-Bosquet N, Scala C, Smith KA, Mukhopadya I, Frank B, Gwozdz G, Santoro F, Grand RL, Pozzi G, Kelly C. In Vivo Modulation of Cervicovaginal Drug Transporters and Tissue Distribution by Film-Released Tenofovir and Darunavir for Topical Prevention of HIV-1. Mol Pharm 2020; 17:852-864. [PMID: 32017579 DOI: 10.1021/acs.molpharmaceut.9b01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clinical trials have demonstrated partial protection against HIV-1 infection by vaginal microbicide formulations based on antiretroviral (ARV) drugs. Improved formulations that will maintain sustained drug concentrations at viral target sites in the cervicovaginal mucosa are needed. We have previously demonstrated that treatment of cervicovaginal cell lines with ARV drugs can alter gene expression of drug transporters, suggesting that the mucosal disposition of ARV drugs delivered vaginally can be modulated by drug transporters. This study aimed to investigate in vivo modulation of drug transporter expression in a nonhuman primate model by tenofovir and darunavir released from film formulations. Cervicovaginal tissues were collected from drug-naïve macaques and from macaques vaginally treated with film formulations of tenofovir or darunavir. Drug release in vaginal fluid as well as drug absorption in cervicovaginal tissues and lymph nodes were verified by mass spectrometry. The effects of exposure to drugs on the expression of transporters relevant to ARV drugs were evaluated by quantitative PCR. We showed expression in cervicovaginal tissue of drug-naïve macaques of transporters important for distribution of ARV drugs, albeit at lower levels compared to human tissue for key transporters including P-glycoprotein. Concentrations of tenofovir and darunavir well above the EC50 values determined in vitro were detected in vaginal fluid and vaginal tissues of macaques treated with drug-dissolving films over 24 h and were also comparable to those shown previously to modulate drug transporter expression. Accordingly, Multidrug Resistance associated Protein 2 (MRP2) in cervicovaginal tissue was upregulated by both tenofovir and darunavir. The two drugs also differentially induced and/or inhibited expression of key uptake transporters for reverse transcriptase inhibitors and protease inhibitors. The lower expression of key transporters in macaques may result in increased retention of ARV drugs at the simian cervicovaginal mucosa compared to the human mucosa and has implications for translation of preclinical data. Modulation of drug transporter expression by tenofovir and darunavir points to the potential benefit of MRP2 inhibition to increase ARV drug penetration through the cervicovaginal epithelium.
Collapse
Affiliation(s)
- Karolin Hijazi
- Institute of Dentistry, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, U.K
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Anna Maria Cuppone
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Delphine Desjardins
- Université Paris Sud, INSERM U1184-Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, CEA, Fontenay-aux-Roses, France
| | - Anna Caldwell
- Mass Spectrometry Facility, King's College London, London SE1 9NH, U.K
| | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, INSERM U1184-Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, CEA, Fontenay-aux-Roses, France
| | - Carlo Scala
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, U.K
| | - Kieron A Smith
- Institute of Dentistry, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, U.K
| | - Indrani Mukhopadya
- Institute of Dentistry, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, U.K
| | - Bruce Frank
- Particle Sciences Inc., Lubrizol LifeSciences, Suite 180 Bethlehem, Pennsylvania 18017, United States
| | - Garry Gwozdz
- Particle Sciences Inc., Lubrizol LifeSciences, Suite 180 Bethlehem, Pennsylvania 18017, United States
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Roger Le Grand
- Université Paris Sud, INSERM U1184-Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, CEA, Fontenay-aux-Roses, France
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Charles Kelly
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, U.K
| |
Collapse
|
17
|
Herrera C. The Pre-clinical Toolbox of Pharmacokinetics and Pharmacodynamics: in vitro and ex vivo Models. Front Pharmacol 2019; 10:578. [PMID: 31178736 PMCID: PMC6543330 DOI: 10.3389/fphar.2019.00578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
Prevention strategies against sexual transmission of human immunodeficiency virus (HIV) are essential to curb the rate of new infections. In the absence of a correlate of protection against HIV infection, pre-clinical evaluation is fundamental to facilitate and accelerate prioritization of prevention candidates and their formulations in a rapidly evolving clinical landscape. Characterization of pharmacokinetic (PK) and pharmacodynamic (PD) properties for candidate inhibitors is the main objective of pre-clinical evaluation. in vitro and ex vivo systems for pharmacological assessment allow experimental flexibility and adaptability at a relatively low cost without raising as significant ethical concerns as in vivo models. Applications and limitations of pre-clinical PK/PD models and future alternatives are reviewed in the context of HIV prevention.
