1
|
Xiang X, Shao Y, Xiang L, Jiao Q, Zhang W, Qin Y, Chen Y. Suppression of Liver Fibrogenesis with Photothermal Sorafenib Nanovesicles via Selectively Inhibiting Glycolysis and Amplification of Active HSCs. Mol Pharm 2025; 22:1939-1957. [PMID: 40053386 DOI: 10.1021/acs.molpharmaceut.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
As the major driving factor of hepatic fibrosis, the activated hepatic stellate cells (aHSCs) rely on active glycolysis to support their aberrant proliferation and secretion of the extracellular matrix. Sorafenib (Sor) can combat liver fibrosis by suppressing HIF-1α and glycolysis, but its poor solubility, rapid metabolism, and low bioavailability restrict such a clinical application. Here, Sor was loaded onto polydopamine nanoparticles and then encapsulated by a retinoid-decorated red blood cell membrane, yielding HSC-targeted Sor nanovesicles (PDA/Sor@RMV-VA) with a high Sor-loading capacity and photothermally controlled drug release for antifibrotic treatment. These Sor RMVs not only exhibited a good particle size, dispersity and biocompatibility, prolonged circulation time, enhanced aHSC targetability, and hepatic accumulation both in vitro and in vivo, but also displayed a mild photothermal activity proper for promoting sorafenib release and accumulation in CCl4-induced fibrotic mouse livers without incurring phototoxicity. Compared with nontargeting Sor formulations, PDA/Sor@RMV-VA more effectively downregulated HIF-1α and glycolytic enzyme in both cultured aHSCs and fibrotic mice and reversed myofibroblast phenotype and amplification of aHSCs and thus more significantly improved liver damage, inflammation, and fibrosis, all of which could be even further advanced with NIR irradiation. These results fully demonstrate the antifibrotic power and therapeutic potential of PDA/Sor@RMV-VA as an antifibrotic nanomedicine, which would support a new clinical treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Xianjing Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Li Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| |
Collapse
|
2
|
Perera K, Ghumman M, Sorkhdini P, Norbrun C, Negash S, Zhou Y, Menon JU. Citrus pectin-coated inhalable PLGA nanoparticles for treatment of pulmonary fibrosis. J Mater Chem B 2025; 13:3325-3339. [PMID: 39918485 PMCID: PMC11804936 DOI: 10.1039/d4tb01682c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial disorder of the respiratory system that can be debilitating as it progresses and has experienced a slow rise in incidence in past years. Treatment is complicated by the complex aetiology of the disease and the off-target effects of the two FDA-approved therapeutics available on the market: pirfenidone and nintedanib. In this work, we propose a multipurpose nanoparticle system consisting of poly(lactic-co-glycolic) acid polymer (PLGA) and a coating of citrus pectin (CP) for galectin-3 targeting and anti-fibrotic therapy. Pectin from citrus peels has been observed to have anti-fibrotic activity in a range of fibrotic tissues, causing a decrease in the expression and activity of galectin-3: a key, upregulated marker of fibrosis. We show that the CP-PLGA nanoparticles (NPs) have an average diameter of 340.5 ± 10.6 nm, compatible with inhalation and retention in the deep lung, and that CP constitutes, on average, 40.3% of the final CP-PLGA formulation. The NPs are well-tolerated by MRC-5 lung fibroblasts up to 2 mg mL-1. We demonstrate the NPs' ability to target transforming growth factor β (TGFβ)-treated fibrotic MRC-5 cells in a specific, dose-dependent manner, saturating at approx. 250 μg mL-1in vitro, and that our NPs have potent anti-fibrotic activity in vivo in particular, reversing bleomycin-induced fibrosis in mouse lungs, accompanied by marked reduction in profibrotic markers including collagen 1, fibronectin, α-smooth muscle actin, β-catenin and galectin-3. In all, we present an inherently therapeutic inhalable nanocarrier for galectin-3 targeting and anti-fibrotic therapy. We envision this carrier to be doubly effective against fibrotic lung tissue when combined with an encapsulated anti-fibrotic drug, improving overall/total therapeutic efficacy and patient compliance via the reduction of off-target effects and additive therapeutic effects.
Collapse
Affiliation(s)
- Kalindu Perera
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA
| | - Carmelissa Norbrun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA
| | - Seraphina Negash
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912, USA
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Chemical Engineering, College of Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Yu Liu X, Ying Mao H, Hong S, Jin CH, Jiang HL, Guan Piao M. Dual-targeting galactose-functionalized hyaluronic acid modified lipid nanoparticles delivering silybin for alleviating alcoholic liver injury. Int J Pharm 2024; 666:124662. [PMID: 39241932 DOI: 10.1016/j.ijpharm.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Alcoholic liver injury stands as a predominant pathogenic contributor to the global burden of liver diseases, with alcohol consumption serving as a significant determinant of worldwide morbidity and mortality. Given that liver-targeted therapy for mitigating alcoholic liver injury remains to be a major clinical challenge due to the poor specificity and instability associated with single targeting modification in actively targeted nanomedicine systems, bifunctional targeting modification may serve as a more promising strategy. Here, galactose-functionalized hyaluronic acid (Gal-HA) coated cationic solid lipid nanoparticles carrying silybin (Gal-HA/SIL-SLNPs) featuring dual-targeting hyaluronic acid (HA) and galactose (Gal) moieties, enabled specific liver surface targeting of asialoglycoprotein receptor (ASGPR) and cluster of differentiation 44 (CD44) proteins to enhance silybin uptake, while simultaneously ameliorating the deficiencies of positively charged lipid nanoparticles as drug carriers and preserving their stability in the bloodstream. Based on the findings, Gal-HA/SIL-SLNPs with excellent biocompatibility demonstrated improved cellular internalization and liver distribution, while also displaying ideal curative properties in a mouse model of alcohol-induced liver injury without causing damage to other organs. This work suggests that Gal-HA/SIL-SLNPs with dual modification may represent an encouraging approach for developing more effective liver targeted nano-drug delivery systems to achieve accurate medication for alcoholic liver injury.
Collapse
Affiliation(s)
- Xin Yu Liu
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - He Ying Mao
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Shuai Hong
- School of Pharmacy, Yanbian University, Yanji 133002, China
| | - Cheng-Hua Jin
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| | - Hu-Lin Jiang
- School of Pharmacy, Yanbian University, Yanji 133002, China; State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Ming Guan Piao
- School of Pharmacy, Yanbian University, Yanji 133002, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China.
| |
Collapse
|
4
|
Kaya-Tilki E, Öztürk AA, Engür-Öztürk S, Dikmen M. Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells. Sci Rep 2024; 14:19837. [PMID: 39191829 PMCID: PMC11349893 DOI: 10.1038/s41598-024-70791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.
Collapse
Affiliation(s)
- Elif Kaya-Tilki
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
| | - Ahmet Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Selin Engür-Öztürk
- Department of Pharmacy Services, Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
5
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
6
|
Hamdallah SI, Zoqlam R, Yang B, Campbell A, Booth R, Booth J, Belton P, Qi S. Using a systematic and quantitative approach to generate new insights into drug loading of PLGA nanoparticles using nanoprecipitation. NANOSCALE ADVANCES 2024; 6:3188-3198. [PMID: 38868816 PMCID: PMC11166107 DOI: 10.1039/d4na00087k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
The synthesis of drug-loaded PLGA nanoparticles through nanoprecipitation in solvent/antisolvent mixtures is well reported but lacks clarity in explaining drug loading mechanisms and the prediction of efficiency of drug entrapment. Various methods using physical parameters such as log P and solid-state drug-polymer solubility aim to predict the intensity of drug-polymer interactions but lack precision. In particular, the zero-enthalpy method for drug/polymer solubility may be intrinsically inaccurate, as we demonstrate. Conventional measurement of loading capacity (LC), expressed in weight ratios, can be misleading for comparing different drugs and we stress the importance of using molar units. This research aims to provide new insights and critically evaluate the established methodologies for drug loading of PLGA nanoparticles. The study employs four model drugs with varying solubilities in solvent/antisolvent mixtures, log P values, and solid-state solubility in PLGA: ketoprofen (KPN), indomethacin (IND), sorafenib (SFN), and clofazimine (CFZ). This study highlights that drug loading efficiency is primarily influenced by the drug's solubilities within the solvent system. We emphasise that both kinetic and thermodynamic factors play a role in the behaviour of the system by considering the changes in drug solubility during mixing. The study introduces a pseudo-constant K* to characterise drug-polymer interactions, with CFZ and SFN showing the highest K* values. Interestingly, while IND and KPN have lower K* values, they achieve higher loading capacities due to their greater solubilities, indicating the key role of solubility in determining LC.
Collapse
Affiliation(s)
- Sherif I Hamdallah
- School of Pharmacy, University of East Anglia Norwich NR4 7TJ UK
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | - Randa Zoqlam
- School of Pharmacy, University College London London WC1N 1AX UK
| | - Bin Yang
- Advanced Drug Delivery, Pharmaceutical Sciences, The Discovery Center (DISC) 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Andrew Campbell
- Advanced Drug Delivery, Pharmaceutical Sciences, The Discovery Center (DISC) 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | - Rebecca Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| | - Jonathan Booth
- New Modalities and Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| | - Peter Belton
- School of Chemistry, University of East Anglia Norwich NR4 7TJ UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia Norwich NR4 7TJ UK
| |
Collapse
|
7
|
Liu S, Liu Y, Chang Q, Celia C, Deng X, Xie Y. pH-Responsive Sorafenib/Iron-Co-Loaded Mesoporous Polydopamine Nanoparticles for Synergistic Ferroptosis and Photothermal Therapy. Biomacromolecules 2024; 25:522-531. [PMID: 38087829 DOI: 10.1021/acs.biomac.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ferroptosis has attracted significant attention as a new mechanism of cell death. Sorafenib (SRF) is widely considered a prototypical ferroptosis-inducing drug, particularly for liver cancer treatment. However, the low solubility and hydrophobic nature of SRF, along with the absence of synergistic therapeutic strategies, still limit its application in cancer treatment. Herein, we report a dual therapeutic method incorporating photothermal therapy and ferroptosis by using Fe-doped mesoporous polydopamine nanoparticles (Fe-mPDA@SRF-TPP) as a carrier for loading SRF and targeting triphenylphosphine (TPP). SRF molecules are efficiently encapsulated within the polydopamine nanospheres with a high loading ratio (80%) attributed to the porosity of Fe-mPDA, and the inherent biocompatibility and hydrophilicity of Fe-mPDA@SRF-TPP facilitate the transport of SRF to the target cancer cells. Under the external stimuli of acidic environment (pH 5.0), glutathione (GSH), and laser irradiation, Fe-mPDA@SRF-TPP shows sustained release of SRF and Fe ions with the ratio of 72 and 50% within 48 h. Fe-mPDA@SRF-TPP nanoparticles induce intracellular GSH depletion, inhibit glutathione peroxidase 4 (GPX4) activity, and generate hydroxyl radicals, all of which are essential components of the therapeutic ferroptosis process for killing MDA-MB-231 cancer cells. Additionally, the excellent near-infrared (NIR) light absorption of Fe-mPDA@SRF-TPP nanoparticles demonstrates their capability for photothermal therapy and further enhances the therapeutic efficiency. Therefore, this nanosystem provides a multifunctional therapeutic platform that overcomes the therapeutic limitations associated with standalone ferroptosis and enhances the therapeutic efficacy of SRF for breast cancer.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Li Y, Ma L, Xiong Y, Shi J, Zhang F, Chai Q, Hu G, Liu Y. Delivering Relaxin Plasmid by Polymeric Metformin Lipid Nanoparticles for Liver Fibrosis Treatment. Curr Drug Deliv 2024; 21:431-437. [PMID: 37032506 DOI: 10.2174/1567201820666230407135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Liver fibrosis usually progresses to liver cirrhosis and even results in hepatocellular carcinoma, which accounts for one million deaths annually worldwide. To date, anti-liver fibrosis drugs for clinical treatment have not yet been approved. Nowadays, as a natural regulator, Relaxin (RLX) has received increased attention because the expression of RLX could deactivate the activation of hepatic stellate cells (aHSCs) and resolve liver fibrosis. However, its application in treatment is limited due to the short half-life in circulation and low accumulation within the target organ. METHODS To address these problems, a kind of polymeric metformin (PolyMet)-loaded relaxin plasmid (pRLX) core-membrane lipid nanoparticle (PolyMet-pRLX-LNPs, PRLNP) was prepared. Here, PolyMet was used as a carrier to replace the traditional polymer polyethylene diene (PEI), which is of higher toxicity, to prolong the circulation time of pRLX in vivo. Then, the antifibrotic ability of PRLNP to overcome liver fibrosis was carried out in C57BL/6 mice. It is worth mentioning that this is the first time to investigate the potential of PRLNP in carbon tetrachloride-induced liver fibrosis. RESULTS The results showed that PRLNP effectively downregulated fibrosis-related biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, histopathological examinations also showed low collagen accumulation, revealing that PRLNP could histologically and functionally alleviate liver fibrosis. In addition, no significant difference in serum biochemical value between the PRLNP and the normal group, suggesting the safety profile of PRLNP. CONCLUSION This research proposed a novel non-toxic treatment method for liver fibrosis with a nanosystem to effectively treat liver fibrosis.
Collapse
Affiliation(s)
- Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feifeng Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Chai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gengshan Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
9
|
Wang Z, Wu C, Liu J, Hu S, Yu J, Yin Q, Tian H, Ding Z, Qi G, Wang L, Hao L. Aptamer-mediated hollow MnO 2 for targeting the delivery of sorafenib. Drug Deliv 2023; 30:28-39. [DOI: 10.1080/10717544.2022.2149897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ziyue Wang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Cuicui Wu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Jinren Liu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Shunxin Hu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Junli Yu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Qiangqiamg Yin
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Hongda Tian
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Zhipeng Ding
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Guiqiang Qi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| | - Li Wang
- Department of Personnel, the Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
10
|
Yu Y, Shen X, Xiao X, Li L, Huang Y. Butyrate Modification Promotes Intestinal Absorption and Hepatic Cancer Cells Targeting of Ferroptosis Inducer Loaded Nanoparticle for Enhanced Hepatocellular Carcinoma Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301149. [PMID: 37165608 DOI: 10.1002/smll.202301149] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Indexed: 05/12/2023]
Abstract
Sorafenib is an oral-administered first-line drug for hepatocellular carcinoma (HCC) treatment. However, the therapeutic efficacy of sorafenib is relatively low. Here, an oral delivery platform that increases sorafenib uptake by HCC and induces potent ferroptosis is designed. This platform is butyrate-modified nanoparticles separately encapsulated with sorafenib and salinomycin. The multifunctional ligand butyrate interacts with monocarboxylate transporter 1 (MCT-1) to facilitate transcytosis. Specifically, MCT-1 is differentially expressed on the apical and basolateral sides of the intestine, highly expressed on the surface of HCC cells but lowly expressed on normal hepatocytes. After oral administration, this platform is revealed to boost transepithelial transport effectively and continuously in the intestine, drug accumulation in the liver, and HCC cell uptake. Following drug release in cancer cells, sorafenib depletes glutathione peroxidase 4 and glutathione, consequently initiating ferroptosis. Meanwhile, salinomycin enhances intracellular iron and lipid peroxidation, thereby accelerating ferroptosis. In vivo experiments performed on the orthotopic HCC model demonstrate that this combination strategy induces pronounced ferroptosis damage and ignites a robust systemic immune response, leading to the effective elimination of tumors and establishment of systemic immune memory. This work provides a proof-of-concept demonstration that an oral delivery strategy for ferroptosis inducers may be beneficial for HCC treatment.
Collapse
Affiliation(s)
- Yinglan Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xin Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
11
|
Wang L, Chen M, Ran X, Tang H, Cao D. Sorafenib-Based Drug Delivery Systems: Applications and Perspectives. Polymers (Basel) 2023; 15:2638. [PMID: 37376284 DOI: 10.3390/polym15122638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
As a Food and Drug Administration (FDA)-approved molecular-targeted chemotherapeutic drug, sorafenib (SF) can inhibit angiogenesis and tumor cell proliferation, leading to improved patient overall survival of hepatocellular carcinoma (HCC). In addition, SF is an oral multikinase inhibitor as a single-agent therapy in renal cell carcinoma. However, the poor aqueous solubility, low bioavailability, unfavorable pharmacokinetic properties and undesirable side effects (anorexia, gastrointestinal bleeding, and severe skin toxicity, etc.) seriously limit its clinical application. To overcome these drawbacks, the entrapment of SF into nanocarriers by nanoformulations is an effective strategy, which delivers SF in a target tumor with decreased adverse effects and improved treatment efficacy. In this review, significant advances and design strategies of SF nanodelivery systems from 2012 to 2023 are summarized. The review is organized by type of carriers including natural biomacromolecule (lipid, chitosan, cyclodextrin, etc.); synthetic polymer (poly(lactic-co-glycolic acid), polyethyleneimine, brush copolymer, etc.); mesoporous silica; gold nanoparticles; and others. Co-delivery of SF and other active agents (glypican-3, hyaluronic acid, apolipoprotein peptide, folate, and superparamagnetic iron oxide nanoparticles) for targeted SF nanosystems and synergistic drug combinations are also highlighted. All these studies showed promising results for targeted treatment of HCC and other cancers by SF-based nanomedicines. The outlook, challenges and future opportunities for the development of SF-based drug delivery are presented.
Collapse
Affiliation(s)
- Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Meihuan Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
12
|
Li J, Yang Y, Han X, Li J, Tian M, Qi W, An H, Wu C, Zhang Y, Han S, Duan L, Wang W, Zhang W. Oral Delivery of Anti-Parasitic Agent-Loaded PLGA Nanoparticles: Enhanced Liver Targeting and Improved Therapeutic Effect on Hepatic Alveolar Echinococcosis. Int J Nanomedicine 2023; 18:3069-3085. [PMID: 37312930 PMCID: PMC10259527 DOI: 10.2147/ijn.s397526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Background Alveolar echinococcosis (AE) is a lethal parasitic disease caused by infection with the metacestode of the dog/fox tapeworm Echinococcus multilocularis, which primarily affects the liver. Although continued efforts have been made to find new drugs against this orphan and neglected disease, the current treatment options remain limited, with drug delivery considered a likely barrier for successful treatment. Methods Nanoparticles (NPs) have gained much attention in the field of drug delivery due to their potential to improve delivery efficiency and targetability. In this study, biocompatible PLGA nanoparticles encapsulating a novel carbazole aminoalcohol anti-AE agent (H1402) were prepared to promote the delivery of the parent drug to liver tissue for treating hepatic AE. Results H1402-loaded nanoparticles (H1402-NPs) had a uniform spherical shape and a mean particle size of 55 nm. Compound H1402 was efficiently encapsulated into PLGA NPs with a maximal encapsulation efficiency of 82.1% and drug loading content of 8.2%. An in vitro uptake assay demonstrated that H1402-NPs rapidly penetrated the in vitro cultured pre-cyst wall and extensively accumulated in the pre-cysts of E. multilocularis within only 1 h. The biodistribution profile of H1402-NPs determined through ex vivo fluorescence imaging revealed significantly enhanced liver distribution compared to unencapsulated H1402, which translated to improved therapeutic efficacy and reduced systemic toxicity (especially hepatotoxicity and cytotoxicity) in a hepatic AE murine model. Following a 30-day oral regimen (100 mg/kg/day), H1402-NPs significantly reduced the parasitic burden in both the parasite mass (liver and metacestode total weight, 8.8%) and average metacestode size (89.9%) compared to unmedicated infected mice (both p-values < 0.05); the treatment outcome was more effective than those of albendazole- and free H1402-treated individuals. Conclusion Our findings demonstrate the advantages of encapsulating H1402 into PLGA nanoparticles and highlight the potential of H1402-NPs as a promising liver-targeting therapeutic strategy for hepatic AE.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yangyang Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xiumin Han
- Qinghai Provincial People’s Hospital, Xining, Qinghai, People’s Republic of China
| | - Jing Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Mengxiao Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Wenjing Qi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Huniu An
- Qinghai Provincial People’s Hospital, Xining, Qinghai, People’s Republic of China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Shuai Han
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Liping Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Weisi Wang
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
13
|
Singh S, Sharma N, Shukla S, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Bungau SG, Brisc C. Understanding the Potential Role of Nanotechnology in Liver Fibrosis: A Paradigm in Therapeutics. Molecules 2023; 28:molecules28062811. [PMID: 36985782 PMCID: PMC10057127 DOI: 10.3390/molecules28062811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The liver is a vital organ that plays a crucial role in the physiological operation of the human body. The liver controls the body's detoxification processes as well as the storage and breakdown of red blood cells, plasma protein and hormone production, and red blood cell destruction; therefore, it is vulnerable to their harmful effects, making it more prone to illness. The most frequent complications of chronic liver conditions include cirrhosis, fatty liver, liver fibrosis, hepatitis, and illnesses brought on by alcohol and drugs. Hepatic fibrosis involves the activation of hepatic stellate cells to cause persistent liver damage through the accumulation of cytosolic matrix proteins. The purpose of this review is to educate a concise discussion of the epidemiology of chronic liver disease, the pathogenesis and pathophysiology of liver fibrosis, the symptoms of liver fibrosis progression and regression, the clinical evaluation of liver fibrosis and the research into nanotechnology-based synthetic and herbal treatments for the liver fibrosis is summarized in this article. The herbal remedies summarized in this review article include epigallocathechin-3-gallate, silymarin, oxymatrine, curcumin, tetrandrine, glycyrrhetinic acid, salvianolic acid, plumbagin, Scutellaria baicalnsis Georgi, astragalosides, hawthorn extract, and andrographolides.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Saurabh Shukla
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
14
|
Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023; 18:67-84. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.