Collapse
Affiliation(s)
- Carolina Herrera
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Devanathan AS, Anderson DJ, Cottrell ML, Burgunder EM, Saunders AC, Kashuba AD. Contemporary Drug–Drug Interactions in
HIV
Treatment. Clin Pharmacol Ther 2019; 105:1362-1377. [DOI: 10.1002/cpt.1393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Aaron S. Devanathan
- University of North Carolina Eshelman School of Pharmacy Chapel Hill North Carolina USA
| | - Daijha J.C. Anderson
- University of North Carolina Eshelman School of Pharmacy Chapel Hill North Carolina USA
| | - Mackenzie L. Cottrell
- University of North Carolina Eshelman School of Pharmacy Chapel Hill North Carolina USA
| | - Erin M. Burgunder
- University of North Carolina Eshelman School of Pharmacy Chapel Hill North Carolina USA
| | - Ashley C. Saunders
- University of North Carolina Eshelman School of Pharmacy Chapel Hill North Carolina USA
| | - Angela D.M. Kashuba
- University of North Carolina Eshelman School of Pharmacy Chapel Hill North Carolina USA
- University of North Carolina School of Medicine Chapel Hill North Carolina USA
| |
Collapse
|
19
|
Epithelial Cells and Fibroblasts from the Human Female Reproductive Tract Accumulate and Release TFV and TAF to Sustain Inhibition of HIV Infection of CD4+ T cells. Sci Rep 2019; 9:1864. [PMID: 30755713 PMCID: PMC6372694 DOI: 10.1038/s41598-018-38205-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022] Open
Abstract
Tenofovir (TFV) treatment of female reproductive tract (FRT) cells results in differential accumulation of intracellular Tenofovir diphosphate (TFV-DP) in different cell types, with greater concentrations in epithelial cells (100-fold) and fibroblasts (10-fold) than in CD4+ T cells. The possibility that TFV-DP accumulation and retention in epithelial cells and fibroblasts may alter TFV availability and protection of CD4+ T cells against HIV infection, prompted us to evaluate TFV and/or Tenofovir alafenamide (TAF) release from FRT cells. Endometrial, endocervical and ectocervical polarized epithelial cells and fibroblasts were pre-loaded with TFV or TAF, and secretions tested for their ability to inhibit HIV infection of activated blood CD4+ T cells. Epithelial cell basolateral secretions (1, 2 and 3 days post-loading), but not apical secretions, suppressed HIV infection of CD4+ T cells, as did secretions from pre-loaded fibroblasts from each site. Intracellular TFV-DP levels in epithelial cells following preloading with TFV or TAF correlated directly with ARV protection of CD4+ T cells from HIV infection. When added apically to epithelial cells, TFV/TAF was released basolaterally, in part through Multidrug Resistant Protein transporters, taken up by fibroblasts and released into secretions to partially protect CD4+ T cells. These findings demonstrate that epithelial cells and fibroblasts release TFV/TAF for use by CD4+ T cells and suggest that the tissue environment plays a major role in the sustained protection against HIV infection.
Collapse
|
20
|
Nicol MR, Corbino JA, Cottrell ML. Pharmacology of Antiretrovirals in the Female Genital Tract for HIV Prevention. J Clin Pharmacol 2018; 58:1381-1395. [PMID: 29901863 PMCID: PMC6333200 DOI: 10.1002/jcph.1270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Preexposure prophylaxis (PrEP) is a powerful tool that, as part of a comprehensive prevention package, has potential to significantly impact the HIV epidemic. PrEP effectiveness is believed to be dependent on the exposure and efficacy of antiretrovirals at the site of HIV transmission. Clinical trial results as well as modeling and simulation indicate the threshold of adherence required for PrEP efficacy of emtricitabine/tenofovir disoproxil fumarate may differ between sites of HIV transmission with less forgiveness for missed doses in women exposed through genital tissue compared to people exposed through colorectal tissue. This suggests a role for local and host factors to influence mucosal pharmacology. Here we review the mucosal pharmacology of antiretrovirals in the female genital tract and explore potential determinants of PrEP efficacy. Host factors such as inflammation, coinfections, hormonal status, and the vaginal microbiome will be explored as well as the role of drug-metabolizing enzymes and transporters in regulating local drug exposure. The use of preclinical and early clinical models to predict clinical effectiveness is also discussed.