Collapse
Affiliation(s)
- Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Michail Manolakakis
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
15
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
16
|
He XL, Hu YH, Chen JM, Zhang DQ, Yang HL, Zhang LZ, Mu YP, Zhang H, Chen GF, Liu W, Liu P. SNS-032 attenuates liver fibrosis by anti-active hepatic stellate cells via inhibition of cyclin dependent kinase 9. Front Pharmacol 2022; 13:1016552. [PMID: 36313366 PMCID: PMC9597511 DOI: 10.3389/fphar.2022.1016552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a common pathological process of all chronic liver diseases. Hepatic stellate cells (HSCs) play a central role in the development of liver fibrosis. Cyclin-dependent kinase 9 (CDK9) is a cell cycle kinase that regulates mRNA transcription and elongation. A CDK9 inhibitor SNS-032 has been reported to have good effects in anti-tumor. However, the role of SNS-032 in the development of liver fibrosis is unclear. In this study, SNS-032 was found to alleviate hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in carbon tetrachloride-induced model mice. In vitro, SNS-032 inhibited the activation and proliferation of active HSCs and induced the apoptosis of active HSCs by downregulating the expression of CDK9 and its downstream signal transductors, such phosphorylated RNA polymerase II and Bcl-2. CDK9 short hairpin RNA was transfected into active HSCs to further elucidate the mechanism of the above effects. Similar results were observed in active HSCs after CDK9 knockdown. In active HSCs with CDK9 knockdown, the expression levels of CDK9, phosphorylated RNA polymerase II, XIAP, Bcl-2, Mcl-1, and ɑ-SMA significantly decreased, whereas those of cleaved-PARP1 and Bax decreased prominently. These results indicated that SNS-032 is a potential drug and CDK9 might be a new prospective target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Li He
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Endocrinology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Hong Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Mei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ding-Qi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Lin Yang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Zhang Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Ping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao-Feng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhou L, Liang Q, Li Y, Cao Y, Li J, Yang J, Liu J, Bi J, Liu Y. Collagenase-I decorated co-delivery micelles potentiate extracellular matrix degradation and hepatic stellate cell targeting for liver fibrosis therapy. Acta Biomater 2022; 152:235-254. [PMID: 36087869 DOI: 10.1016/j.actbio.2022.08.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Liver fibrosis is a pathological process of multiple chronic liver diseases progressing to cirrhosis for which there are currently no effective treatment options. During fibrosis progression, the overproduction of extracellular matrix (ECM) collagen secreted by hepatic stellate cells (HSCs) greatly impedes drug delivery and reduces drug therapeutic effects. In this study, a glycyrrhetinic acid (GA)-conjugated prodrug micellar system with collagenase I (COL) decoration (COL-HA-GA, abbreviated as CHG) was designed to codelivery sorafenib (Sora/CHG, abbreviated as S/CHG) for potentiating ECM degradation and HSCs targeting on liver fibrosis therapy. In ECM barrier models established in vitro or in vivo, CHG micelles efficiently degraded pericellular collagen and demonstrated enormous ECM penetration abilities as well as superior HSCs internalization. Moreover, CHG micelles exhibited more Sora & GA accumulations and activated HSCs targeting efficiencies in the fibrotic livers than those in the normal livers. More importantly, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating the fibrosis-related factors, leading to reverse the fibrotic liver to normal liver through the multi-mechanisms including angiogenesis reduction, liver fibrosis microenvironment regulation, and epithelial-mesenchymal transition inhibition. In conclusion, the developed COL decorated nano-codelivery system with fibrotic ECM collagen degradation and activated HSCs targeting dual-functions exhibited great potential for liver fibrosis therapy. STATEMENT OF SIGNIFICANCE: A glycyrrhetinic acid (GA)-conjugated prodrug with collagenase I (COL) decoration (CHG) was designed for codelivery with sorafenib (S/CHG), potentiating extracellular matrix (ECM) degradation-penetration and hepatic stellate cells (HSCs) targeting on liver fibrosis therapy. In ECM barrier models, CHG micelles efficiently degraded pericellular collagen and demonstrated ECM penetration abilities, as well as displayed superior HSCs internalization. Moreover, S/CHG micelles were more effective in anti-liver fibrosis by lowering the collagen content, inhibiting the HSCs activation, as well as down-regulating cytokines, reversing the fibrotic liver to normal through various mechanisms. In conclusion, the developed fibrotic ECM degradation and HSCs targeting dual-functional nano-codelivery system provided a prospective potentiality in liver fibrosis therapy.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jiayu Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Jiawei Bi
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China.
| |
Collapse
|
18
|
Mahdinloo S, Hemmati S, Valizadeh H, Mahmoudian M, Mahmoudi J, Roshangar L, Sarfraz M, Zakeri-Milani P. Synthesis and preparation of vitamin A coupled butein-loaded solid lipid nanoparticles for liver fibrosis therapy in rats. Int J Pharm 2022; 625:122063. [PMID: 35964827 DOI: 10.1016/j.ijpharm.2022.122063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
The development of a therapeutic system for hepatic fibrosis has become a research hotspot to date. Butein, a simple chalcone derivative, displays anti-fibrotic effects through different pathways. However, impurities, low solubility, and low concentration in the target tissue hinder therapy with herbal ingredients. Hepatic stellate cells (HSCs), the vitamin A (VA) storage cells, as the main contributors to liver fibrogenesis, are not readily accessible to drugs owing to their anatomical location. Targeted delivery of therapeutics to the activated HSCs is therefore critical for successful treatment. For these reasons, the current study aimed at increasing butein delivery to the liver. Hence, high purity butein was synthesized in three steps. A novel VA-Myrj52 ester conjugate was also synthesized using all-trans retinoic acid and a hydrophilic emulsifier (Myrj52) as a targeting agent. Next, butein was encapsulated inside the novel VA-modified solid lipid nanoparticles (VA-SLNs) and studied in vitro and in vivo. According to our evaluations, negatively charged SLNs with a mean diameter of 150 nm and entrapment efficacy of 75 % were successful in liver fibrosis amelioration. Intraperitoneal (i.p.) injection of VA-SLNs in fibrotic rats, for four weeks long, reduced serum AST and ALT by 58% (P, 0.001) and 72% (P, 0.05), respectively, concerning the CCl4 group. Additionally, histologic damage score decline and normalization of tissue oxidative stress markers collectively confirmed the efficacy of formulations in hepatic fibrosis and kidney damage amelioration.
Collapse
Affiliation(s)
- Somayeh Mahdinloo
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran.
| | - Mohammad Mahmoudian
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical sciences, Tabriz 5166614756, Iran
| | - Leyla Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates.
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran.
| |
Collapse
|
19
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. New Drugs for Hepatic Fibrosis. Front Pharmacol 2022; 13:874408. [PMID: 35770089 PMCID: PMC9234287 DOI: 10.3389/fphar.2022.874408] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The morbidity and mortality of hepatic fibrosis caused by various etiologies are high worldwide, and the trend is increasing annually. At present, there is no effective method to cure hepatic fibrosis except liver transplantation, and its serious complications threaten the health of patients and cause serious medical burdens. Additionally, there is no specific drug for the treatment of hepatic fibrosis, and many drugs with anti-hepatic fibrosis effects are in the research and development stage. Recently, remarkable progress has been made in the research and development of anti-hepatic fibrosis drugs targeting different targets. We searched websites such as PubMed, ScienceDirect, and Home-ClinicalTrials.gov and found approximately 120 drugs with anti-fibrosis properties, some of which are in phase Ⅱ or Ⅲ clinical trials. Additionally, although these drugs are effective against hepatic fibrosis in animal models, most clinical trials have shown poor results, mainly because animal models do not capture the complexity of human hepatic fibrosis. Besides, the effect of natural products on hepatic fibrosis has not been widely recognized at home and abroad. Furthermore, drugs targeting a single anti-hepatic fibrosis target are prone to adverse reactions. Therefore, currently, the treatment of hepatic fibrosis requires a combination of drugs that target multiple targets. Ten new drugs with potential for development against hepatic fibrosis were selected and highlighted in this mini-review, which provides a reference for clinical drug use.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, China
- *Correspondence: Jianjun Liu, ; Xiongwen Lv,
| |
Collapse
|
20
|
Rahiminezhad Z, Tamaddon A, Dehshahri A, Borandeh S, Abolmaali SS, Najafi H, Azarpira N. PLGA-graphene quantum dot nanocomposites targeted against α vβ 3 integrin receptor for sorafenib delivery in angiogenesis. BIOMATERIALS ADVANCES 2022; 137:212851. [PMID: 35929279 DOI: 10.1016/j.bioadv.2022.212851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Angiogenesis is a vital step in many severe diseases such as cancer, diabetic retinopathy, and rheumatoid arthritis. Sorafenib (SFB), a multi-tyrosine kinase inhibitor, has recently been shown to inhibit tumor progression and suppress angiogenesis. Its narrow therapeutic window, however, has limited its clinical application and therapeutic efficacy. Accordingly, in this study, a nanocomposite formulation comprising of graphene quantum dots (GQDs) and poly (D, l-lactide-co-glycolide) (PLGA) nanoparticles was functionalized with an integrin-targeting ligand (RGD peptide) to improve SFB delivery for the treatment of angiogenesis. Physicochemical and biological properties of the targeted nanocomposite were evaluated in terms of chemical structure, morphology, particle size, zeta potential, photoluminescence, and cell toxicity. The loading capacity of the nanocomposite was optimized at different drug-to-PLGA ratios. Drug release behavior was also investigated at 37 °C in pH = 7.4. The SFB-to-PLGA ratio of 1:3 was selected as the optimum condition which resulted in the encapsulation efficiency and encapsulation capacity of 68.93 ± 1.39 and 18.77 ± 0.46, respectively. Photoluminescence properties of GQD in nanocomposite were used to track the delivery system. The results indicated that conjugating targeting ligand could enhance cellular uptake of nanocomposite in cells overexpressing integrin receptors. In vivo anti-angiogenesis activity of targeted nanocomposite was investigated in chick chorioallantoic membrane (CAM). The findings showed that SFB loaded in the targeted nanocomposite reduced VEGF secretion in vitro and its anti-angiogenic effect surpass free SFB. Thanks to its unique therapeutic and bioimaging properties, the developed nanocomposite could be an effective drug delivery system for poorly water-soluble therapeutic agents.
Collapse
Affiliation(s)
- Zahra Rahiminezhad
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - AliMohammad Tamaddon
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran.
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Sedigheh Borandeh
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Samira Sadat Abolmaali
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Haniyeh Najafi
- Pharmaceutical Nanotechnology Department, School of Pharmay, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
PEGylated Lipid Nanocontainers Tailored with Sunseed-Oil-Based Solidified Reverse Micellar Solution for Enhanced Pharmacodynamics and Pharmacokinetics of Metformin. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09654-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cheng HT, Huang HC, Lee TY, Liao YH, Sheng YH, Jin PR, Huang KW, Chen LH, Chen YT, Liu ZY, Lin TC, Wang HC, Chao CH, Juang IP, Su CT, Huang KH, Lin SL, Wang J, Sung YC, Chen Y. Delivery of sorafenib by myofibroblast-targeted nanoparticles for the treatment of renal fibrosis. J Control Release 2022; 346:169-179. [PMID: 35429575 DOI: 10.1016/j.jconrel.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Fibrosis is an excessive accumulation of the extracellular matrix within solid organs in response to injury and a common pathway that leads functional failure. No clinically approved agent is available to reverse or even prevent this process. Herein, we report a nanotechnology-based approach that utilizes a drug carrier to deliver a therapeutic cargo specifically to fibrotic kidneys, thereby improving the antifibrotic effect of the drug and reducing systemic toxicity. We first adopted in vitro-in vivo combinatorial phage display technology to identify peptide ligands that target myofibroblasts in mouse unilateral ureteral obstruction (UUO)-induced fibrotic kidneys. We then engineered lipid-coated poly(lactic-co-glycolic acid) nanoparticles (NPs) with fibrotic kidney-homing peptides on the surface and sorafenib, a potent antineoplastic multikinase inhibitor, encapsulated in the core. Sorafenib loaded in the myofibroblast-targeted NPs significantly reduced the infiltration of α-smooth muscle actin-expressing myofibroblasts and deposition of collagen I in UUO-treated kidneys and enhanced renal plasma flow measured by Technetium-99m mercaptoacetyltriglycine scintigraphy. This study demonstrates the therapeutic potential of the newly identified peptide fragments as anchors to target myofibroblasts and represents a strategic advance for selective delivery of sorafenib to treat renal fibrosis. SIGNIFICANCE STATEMENT: Renal fibrosis is a pathological feature accounting for the majority of issues in chronic kidney disease (CKD), which may progress to end-stage renal disease (ESRD). This manuscript describes a myofibroblast-targeting drug delivery system modified with phage-displayed fibrotic kidney-homing peptides. By loading the myofibroblast-targeting nanoparticles (NPs) with sorafenib, a multikinase inhibitor, the NPs could suppress collagen synthesis in cultured human myofibroblasts. When given intravenously to mice with UUO-induced renal fibrosis, sorafenib loaded in myofibroblast-targeting NPs significantly ameliorated renal fibrosis. This approach provides an efficient therapeutic option to renal fibrosis. The myofibroblast-targeting peptide ligands and nanoscale drug carriers may be translated into clinical application in the future.
Collapse
Affiliation(s)
- Hui-Teng Cheng
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Biomedical Park Branch, Zhu Bei City 302, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu City 30059, Taiwan
| | - Hsi-Chien Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ying Lee
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Hui Liao
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Hua Sheng
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Biomedical Park Branch, Zhu Bei City 302, Taiwan; Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Pei-Ru Jin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Huang
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ling-Hsuan Chen
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Biomedical Park Branch, Zhu Bei City 302, Taiwan; Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Ting Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Zi-Yan Liu
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Taiwan
| | - Tzu-Chieh Lin
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Taiwan
| | - Hsueh-Cheng Wang
- Institute of Electrical and Control Engineering, National Yang Ming Chiao Tung University, Taiwan
| | - Cheng-Han Chao
- Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu City 30059, Taiwan
| | - I Pu Juang
- Department of Pathology, National Taiwan University Hospital Hsinchu Branch, Hsinchu City 30059, Taiwan
| | - Chi-Ting Su
- Department of Nephrology, Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Douliu City, Taiwan; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Chieh Sung
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Yunching Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
23
|
Zhang C, Hang Y, Tang W, Sil D, Jensen-Smith HC, Bennett RG, McVicker BL, Oupický D. Dually Active Polycation/miRNA Nanoparticles for the Treatment of Fibrosis in Alcohol-Associated Liver Disease. Pharmaceutics 2022; 14:pharmaceutics14030669. [PMID: 35336043 PMCID: PMC8949580 DOI: 10.3390/pharmaceutics14030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Alcohol-associated liver disease (AALD) is a major cause of liver disorders worldwide. Current treatment options are limited, especially for AALD-associated fibrosis. Promising approaches include RNA interference for miR-155 overexpression in Kupffer cells (KCs), as well as the use of CXCR4 antagonists that inhibit the activation of hepatic stellate cells (HSCs) through the CXCL12/CXCR4 axis. The development of dual-functioning nanoparticles for the effective delivery of antifibrotic RNA together with a CXCR4 inhibitor thus promises to improve the treatment of AALD fibrosis. In this study, cholesterol-modified polymeric CXCR4 inhibitor (Chol-PCX) was synthesized and used to encapsulate anti-miR-155 or non-coding (NC) miRNA in the form of Chol-PCX/miRNA nanoparticles. The results indicate that the nanoparticles induce a significant miR-155 silencing effect both in vitro and in vivo. Treatment with the Chol-PCX/anti-miR-155 particles in a model of moderate alcohol consumption with secondary liver insult resulted in a significant reduction in aminotransferase enzymes as well as collagen content in the liver parenchyma. Overall, our data support the use of Chol-PCX as a carrier for anti-miR-155 for the combined therapeutic inhibition of CXCR4 and miR-155 expression as a way to improve fibrotic damage in the liver.
Collapse
Affiliation(s)
- Chuhan Zhang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Heather C. Jensen-Smith
- Eppley Institute for Cancer Research & Fred and Pamela Buffer Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Robert G. Bennett
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.G.B.); (B.L.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.G.B.); (B.L.M.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
- Correspondence:
| |
Collapse
|
24
|
Enhancing the Anticancer Activity of Sorafenib through Its Combination with a Nitric Oxide Photodelivering β-Cyclodextrin Polymer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061918. [PMID: 35335280 PMCID: PMC8953797 DOI: 10.3390/molecules27061918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
In this contribution, we report a strategy to enhance the therapeutic action of the chemotherapeutic Sorafenib (SRB) through its combination with a multifunctional β-cyclodextrin-based polymer able to deliver nitric oxide (NO) and emit green fluorescence upon visible light excitation (PolyCDNO). The basically water-insoluble SRB is effectively encapsulated in the polymeric host (1 mg mL−1) up to a concentration of 18 μg mL−1. The resulting host-guest supramolecular complex is able to release SRB in sink conditions and to preserve very well the photophysical and photochemical properties of the free PolyCDNO, as demonstrated by the similar values of the NO release and fluorescence emission quantum efficiencies found. The complex PolyCDNO/SRB internalizes in HEP-G2 hepatocarcinoma, MCF-7 breast cancer and ACHN kidney adenocarcinoma cells, localizing in all cases mainly at the cytoplasmic level. Biological experiments have been performed at SRB concentrations below the IC50 and with light doses producing NO at nontoxic concentrations. The results demonstrate exceptional mortality levels for PolyCDNO/SRB upon visible light irradiation in all the different cell lines tested, indicating a clear synergistic action between the chemotherapeutic drug and the NO. These findings can open up exciting avenues to potentiate the anticancer action of SRB and, in principle, to reduce its side effects through its use at low dosages when in combination with the photo-regulated release of NO.