Collapse
Affiliation(s)
- Melanie R Nicol
- University of Minnesota College of Pharmacy, Department of Experimental and Clinical Pharmacology
| | - Joseph A Corbino
- University of Minnesota College of Pharmacy, Department of Experimental and Clinical Pharmacology
| | - Mackenzie L Cottrell
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics
| |
Collapse
|
21
|
Abstract
Sexual intercourse (vaginal and anal) is the predominant mode of human immunodeficiency virus (HIV) transmission. Topical microbicides used in an on-demand format (i.e., immediately before or after sex) can be part of an effective tool kit utilized to prevent sexual transmission of HIV. The effectiveness of prevention products is positively correlated with adherence, which is likely to depend on user acceptability of the product. The development of an efficacious and acceptable product is therefore paramount for the success of an on-demand product. Acceptability of on-demand products (e.g., gels, films, and tablets) and their attributes is influenced by a multitude of user-specific factors that span behavioral, lifestyle, socio-economic, and cultural aspects. In addition, physicochemical properties of the drug, anatomical and physiological aspects of anorectal and vaginal compartments, issues relating to large-scale production, and cost can impact product development. These factors together with user preferences determine the design space of an effective, acceptable, and feasible on-demand product. In this review, we summarize the interacting factors that together determine product choice and its target product profile.
Collapse
Affiliation(s)
- Sravan Kumar Patel
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Lisa Cencia Rohan
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
22
|
Targeted microbicides for preventing sexual HIV transmission. J Control Release 2017; 266:119-128. [PMID: 28951320 DOI: 10.1016/j.jconrel.2017.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022]
Abstract
Sexual transmission remains one of the most significant hurdles in the fight against HIV infection. The use of vaginal or rectal microbicides has been proposed for topical pre-exposure prophylaxis but available results from clinical trials of candidate products have been, at best, less than optimal. While waiting for the first product to get regulatory approval, novel approaches are being explored in order to enhance efficacy, as well as to assure safety. Strategies involving specific delivery of antiviral agents to key players involved in the early steps of sexual transmission have the potential to help achieving such purposes. Engineering systems that allow targeting cells, tissues or other biological structures of interest may provide a way to modulate local pharmacokinetics of promising microbicide molecules and, thus, maximize protection. This concise review discusses the identification and use of potential targets for such purpose, while detailing on several examples of targeted systems engineered as potential microbicide candidates. Furthermore, remaining challenges and hints for future work in the field of targeted microbicides are addressed.
Collapse
|
23
|
Rizk ML, Zou L, Savic RM, Dooley KE. Importance of Drug Pharmacokinetics at the Site of Action. Clin Transl Sci 2017; 10:133-142. [PMID: 28160433 PMCID: PMC5421734 DOI: 10.1111/cts.12448] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- ML Rizk
- Merck & Co., Inc.KenilworthNew JerseyUSA
| | - L Zou
- University of CaliforniaSan FranciscoCaliforniaUSA
| | - RM Savic
- University of CaliforniaSan FranciscoCaliforniaUSA
| | - KE Dooley
- Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
24
|
Seifert SM, Chen X, Meditz AL, Castillo-Mancilla JR, Gardner EM, Predhomme JA, Clayton C, Austin G, Palmer BE, Zheng JH, Klein B, Kerr BJ, Guida LA, Rower C, Rower JE, Kiser JJ, Bushman LR, MaWhinney S, Anderson PL. Intracellular Tenofovir and Emtricitabine Anabolites in Genital, Rectal, and Blood Compartments from First Dose to Steady State. AIDS Res Hum Retroviruses 2016; 32:981-991. [PMID: 27526873 DOI: 10.1089/aid.2016.0008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pharmacokinetics (PK) of tenofovir-diphosphate (TFV-DP) and emtricitabine-triphosphate (FTC-TP), the active anabolites of tenofovir disoproxil fumarate (TDF), and emtricitabine (FTC) in blood, genital, and rectal compartments was determined in HIV-positive and seronegative adults who undertook a 60-day intensive PK study of daily TDF/FTC (plus efavirenz in HIV positives). Lymphocyte cell sorting, genital, and rectal sampling occurred once per subject, at staggered visits. Among 19 HIV-positive (3 female) and 21 seronegative (10 female) adults, TFV-DP in peripheral blood mononuclear cells (PBMC) accumulated 8.6-fold [95% confidence interval (CI): 7.2-10] from first-dose to steady-state concentration (Css) versus 1.7-fold (95% CI: 1.5-1.9) for FTC-TP. Css was reached in ∼11 and 3 days, respectively. Css values were similar between HIV-negative and HIV-positive individuals. Css TFV-DP in rectal mononuclear cells (1,450 fmol/106 cells, 898-2,340) was achieved in 5 days and was >10 times higher than PBMC (95 fmol/106 cells, 85-106), seminal cells (22 fmol/106 cells, 6-79), and cervical cells (111 fmol/106 cells, 64-194). FTC-TP Css was highest in PBMC (5.7 pmol/106 cells, 5.2-6.1) and cervical cells (7 pmol/106 cells, 2-19) versus rectal (0.8 pmol/106 cells, 0.6-1.1) and seminal cells (0.3 pmol/106 cells, 0.2-0.5). Genital drug concentrations on days 1-7 overlapped with estimated Css, but accumulation characteristics were based on limited data. TFV-DP and FTC-TP in cell sorted samples were highest and achieved most rapidly in CD14+ compared with CD4+, CD8+, and CD19+ cells. Together, these findings demonstrate cell-type and tissue-dependent cellular pharmacology, preferential accumulation of TFV-DP in rectal mononuclear cells, and rapid distribution into rectal and genital compartments.
Collapse
Affiliation(s)
- Sharon M. Seifert
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Xinhui Chen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Amie L. Meditz
- Boulder Community Hospital, Beacon Center for Infectious Diseases, Boulder, Colorado
| | - Jose R. Castillo-Mancilla
- Division of Infectious Diseases, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | | | - Julie A. Predhomme
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Carolyn Clayton
- Department of Biostatistics and Informatics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Gregory Austin
- School of Medicine, Internal Medicine, Gastroenterology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Brent E. Palmer
- Division of Allergy and Clinical Immunology, School of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Jia-Hua Zheng
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Brandon Klein
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Becky J. Kerr
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - L. Anthony Guida
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Caitlin Rower
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Joseph E. Rower
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer J. Kiser
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Lane R. Bushman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Samantha MaWhinney
- Department of Biostatistics and Informatics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Peter L. Anderson
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Zhou T, Hu M, Pearlman A, Rohan LC. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing. Biochem Pharmacol 2016; 116:162-75. [PMID: 27453435 PMCID: PMC5362249 DOI: 10.1016/j.bcp.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/14/2016] [Indexed: 01/18/2023]
Abstract
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with (3)H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Anti-HIV Agents/metabolism
- Anti-HIV Agents/pharmacokinetics
- Cell Line
- Cervix Uteri/cytology
- Cervix Uteri/drug effects
- Cervix Uteri/metabolism
- Diestrus/drug effects
- Diestrus/metabolism
- Estrus/drug effects
- Estrus/metabolism
- Female
- Gene Expression Regulation/drug effects
- Humans
- Mice
- Multidrug Resistance-Associated Proteins/antagonists & inhibitors
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Propionates/pharmacology
- Quinolines/pharmacology
- Rabbits
- Reproductive Control Agents/pharmacology
- Species Specificity
- Tenofovir/metabolism
- Tenofovir/pharmacokinetics
- Tissue Distribution/drug effects
- Vagina/cytology
- Vagina/drug effects
- Vagina/metabolism
- Vaginal Creams, Foams, and Jellies/metabolism
- Vaginal Creams, Foams, and Jellies/pharmacokinetics
Collapse
Affiliation(s)
- Tian Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Minlu Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Andrew Pearlman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Lisa C Rohan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States.