Collapse
|
25
|
Ji K, Fan M, Huang D, Sun L, Li B, Xu R, Zhang J, Shao X, Chen Y. Clodronate-nintedanib-loaded exosome-liposome hybridization enhances the liver fibrosis therapy by inhibiting Kupffer cell activity. Biomater Sci 2022; 10:702-713. [PMID: 34927632 DOI: 10.1039/d1bm01663f] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver fibrosis therapy remains limited due to the inefficiency of drug delivery and inflammation induced by Kupffer cells. In this study, an exosome-liposome hybrid drug delivery system (LIEV) was developed to increase the efficacy of clodronate (CLD)-inhibition of Kupffer cells and to effectively deliver nintedanib (NIN) to liver fibroblasts to ensure enhanced anti-fibrosis therapy. CLD and NIN co-loaded LIEV (CLD/NIN@LIEV) exerted non-specific inhibition of phagocytosis by Kupffer cells, reduced inflammatory cytokines, and showed homologous homing properties mediated by fibroblast-derived exosomes, thereby achieving superior antifibrotic effects in a CCl4-induced fibrosis mouse model by inhibiting the proliferation of fibroblasts. Furthermore, the inhibited Kupffer cells regenerated within 10 days after dosage withdrawal. Unlike carrier-free NIN treatment, CLD/NIN@LIEV induced a marked decrease in liver enzymes, indicating improved safety and anti-fibrosis efficacy. These results indicate its great potential for treatment with the combined anti-fibrosis agent and Kupffer cell inhibition strategies to enhance the liver fibrosis therapy.
Collapse
Affiliation(s)
- Keqin Ji
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Mingrui Fan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Dong Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Lingna Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Bingqin Li
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Ruoting Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiajing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuan Shao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
26
|
Amphiphilic small molecular mates match hydrophobic drugs to form nanoassemblies based on drug-mate strategy. Asian J Pharm Sci 2021; 17:129-138. [PMID: 35261649 PMCID: PMC8888179 DOI: 10.1016/j.ajps.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/14/2023] Open
Abstract
Nanomedicine has made great progress in the targeted therapy of cancer. Here, we established a novel drug-mate strategy by studying the formulation of nanodrugs at the molecular level. In the drug-mate combination, the drug is a hydrophobic drug that is poorly soluble in water, and the mate is an amphiphilic small molecule (SMA) that has both hydrophilic and lipophilic properties. We proposed that the hydrophobic drug could co-assemble with a suitable SMA on a nanoscale without additive agents. The proof-of-concept methodology and results were presented to support our hypothesis. We selected five hydrophobic drugs and more than ten amphiphilic small molecules to construct a library. Through molecular dynamic simulation and quantum chemistry computation, we speculated that the formation of nanoassemblies was related to the binding energy of the drug-mate, and the drug-mate interaction must overcome drug-drug interaction. Furthermore, the obtained SF/VECOONa nanoassemblieswas selected as a model, which had an ultra-high drug loading content (46%), improved pharmacokinetics, increased bioavailability, and enhanced therapeutic efficacy. In summary, the drug-mate strategy is an essential resource to design exact SMA for many hydrophobic drugs and provides a reference for the design of a carrier-free drug delivery system.
Collapse
|
27
|
Ahrari A, Najafzadehvarzi H, Taravati A, Tohidi F. The inhibitory effect of PLGA-encapsulated berberine on hepatotoxicity and α-smooth muscle actin (α-SMA) gene expression. Life Sci 2021; 284:119884. [PMID: 34389401 DOI: 10.1016/j.lfs.2021.119884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Liver injury results in excessive extracellular matrix (ECM) deposition in the liver, which is mainly produced by hepatic stellate cells (HSC). Alpha-smooth muscle actin (α-SMA) and liver enzymes are the two hallmarks of liver injury. Previously, it has been confirmed that berberine (BBR) attenuates liver injury. This study aimed to investigate the protective effect of Poly Lactic-co-Glycolic Acid (PLGA) encapsulated BBR against liver injury. METHODS Nanoprecipitation, encapsulation, and physio-chemical characterization of BBR-PLGA nanoparticles (BBR-PLGA-NP) have been done. The protective effects of BBR-PLGA-NPs and BBR against carbon tetrachloride (CCl4)-treated Wistar rats were investigated. The serum levels of alanine aminotransferase and aspartate transaminase were measured, and the expression level of α-SMA was quantified by qRT-PCR. To evaluate the liver changes, morphological and histological staining was done. RESULTS BBR-PLGA-NPs markedly reduced serum ALT and AST in rats treated with CCl4. Although the expression level of α-SMA was downregulated in the CCl4-injected rats that were treated with BBR, α-SMA expression in this group was still remarkably higher than the control group. α-SMA mRNA was significantly under-expressed (p < 0.05) by BBR-PLGA-NPs and the hepatic histology revealed BBR-PLGA-NPs made further improvements than free BBR. CONCLUSION The use of nanoparticle to encapsulate BBR is a worthy approach to enhance the curative effect of BBR against liver injuries, which donate a safe and effective drug delivery strategy to treat liver injuries.
Collapse
Affiliation(s)
- Asma Ahrari
- Department of Medical Biotechnology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Fatemeh Tohidi
- Department of Medical Biotechnology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
28
|
Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, Li W, Liu X, Peng H, Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. NANOSCALE 2021; 13:10748-10764. [PMID: 34132312 DOI: 10.1039/d1nr02065j] [Citation(s) in RCA: 344] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The rapid development of drug nanocarriers has benefited from the surface hydrophilic polymers of particles, which has improved the pharmacokinetics of the drugs. Polyethylene glycol (PEG) is a kind of polymeric material with unique hydrophilicity and electrical neutrality. PEG coating is a crucial factor to improve the biophysical and chemical properties of nanoparticles and is widely studied. Protein adherence and macrophage removal are effectively relieved due to the existence of PEG on the particles. This review discusses the PEGylation methods of nanoparticles and related techniques that have been used to detect the PEG coverage density and thickness on the surface of the nanoparticles in recent years. The molecular weight (MW) and coverage density of the PEG coating on the surface of nanoparticles are then described to explain the effects on the biophysical and chemical properties of nanoparticles.
Collapse
Affiliation(s)
- Liwang Shi
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd., Daqing 163319, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mary YS, Mary YS, Rad AS, Yadav R, Celik I, Sarala S. Theoretical investigation on the reactive and interaction properties of sorafenib – DFT, AIM, spectroscopic and Hirshfeld analysis, docking and dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Peng W, Cheng S, Bao Z, Wang Y, Zhou W, Wang J, Yang Q, Chen C, Wang W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed Pharmacother 2021; 137:111342. [DOI: 10.1016/j.biopha.2021.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
|
31
|
Pan J, Xu Y, Wu Q, Hu P, Shi J. Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. J Am Chem Soc 2021; 143:8116-8128. [PMID: 33928777 DOI: 10.1021/jacs.1c02537] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic hyperthermia therapy (MHT) is noninvasive and features excellent tissue penetration for deep-seated tumors, but unfortunately, it suffers the low therapeutic efficacy due to the limited magneto-thermal efficiency and insufficient intratumor accumulation of conventional intravenous-injected magnetic nanoparticles, which are actually mostly sequestered by the mononuclear phagocyte system, especially the liver. Such a disadvantageous characteristic of preferential liver uptake is here exploited, for the first time as far as we know, to treat orthotopic liver cancer by mild MHT using specially designed composite magnetic nanoparticles. A kind of core-shell-structured and Zn2+-doped Zn-CoFe2O4@Zn-MnFe2O4 superparamagnetic nanoparticles (ZCMF) has been synthesized which exhibits excellent and highly controllable magnetic hyperthermia performance owing to an exchange-coupled magnetism between the core and shell, and Zn2+ doping. The controllable mild MHT at 43-44 °C based on ZCMF demonstrates almost complete inhibition of liver cancer cell proliferation and tumor growth, which is associated with the suppression of heat shock protein 70 (HSP70) expression. More importantly, the mild MHT-treated liver cancer cells are capable of activating natural killer (NK) cells by dramatically upregulating the expression of UL16-binding proteins (ULBPs), ligands of natural killer group 2 member D (NKG2D). As a result, the growth of both xenograft tumors and orthotopic liver tumors were almost completely suppressed under mild MHT via induced NK-cell-related antitumor immunity in vivo. This work not only evidences the great potential of mild MHT but also reveals the underlying immunity activation mechanism in liver cancer treatment by mild MHT.