| |
Collapse
|
26
|
Mukhopadhya I, Murray GI, Duncan L, Yuecel R, Shattock R, Kelly C, Iannelli F, Pozzi G, El-Omar EM, Hold GL, Hijazi K. Transporters for Antiretroviral Drugs in Colorectal CD4+ T Cells and Circulating α4β7 Integrin CD4+ T Cells: Implications for HIV Microbicides. Mol Pharm 2016; 13:3334-40. [PMID: 27467446 DOI: 10.1021/acs.molpharmaceut.6b00351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD4+ T lymphocytes in the colorectal mucosa are key in HIV-1 transmission and dissemination. As such they are also the primary target for antiretroviral (ARV)-based rectal microbicides for pre-exposure prophylaxis. Drug transporters expressed in mucosal CD4+ T cells determine ARV distribution across the cell membrane and, most likely, efficacy of microbicides. We describe transporters for antiretroviral drugs in colorectal mucosal CD4+ T lymphocytes and compare gene expression with circulating α4β7+CD4+ T cells, which traffic to the intestine and have been shown to be preferentially infected by HIV-1. Purified total CD4+ T cells were obtained from colorectal tissue and blood samples by magnetic separation. CD4+ T cells expressing α4β7 integrin were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells of healthy volunteers. Expressions of 15 efflux and uptake drug transporter genes were quantified using Taqman qPCR assays. Expression of efflux transporters MRP3, MRP5, and BCRP and uptake transporter CNT2 were significantly higher in colorectal CD4+ T cells compared to circulating CD4+ T cells (p = 0.01-0.03). Conversely, circulating α4β7+CD4+ T cells demonstrated significantly higher expression of OATPD compared to colorectal CD4+ T cells (p = 0.001). To the best of our knowledge this is the first report of drug transporter gene expression in colorectal CD4+ and peripheral α4β7+CD4+ T cells. The qualitative and quantitative differences in drug transporter gene expression profiles between α4β7+CD4+ T cells and total mucosal CD4+ T cells may have significant implications for the efficacy of rectally delivered ARV-microbicides. Most notably, we have identified efflux drug transporters that could be targeted by selective inhibitors or beneficial drug-drug interactions to enhance intracellular accumulation of antiretroviral drugs.
Collapse
Affiliation(s)
- Indrani Mukhopadhya
- University of Aberdeen Dental School and Hospital , Aberdeen AB25 2ZR, U.K.,Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Graeme I Murray
- Department of Pathology, School of Medicine & Dentistry, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Linda Duncan
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Raif Yuecel
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Robin Shattock
- Mucosal Infection & Immunity Group, Section of Infectious Diseases, Imperial College , London W2 1PG, U.K
| | - Charles Kelly
- Mucosal & Salivary Biology, King's College London, Dental Institute , London SE1 1UL, U.K
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena , Siena 53100, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena , Siena 53100, Italy
| | - Emad M El-Omar
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Georgina L Hold
- Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| | - Karolin Hijazi
- University of Aberdeen Dental School and Hospital , Aberdeen AB25 2ZR, U.K.,Institute of Medical Sciences, University of Aberdeen , Aberdeen AB25 2ZD, U.K
| |
Collapse
|
27
|
Veselinovic M, Yang KH, Sykes C, Remling-Mulder L, Kashuba ADM, Akkina R. Mucosal tissue pharmacokinetics of the integrase inhibitor raltegravir in a humanized mouse model: Implications for HIV pre-exposure prophylaxis. Virology 2016; 489:173-8. [PMID: 26771889 DOI: 10.1016/j.virol.2015.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 12/26/2022]
Abstract
Orally administered anti-retroviral drugs show considerable promise for HIV/AIDS pre-exposure prophylaxis (PrEP). For the success of these strategies, pharmacokinetic (PK) data defining the optimal concentration of the drug needed for protection in relevant mucosal exposure sites is essential. Here we employed a humanized mouse model to derive comprehensive PK data on the HIV integrase inhibitor raltegravir (RAL), a leading PrEP drug candidate. Under steady state conditions following oral dosing, plasma and multiple mucosal tissues were sampled simultaneously. RAL exhibited higher drug exposure in mucosal tissues relative to that in plasma with one log higher exposure in vaginal and rectal tissue and two logs higher exposure in intestinal mucosa reflecting the trends seen in the human studies. These data demonstrate the suitability of RAL for HIV PrEP and validate the utility of humanized mouse models for deriving important preclinical PK-PD data.
Collapse
Affiliation(s)
- Milena Veselinovic
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | | | - Leila Remling-Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Angela D M Kashuba
- Eshelman School of Pharmacy, NC, USA; School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|