Collapse
Affiliation(s)
- Jiong Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.,School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yingying Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
32
|
Ullah A, Chen G, Hussain A, Khan H, Abbas A, Zhou Z, Shafiq M, Ahmad S, Ali U, Usman M, Raza F, Ahmed A, Qiu Z, Zheng M, Liu D. Cyclam-Modified Polyethyleneimine for Simultaneous TGFβ siRNA Delivery and CXCR4 Inhibition for the Treatment of CCl 4-Induced Liver Fibrosis. Int J Nanomedicine 2021; 16:4451-4470. [PMID: 34234436 PMCID: PMC8257077 DOI: 10.2147/ijn.s314367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver fibrosis is a chronic liver disease with excessive production of extracellular matrix proteins, leading to cirrhosis, hepatocellular carcinoma, and death. PURPOSE This study aimed at the development of a novel derivative of polyethyleneimine (PEI) that can effectively deliver transforming growth factor β (TGFβ) siRNA and inhibit chemokine receptor 4 (CXCR4) for TGFβ silencing and CXCR4 Inhibition, respectively, to treat CCl4-induced liver fibrosis in a mouse model. METHODS Cyclam-modified PEI (PEI-Cyclam) was synthesized by incorporating cyclam moiety into PEI by nucleophilic substitution reaction. Gel electrophoresis confirmed the PEI-Cyclam polyplex formation and stability against RNAase and serum degradation. Transmission electron microscopy and zeta sizer were employed for the morphology, particle size, and zeta potential, respectively. The gene silencing and CXCR4 targeting abilities of PEI-Cyclam polyplex were evaluated by luciferase and CXCR4 redistribution assays, respectively. The histological and immunohistochemical staining determined the anti-fibrotic activity of PEI-Cyclam polyplex. The TGFβ silencing of PEI-Cyclam polyplex was authenticated by Western blotting. RESULTS The 1H NMR of PEI-Cyclam exhibited successful incorporation of cyclam content onto PEI. The PEI-Cyclam polyplex displayed spherical morphology, positive surface charge, and stability against RNAse and serum degradation. Cyclam modification decreased the cytotoxicity and demonstrated CXCR4 antagonistic and luciferase gene silencing efficiency. PEI-Cyclam/siTGFβ polyplexes decreased inflammation, collagen deposition, apoptosis, and cell proliferation, thus ameliorating liver fibrosis. Also, PEI-Cyclam/siTGFβ polyplex significantly downregulated α-smooth muscle actin, TGFβ, and collagen type III. CONCLUSION Our findings validate the feasibility of using PEI-Cyclam as a siRNA delivery vector for simultaneous TGFβ siRNA delivery and CXCR4 inhibition for the combined anti-fibrotic effects in a setting of CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
- Correspondence: Aftab Ullah; Daojun Liu Email ;
| | - Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People’s Republic of China
| | - Abid Hussain
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Hanif Khan
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| | - Azar Abbas
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Zhanwei Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, people's Republic of China
| | - Saleem Ahmad
- Department of Medicine, Shantou University Medical College Cancer Hospital, Shantou, People’s Republic of China
| | - Usman Ali
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Muhammad Usman
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, people's Republic of China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Abrar Ahmed
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Zijie Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Maochao Zheng
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| |
Collapse
|
33
|
Samarehfekri H, Rahimi HR, Ranjbar M. Controlled and cellulose eco-friendly synthesis and characterization of Bi 2O 2CO 3 quantum dot nanostructures (QDNSs) and drug delivery study. Sci Rep 2020; 10:21302. [PMID: 33277600 PMCID: PMC7718884 DOI: 10.1038/s41598-020-78266-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
This work aimed to prepare solvent-free or green Bi2O2CO3 for quantum dot nanostructures (QDNSs) based on cellulose as a stabilizer and green capping agent to sorafenib delivery for liver targeting. Because the walnut tree is one of the most abundant trees in Iran, it was tried to synthesize Bi2O2CO3 QDNSs using a walnut skin extract. The saturation magnetization for Bi2O2CO3 QDNSs was calculated to be 68.1. Also, the size of products was measured at around 60–80 nm with the Debye–Scherrer equation. Moreover, the morphology, functional groups, and crystallography of the Bi2O2CO3 nanoparticles were investigated using atomic force microscopy, scanning electron microscopy, vibrating-sample magnetometer, and Uv–vis spectroscopy. The results demonstrated that Bi2O2CO3 QDNSs have opto-magnetic properties and they can be suggested as the candidate materials for the sorafenib delivery on the liver tissue. The optical band gap estimated for Bi2O2CO3 QDNSs was found to be red-shift from 3.22 eV. This study suggests the preparation of the Bi2O2CO3 QDNSs based on cellulose as new opto-magnetic materials at different temperatures of 180 °C, 200 °C, 220 °C, and 240 °C for sorafenib delivery as a type of biological therapy drug.
Collapse
Affiliation(s)
- Hojat Samarehfekri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Rahimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ranjbar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, P.O. Box: 76175-493, 76169-11319, Kerman, Iran.
| |
Collapse
|
34
|
Bai X, Su G, Zhai S. Recent Advances in Nanomedicine for the Diagnosis and Therapy of Liver Fibrosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1945. [PMID: 33003520 PMCID: PMC7599596 DOI: 10.3390/nano10101945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis, a reversible pathological process of inflammation and fiber deposition caused by chronic liver injury and can cause severe health complications, including liver failure, liver cirrhosis, and liver cancer. Traditional diagnostic methods and drug-based therapy have several limitations, such as lack of precision and inadequate therapeutic efficiency. As a medical application of nanotechnology, nanomedicine exhibits great potential for liver fibrosis diagnosis and therapy. Nanomedicine enhances imaging contrast and improves tissue penetration and cellular internalization; it simultaneously achieves targeted drug delivery, combined therapy, as well as diagnosis and therapy (i.e., theranostics). In this review, recent designs and development efforts of nanomedicine systems for the diagnosis, therapy, and theranostics of liver fibrosis are introduced. Relative to traditional methods, these nanomedicine systems generally demonstrate significant improvement in liver fibrosis treatment. Perspectives and challenges related to these nanomedicine systems translated from laboratory to clinical use are also discussed.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
35
|
Recent advances of sorafenib nanoformulations for cancer therapy: Smart nanosystem and combination therapy. Asian J Pharm Sci 2020; 16:318-336. [PMID: 34276821 PMCID: PMC8261086 DOI: 10.1016/j.ajps.2020.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sorafenib, a molecular targeted multi-kinase inhibitor, has received considerable interests in recent years due to its significant profiles of efficacy in cancer therapy. However, poor pharmacokinetic properties such as limited water solubility, rapid elimination and metabolism lead to low bioavailability, restricting its further clinical application. Over the past decade, with substantial progress achieved in the development of nanotechnology, various types of smart sorafenib nanoformulations have been developed to improve the targetability as well as the bioavailability of sorafenib. In this review, we summarize various aspects from the preparation and characterization to the evaluation of antitumor efficacy of numerous stimuli-responsive sorafenib nanodelivery systems, particularly with emphasis on their mechanism of drug release and tumor microenvironment response. In addition, this review makes great effort to summarize the nanosystem-based combination therapy of sorafenib with other antitumor agents, which can provide detailed information for further synergistic cancer therapy. In the final section of this review, we also provide a detailed discussion of future challenges and prospects of designing and developing ideal sorafenib nanoformulations for clinical cancer therapy.
Collapse
|
36
|
Xing L, Chang X, Shen L, Zhang C, Fan Y, Cho C, Zhang Z, Jiang H. Progress in drug delivery system for fibrosis therapy. Asian J Pharm Sci 2020; 16:47-61. [PMID: 33613729 PMCID: PMC7878446 DOI: 10.1016/j.ajps.2020.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/22/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022] Open
Abstract
Fibrosis is a necessary process in the progression of chronic disease to cirrhosis or even cancer, which is a serious disease threatening human health. Recent studies have shown that the early treatment of fibrosis is turning point and particularly important. Therefore, how to reverse fibrosis has become the focus and research hotspot in recent years. So far, the considerable progress has been made in the development of effective anti-fibrosis drugs and targeted drug delivery. Moreover, the existing research results will lay the foundation for more breakthrough delivery systems to achieve better anti-fibrosis effects. Herein, this review summaries anti-fibrosis delivery systems focused on three major organ fibrotic diseases such as liver, pulmonary, and renal fibrosis accompanied by the elaboration of relevant pathological mechanisms, which will provide inspiration and guidance for the design of fibrosis drugs and therapeutic systems in the future.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lijun Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chenglu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yatong Fan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Chongsu Cho
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Corresponding authors.
| | - Zhiqi Zhang
- Department of General Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081 China
- Corresponding authors.
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors.
| |
Collapse
|
37
|
Mahdinloo S, Kiaie SH, Amiri A, Hemmati S, Valizadeh H, Zakeri-Milani P. Efficient drug and gene delivery to liver fibrosis: rationale, recent advances, and perspectives. Acta Pharm Sin B 2020; 10:1279-1293. [PMID: 32874828 PMCID: PMC7451940 DOI: 10.1016/j.apsb.2020.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis results from chronic damages together with an accumulation of extracellular matrix, and no specific medical therapy is approved for that until now. Due to liver metabolic capacity for drugs, the fragility of drugs, and the presence of insurmountable physiological obstacles in the way of targeting, the development of efficient drug delivery systems for anti-fibrotics seems vital. We have explored articles with a different perspective on liver fibrosis over the two decades, then collected and summarized the information by providing corresponding in vitro and in vivo cases. We have discussed the mechanism of hepatic fibrogenesis with different ways of fibrosis induction in animals. Furthermore, the critical chemical and herbal anti-fibrotics, biological molecules such as micro-RNAs, siRNAs, and growth factors, which can affect cell division and differentiation, are mentioned. Likewise, drug and gene delivery and therapeutic systems on in vitro and in vivo models are summarized in the data tables. This review article enlightens recent advances in emerging drugs and nanocarriers and represents perspectives on targeting strategies employed in liver fibrosis treatment.
Collapse
Affiliation(s)
- Somayeh Mahdinloo
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
| | - Seyed Hossein Kiaie
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Ala Amiri
- Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
38
|
Ji D, Wang Q, Zhao Q, Tong H, Yu M, Wang M, Lu T, Jiang C. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy. J Nanobiotechnology 2020; 18:86. [PMID: 32513194 PMCID: PMC7281922 DOI: 10.1186/s12951-020-00645-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) were activated and secreted excessive amounts of extracellular matrix (ECM) proteins during pathogenetic progress of liver fibrosis. Germacrone (GMO) and miR-29b can play an important role in inhibiting growth of HSCs and production of type I collagen. GMO and miR-29b were co-encapsulated into nanoparticles (NPs) based on poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA). Then, NPs were modified with cyclic RGD peptides (cRGDfK). cRGDfK is an effective ligand to bind integrin αvβ3 and increase the targeting ability for fibrotic liver. GMO- and miR-29b-loaded NPs exhibited great cytotoxicity to activated HSCs and significantly inhibited production of type I collagen. Liver fibrosis model of mice was induced by administration of carbon tetrachloride. Great targeting ability was achieved in liver fibrotic mice treated with cRGD-modified NPs. Significant ant-fibrotic effects have been presented based on hematoxylin and eosin (H&E), Masson and Sirius Red staining results of liver tissues collected from mice treated with drug-loaded NPs. All these results indicate GMO- and miR-29b-loaded cRGD-modified NPs have the potential for clinical use to treat liver fibrosis.
Collapse
Affiliation(s)
- De Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Qiaohan Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.,Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, 325035, China
| | - Huangjin Tong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Mengting Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Meng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tulin Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Chengxi Jiang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China. .,Biomedical Collaborative Innovation Center of Zhejiang, Wenzhou, 325035, China.
| |
Collapse
|
39
|
Chen D, Qu X, Shao J, Wang W, Dong X. Anti-vascular nano agents: a promising approach for cancer treatment. J Mater Chem B 2020; 8:2990-3004. [PMID: 32211649 DOI: 10.1039/c9tb02957e] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anti-vascular agents (AVAs) are a class of promising therapeutic agents with tumor vasculature targeting properties, which can be divided into two types: anti-angiogenic agents (AAAs, inhibit angiogenesis factors) and vascular disrupting agents (VDAs, disrupt established tumor vasculature). AVAs exhibit an enhanced anti-cancer effect by cutting off the oxygen and nutrition supplement channels of tumors. However, the intrinsic drawbacks, such as poor hydrophilicity, undesirable membrane permeability and inferior tumor targeting ability, discount their anti-vascular efficacy. Fortunately, the development of nanotechnology has brought an opportunity for efficient delivery of AVAs to tumour sites with great therapeutic efficacy. The works summarized in this review will provide an understanding of recent advances of anti-vascular nano agents (AVNAs) with a goal to define the mechanism of anti-vascular-based cancer therapy and discuss the challenges and opportunities of AVNAs for clinical translation.
Collapse
Affiliation(s)
- Dapeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China.
| | | | | | | | | |
Collapse
|
40
|
Li Z, Ye L, Liu J, Lian D, Li X. Sorafenib-Loaded Nanoparticles Based on Biodegradable Dendritic Polymers for Enhanced Therapy of Hepatocellular Carcinoma. Int J Nanomedicine 2020; 15:1469-1480. [PMID: 32184599 PMCID: PMC7062400 DOI: 10.2147/ijn.s237335] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/21/2020] [Indexed: 12/29/2022] Open
Abstract
PURPOSE In spite of its enhanced efficacy and reduced side effects in clinical hepatocellular carcinoma (HCC) therapy, the therapeutic efficacy of antitumor angiogenesis inhibitor sorafenib (SFB) is still restricted due to short in vivo half-life and drug resistance. Here, a novel SFB-loaded dendritic polymeric nanoparticle (NP-TPGS-SFB) was developed for enhanced therapy of HCC. METHODS NP-TPGS-SFB was fabricated by encapsulating SFB with biodegradable dendritic polymers poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PBLG-b-TPGS). RESULTS NP-TPGS-SFB exhibited excellent stability and achieved acid-responsive release of SFB. It also exhibited much higher cellular uptake efficiency in HepG2 human liver cells than PEG-conjugated NP (NP-PEG-SFB). Furthermore, MTT assay confirmed that NP-TPGS-SFB induced higher cytotoxicity than NP-PEG-SFB and free SFB, respectively. Lastly, NP-TPGS-SFB significantly inhibited tumor growth in mice bearing HepG2 xenografts, with negligible side effects. CONCLUSION Our result suggests that NP-TPGS-SFB may be a novel approach for enhanced therapy of HCC with promising potential.
Collapse
Affiliation(s)
- Zihuang Li
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| | - Ling Ye
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou510632, People’s Republic of China
| | - Jingwen Liu
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| | - Daizheng Lian
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| | - Xianming Li
- Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People’s Hospital, Shenzhen518020, People’s Republic of China
| |
Collapse
|
41
|
Heo SY, Jeong MS, Lee HS, Kim YJ, Park SH, Jung WK. Phlorofucofuroeckol A from Ecklonia cava ameliorates TGF-β1-induced fibrotic response of human tracheal fibroblasts via the downregulation of MAPKs and SMAD 2/3 pathways inactivated TGF-β receptor. Biochem Biophys Res Commun 2020; 522:626-632. [PMID: 31785808 DOI: 10.1016/j.bbrc.2019.11.127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
The objective of this study was to investigate inhibitory effects of a bioactive compound isolated from Ecklonia cava on fibrotic responses to transforming growth factor-β1 (TGF-β1)-stimulated Hs680. Tr human tracheal fibroblasts and the associated mechanisms of action. Post consecutive purification, a potent bioactive compound was identified phlorofucofuroeckol A. Phlorofucofuroeckol A significantly suppressed protein expression levels of collagen type I and α-smooth muscle actin (α-SMA) on TGF-β1-stimulated Hs680. Tr human tracheal fibroblasts. Further mechanistic studies determined that phlorofucofuroeckol A suppressed the phosphorylation of p38, extracellular regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) and SMAD 2/3 in TGF-β1-stimulated Hs680. Tr human tracheal fibroblasts. Moreover, we could show that phlorofucofuroeckol A inhibits binding of TGF-β1 to its TGF-β receptor by molecular docking. Based on the results, we propose that phlorofucofuroeckol A suppresses the MAPKs and SMAD 2/3 pathways and relieves cellular fibrotic activities, thus preventing tracheal fibrosis.
Collapse
Affiliation(s)
- Seong-Yeong Heo
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Min-Seon Jeong
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; EONE-DIAGNOMICS Genome Center (EDGC), 291 Harmony-ro, Yeonsu-gu, Incheon, 22014, Republic of Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, 49104, Republic of Korea
| | - Young Jick Kim
- ATEMs Co. Ltd., 306, Acekwanggyo Tower, 17 Daehak 4-ro, Yeongtong-gu, Suwon Gyeonggi, Republic of Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea; Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
42
|
Li N, Chen Y, Sun H, Huang T, Chen T, Jiang Y, Yang Q, Yan X, Wu M. Decreasing acute toxicity and suppressing colorectal carcinoma using Sorafenib-loaded nanoparticles. Pharm Dev Technol 2020; 25:556-565. [PMID: 31958240 DOI: 10.1080/10837450.2020.1718704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: A polymer-based nanoparticle was constructed to target sorafenib delivery to colorectal carcinoma cells and decrease the side effects of the drug.Methods: Sorafenib-loaded nanoparticles (S-NPs) based on PEG-PLGA were prepared using a double emulsion solvent evaporation method. The properties of S-NPs were evaluated and then their effects on the viability of colorectal cancer cells and normal human cells were assessed. The mechanism of S-NP internalization was explored using cellular uptake assays and in vitro fluorescence confocal imaging. Acute toxicity of sorafenib on its own or within S-NPs was assessed in mice.Results: S-NPs showed high drug loading and entrapment efficiencies, they did not cause extensive hemolysis, and they efficiently inhibited growth of colorectal cancer cell lines and human umbilical vein endothelial cells. S-NPs showed lower acute toxicity than the free drug.Conclusions: Loading sorafenib into nanoparticles can enhance its uptake by colorectal cancer cells and decrease its acute toxicity.
Collapse
Affiliation(s)
- Ningxi Li
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yan Chen
- Department of Pharmacy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huimin Sun
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Tingwenli Huang
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Tianyu Chen
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yichun Jiang
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Qian Yang
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Xiaoyan Yan
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| | - Min Wu
- Department of Pharmacy, Chengdu Medical College, Chengdu, China
| |
Collapse
|
43
|
Gao W, Jia X, Wu J, Song Y, Yin J, Zhang M, Qiu N, Li X, Wu P, Qi X, Liu Z. Preparation and evaluation of folate-decorated human serum albumin nanoparticles for the targeted delivery of sorafenib to enhance antihepatocarcinoma efficacy. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Wu H, Wang C, Sun J, Sun L, Wan J, Wang S, Gu D, Yu C, Yang C, He J, Zhang Z, Lv Y, Wang H, Yao M, Qin W, Wang C, Jin H. Self-Assembled and Self-Monitored Sorafenib/Indocyanine Green Nanodrug with Synergistic Antitumor Activity Mediated by Hyperthermia and Reactive Oxygen Species-Induced Apoptosis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43996-44006. [PMID: 31682099 DOI: 10.1021/acsami.9b18086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liver cancer is a leading cause of cancer morbidity and mortality worldwide, especially in China. Sorafenib (SRF) is currently the most commonly used systemic agent against advanced hepatocellular carcinoma (HCC), which is the most common type of liver cancer. However, HCC patients have only limited benefit and suffer a serious side effect from SRF. Therefore, new approaches are urgently needed to improve the therapeutic effectiveness of SRF and reduce its side effect. In our current study, we developed a self-imaging and self-delivered nanodrug with SRF and indocyanine (ICG) to improve the therapeutic effect of sorafenib against HCC. With the π-π stacking effect between SRF and ICG, a one-step nanoprecipitation method was designed to obtain the SRF/ICG nanoparticles (SINP) via self-assembly. Pluronic F127 was used to shield the SINP to further improve the stability in an aqueous environment. The stability, photothermal effect, cell uptake, ROS production, cytotoxicity, tumor imaging, and tumor-targeting and tumor-killing efficacy of the SINP were evaluated in vitro and in vivo by using an HCC cell line Huh7 and its xenograft tumor model. We found that our designed SINP showed monodisperse stability and efficient photothermal effect both in vitro and in vivo. SINP could rapidly enter Huh7 cells and achieve potent cytotoxicity under near-infrared (NIR) laser irradiation partly by producing a great amount of reactive oxygen species (ROS). SINP had significantly improved stability and blood half-life, and could specifically target tumor via the enhanced permeability and retention (EPR) effect in vivo. In addition, SINP showed improved cytotoxicity in both subcutaneous and orthotopic HCC implantation models in vivo. Overall, this rationally designed sorafenib delivery system with a very high loading capacity (33%) has considerably improved antitumor efficiency in vitro and could completely eliminate subcutaneous tumors without any regrowth in vivo. In conclusion, our self-imaging and self-delivered nanodrug could improve the efficacy of SRF and might be a potential therapy for HCC patients.
Collapse
Affiliation(s)
- Haiqiu Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
- State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Luyan Sun
- State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Siying Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
- Department of Pathophysiology, School of Basic Medical Sciences , Guangdong Medical University , Dongguan , Guangdong 523808 , China
| | - Chengtao Yu
- School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200032 , China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
- Shanghai Medical College , Fudan University , Shanghai 200032 , China
| | - Jia He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| | - Zihao Zhang
- State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Yuanyuan Lv
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Laboratory of Advanced Materials , Fudan University , Shanghai 200433 , China
| | - Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute , Renji Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200032 , China
| |
Collapse
|
45
|
Teng C, Chai Z, Yuan Z, Ren L, Lin C, Yan Z, He W, Qin C, Yang L, Han X, Yin L. Desirable PEGylation for improving tumor selectivity of hyaluronic acid-based nanoparticles via low hepatic captured, long circulation times and CD44 receptor-mediated tumor targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102105. [PMID: 31740406 DOI: 10.1016/j.nano.2019.102105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/26/2019] [Accepted: 09/27/2019] [Indexed: 01/25/2023]
Abstract
PEG coating was regarded as one effective method to improve the tumor-targeting efficiency of hyaluronic acid-based nanoparticles (HBN). However, the research of interaction between PEG coating and different receptors such as stabilin-2 and CD44 was limited. Herein, we synthesized a series of PEGylated hyaluronic acid with Curcumin (PHCs) to evaluate the role of PEG coating density in the interaction between HA and its receptors, which influenced tissues targeting activity, pharmacokinetic profiles and therapeutic efficacy of HBN. Compared with other counterparts, PHC HBN with about 5% PEG coating density preferably accumulated in the tumor mass, rather than in the liver, and hold desirable anti-cancer effect. These results indicated that to obtain optimized anticancer effect of HBN, the cellular uptake efficiency between different types of the cells should be carefully balanced by different PEG densities.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhuodong Chai
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhongyue Yuan
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China; University of the Pacific, Stockton, California, USA
| | - Lianjie Ren
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China; Center for Drug Evaluation, CFDA, Beijing, PR China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhen Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Chao Qin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Lei Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Xiaopeng Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| | - Lifang Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
46
|
Codullo V, Cova E, Pandolfi L, Breda S, Morosini M, Frangipane V, Malatesta M, Calderan L, Cagnone M, Pacini C, Cavagna L, Recalde H, Distler JHW, Giustra M, Prosperi D, Colombo M, Meloni F, Montecucco C. Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis. J Control Release 2019; 310:198-208. [PMID: 31430501 DOI: 10.1016/j.jconrel.2019.08.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022]
Abstract
Interstitial lung involvement in Systemic Sclerosis (SSc-ILD) is a complication with high morbidity and mortality. Specifically, engineered gold nanoparticles (GNPs) are proposed as targeted delivery system increasing efficacy of drugs with antifibrotic effect, such as tyrosine kinases. We aimed to test in vitro and in vivo the activity of targeted Imatinib (Im)-loaded GNP on SSc-ILD patients derived cells and in experimental model of lung fibrosis. GNPs functionalized with anti-CD44 and loaded with Im (GNP-HCIm) were synthesized. Lung fibroblasts (LFs) and alveolar macrophages from bronchoalveolar lavage fluids of SSc-ILD patients were cultured in presence of nanoparticles. GNP-HCIm significantly inhibited proliferation and viability inducing apoptosis of LFs and effectively reduced IL-8 release, viability and M2 polarization in alveolar macrophages. Anti-fibrotic effect of tracheal instilled GNP-HCIm was evaluated on bleomycin lung fibrosis mouse model comparing effect with common route of Im administration. GNP-HCIm were able to reduce significantly lung fibrotic changes and collagen deposition. Finally, electron microscopy revealed the presence of GNPs inside alveolar macrophages. These data support the use of GNPs locally administered in the development of new therapeutic approaches to SSc-ILD.
Collapse
Affiliation(s)
- Veronica Codullo
- Rheumatology service, Cochin Hospital, 75014 Paris, France; Unit of Rheumatology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Emanuela Cova
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Laura Pandolfi
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Silvia Breda
- Unit of Rheumatology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Monica Morosini
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Vanessa Frangipane
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement sciences, University of Verona, 37100 Verona, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement sciences, University of Verona, 37100 Verona, Italy
| | - Maddalena Cagnone
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
| | - Chiara Pacini
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20100 Milan, Italy
| | - Lorenzo Cavagna
- Unit of Rheumatology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; Department of Internal Medicine, University of Pavia, section of Rheumatology, 27100 Pavia, Italy
| | - Helios Recalde
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Jörg H W Distler
- Department of Internal Medicine, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, 91050 Erlangen, Germany
| | - Marco Giustra
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20100 Milan, Italy
| | - Davide Prosperi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20100 Milan, Italy; Laboratory of Nanotechnology, ICS Maugeri, 27100 Pavia, Italy
| | - Miriam Colombo
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20100 Milan, Italy.
| | - Federica Meloni
- Unit of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; Department of Internal Medicine, University of Pavia, Section of Pneumology, 27100 Pavia, Italy
| | - Carlomaurizio Montecucco
- Unit of Rheumatology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; Department of Internal Medicine, University of Pavia, section of Rheumatology, 27100 Pavia, Italy; Rheumatology service, Cochin Hospital, 75014 Paris, France
| |
Collapse
|
47
|
Feczkó T, Piiper A, Pleli T, Schmithals C, Denk D, Hehlgans S, Rödel F, Vogl TJ, Wacker MG. Theranostic Sorafenib-Loaded Polymeric Nanocarriers Manufactured by Enhanced Gadolinium Conjugation Techniques. Pharmaceutics 2019; 11:489. [PMID: 31548500 PMCID: PMC6835296 DOI: 10.3390/pharmaceutics11100489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
: Today, efficient delivery of sorafenib to hepatocellular carcinoma remains a challenge for current drug formulation strategies. Incorporating the lipophilic molecule into biocompatible and biodegradable theranostic nanocarriers has great potential for improving the efficacy and safety of cancer therapy. In the present study, three different technologies for the encapsulation of sorafenib into poly(d,l-lactide-co-glycolide) and polyethylene glycol-poly(d,l-lactide-co-glycolide) copolymers were compared. The particles ranged in size between 220 and 240 nm, with encapsulation efficiencies from 76.1 ± 1.7% to 69.1 ± 10.1%. A remarkable maximum drug load of approximately 9.0% was achieved. Finally, a gadolinium complex was covalently attached to the nanoparticle surface, transforming the nanospheres into theranostic devices, allowing their localization using magnetic resonance imaging. The manufacture of sorafenib-loaded nanoparticles alongside the functionalization of the particle surface with gadolinium complexes resulted in a highly efficacious nanodelivery system which exhibited a strong magnetic resonance imaging signal, optimal stability features, and a sustained release profile.
Collapse
Affiliation(s)
- Tivadar Feczkó
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudosok krt. 2., H-1117 Budapest, Hungary
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 2., H-8200 Veszprém, Hungary
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Albrecht Piiper
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Thomas Pleli
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Christian Schmithals
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Dominic Denk
- Department of Medicine 1, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany; (A.P.); (T.P.); (C.S.); (D.D.)
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; (S.H.); (F.R.)
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany;
| | - Matthias G. Wacker
- Department of Pharmacy, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore;
| |
Collapse
|
48
|
Thermosensitive hydrogels for sustained-release of sorafenib and selenium nanoparticles for localized synergistic chemoradiotherapy. Biomaterials 2019; 216:119220. [DOI: 10.1016/j.biomaterials.2019.05.031] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/13/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
|
49
|
Clavreul A, Roger E, Pourbaghi-Masouleh M, Lemaire L, Tétaud C, Menei P. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Deliv 2019; 25:1756-1765. [PMID: 30338715 PMCID: PMC6225440 DOI: 10.1080/10717544.2018.1507061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Anticancer agents that target both tumor cells and angiogenesis are of potential interest for glioblastoma (GB) therapy. One such agent is sorafenib (SFN), a tyrosine kinase inhibitor. However, poor aqueous solubility and undesirable side effects limit its clinical application, including local treatment. We encapsulated SFN in lipid nanocapsules (LNCs) to overcome these drawbacks. LNCs are nanocarriers formulated according to a solvent-free process, using only components that have received regulatory approval. SFN-LNCs had a diameter of 54 ± 1 nm, high encapsulation efficiency (>90%), and a drug payload of 2.11 ± 0.03 mg/g of LNC dispersion. They inhibited in vitro angiogenesis and decreased human U87MG GB cell viability similarly to free SFN. In vivo studies showed that the intratumoral administration of SFN-LNCs or free SFN in nude mice bearing an orthotopic U87MG human GB xenograft decreased the proportion of proliferating cells in the tumor relative to control groups. SFN-LNCs were more effective than free SFN for inducing early tumor vascular normalization, characterized by increases in tumor blood flow and decreases in tumor vessel area. These results highlight the potential of LNCs as delivery systems for SFN. The vascular normalization induced by SFN-LNCs could be used to improve the efficacy of chemotherapy or radiotherapy for treating GB.
Collapse
Affiliation(s)
- Anne Clavreul
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Emilie Roger
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France
| | - Milad Pourbaghi-Masouleh
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France.,d Division of Drug Delivery and Tissue Engineering, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Laurent Lemaire
- c MINT, INSERM 1066, CNRS 6021 , Université d'Angers, UNIV Angers , Angers , France.,e PRISM-IRM , UNIV Angers , Angers , France
| | - Clément Tétaud
- b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| | - Philippe Menei
- a Département de Neurochirurgie , CHU , Angers , France.,b CRCINA, INSERM , Université de Nantes, Université d'Angers , Angers , France
| |
Collapse
|
50
|
Tang J, Zeng Z, Yan J, Chen C, Liu J, Feng X. Quantitative and high drug loading of self-assembled prodrug with defined molecular structures for effective cancer therapy. J Control Release 2019; 307:90-97. [PMID: 31185233 DOI: 10.1016/j.jconrel.2019.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/18/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022]
Abstract
Nanomedicines have made significant progress in the delivery of small molecular drugs, many challenges, however, still remain to be overcome, such as unsatisfactory drug loading, formulation instability, premature drug leakage, and poor blood circulation. Herein, an innovative glutathione (GSH)-sensitive amphiphilic dendritic prodrug with quantitative and high drug loading (>30 wt%) is reported. The multi-armed structure of prepared prodrug can self-assemble into nanoparticles in aqueous solution without the introduction of any organic solvents. The self-assembled prodrug nanoparticle is composed of the following key components: (i) polyethylene glycol (PEG) outer shell ensuring biocompatibility and prolonging blood circulation, (ii) prodrug inner core responding to GSH for triggered release of intact drug, (iii) multi-armed dendritic structure facilitating self-assembly and enhancing drug loading content, (iv) covalent drug conjugation avoiding drug leakage and improving stability, (v) defined chemical structures and quantitative drug loading easy for reproduction. Both in vitro and in vivo results show that these GSH-responsive prodrug nanoparticle exhibits significant inhibition of tumor cell growth, and is promising for efficient and safe chemotherapeutic delivery.
Collapse
Affiliation(s)
- Jiakun Tang
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhiying Zeng
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ju Yan
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Cheng Chen
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jin Liu
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xuli Feng
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|