1
|
Bairqdar A, Karitskaya PE, Stepanov GA. Expanding Horizons of CRISPR/Cas Technology: Clinical Advancements, Therapeutic Applications, and Challenges in Gene Therapy. Int J Mol Sci 2024; 25:13321. [PMID: 39769084 PMCID: PMC11678091 DOI: 10.3390/ijms252413321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
CRISPR-Cas technology has transformed the field of gene editing, opening new possibilities for treatment of various genetic disorders. Recent years have seen a surge in clinical trials using CRISPR-Cas-based therapies. This review examines the current landscape of CRISPR-Cas implementation in clinical trials, with data from key registries, including the Australian New Zealand Clinical Trials Registry, the Chinese Clinical Trial Register, and ClinicalTrials.gov. Emphasis is placed on the mechanism of action of tested therapies, the delivery method, and the most recent findings of each clinical trial.
Collapse
Affiliation(s)
- Ahmad Bairqdar
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Polina E. Karitskaya
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia;
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
| |
Collapse
|
2
|
Intraocular siRNA Delivery Mediated by Penetratin Derivative to Silence Orthotopic Retinoblastoma Gene. Pharmaceutics 2023; 15:pharmaceutics15030745. [PMID: 36986605 PMCID: PMC10053059 DOI: 10.3390/pharmaceutics15030745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Gene therapy brings a ray of hope for inherited ocular diseases that may cause severe vision loss and even blindness. However, due to the dynamic and static absorption barriers, it is challenging to deliver genes to the posterior segment of the eye by topical instillation. To circumvent this limitation, we developed a penetratin derivative (89WP)-modified polyamidoamine polyplex to deliver small interference RNA (siRNA) via eye drops to achieve effective gene silencing in orthotopic retinoblastoma. The polyplex could be spontaneously assembled through electrostatic and hydrophobic interactions, as demonstrated by isothermal titration calorimetry, and enter cells intactly. In vitro cellular internalization revealed that the polyplex possessed higher permeability and safety than the lipoplex composed of commercial cationic liposomes. After the polyplex was instilled in the conjunctival sac of the mice, the distribution of siRNA in the fundus oculi was significantly increased, and the bioluminescence from orthotopic retinoblastoma was effectively inhibited. In this work, an evolved cell-penetrating peptide was employed to modify the siRNA vector in a simple and effective way, and the formed polyplex interfered with intraocular protein expression successfully via noninvasive administration, which showed a promising prospect for gene therapy for inherited ocular diseases.
Collapse
|
3
|
Fachel FNS, Frâncio L, Poletto É, Schuh RS, Teixeira HF, Giugliani R, Baldo G, Matte U. Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Adv Drug Deliv Rev 2022; 191:114616. [PMID: 36356930 DOI: 10.1016/j.addr.2022.114616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Lysosomal storage disorders are a group of progressive multisystemic hereditary diseases with a combined incidence of 1:4,800. Here we review the clinical and molecular characteristics of these diseases, with a special focus on Mucopolysaccharidoses, caused primarily by the lysosomal storage of glycosaminoglycans. Different gene editing techniques can be used to ameliorate their symptoms, using both viral and nonviral delivery methods. Whereas these are still being tested in animal models, early results of phase I/II clinical trials of gene therapy show how this technology may impact the future treatment of these diseases. Hurdles related to specific hard-to-reach organs, such as the central nervous system, heart, joints, and the eye must be tackled. Finally, the regulatory framework necessary to advance into clinical practice is also discussed.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Lariane Frâncio
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil
| | - Édina Poletto
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil
| | - Guilherme Baldo
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Fisiologia, UFRGS, Porto Alegre, RS, Brazil
| | - Ursula Matte
- Laboratório de Células, Tecidos e Genes - Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Porto Alegre, RS, Brazil; Departamento de Genética, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Rocha LFM, Braga LAM, Mota FB. Gene Editing for Treatment and Prevention of Human Diseases: A Global Survey of Gene Editing-Related Researchers. Hum Gene Ther 2021; 31:852-862. [PMID: 32718240 DOI: 10.1089/hum.2020.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the next decades, gene editing technologies are expected to be used in the treatment and prevention of human diseases. Yet, the future uses of gene editing in medicine are still unknown, including its applicability and effectiveness to the treatment and prevention of infectious diseases, cancer, and monogenic and polygenic hereditary diseases. This study aims to address this gap by analyzing the views of over 1,000 gene editing-related researchers from all over the world. Some of our survey results show that, in the next 10 years, DNA double-strand breaks are expected to be the main method for gene editing, and CRISPR-Cas systems to be the mainstream programmable nuclease. In the same period, gene editing is expected to have more applicability and effectiveness to treat and prevent infectious diseases and cancer. Off-targeting mutations, reaching therapeutic levels of editing efficiency, difficulties in targeting specific tissues in vivo, and regulatory and ethical challenges are among the most relevant factors that might hamper the use of gene editing in humans. In conclusion, our results suggest that gene editing might become a reality to the treatment and prevention of a variety of human diseases in the coming 10 years. If the future confirms these researchers' expectations, gene editing could change the way medicine, health systems, and public health deal with the treatment and prevention of human diseases.
Collapse
Affiliation(s)
| | | | - Fabio Batista Mota
- Center for Strategic Studies, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Muripiti V, Lohchania B, Ravula V, Manturthi S, Marepally S, Velidandi A, Patri SV. Dramatic influence of the hydroxy functionality of azasugar moiety in the head group region of tocopherol-based cationic lipids on in vitro gene transfection efficacies. NEW J CHEM 2021. [DOI: 10.1039/d0nj03717f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cationic lipids have been effectively used as nonviral vectors for the delivery of polynucleic acids into the cytosol.
Collapse
|
6
|
Perdigão PR, Cunha-Santos C, Barbas CF, Santa-Marta M, Goncalves J. Protein Delivery of Cell-Penetrating Zinc-Finger Activators Stimulates Latent HIV-1-Infected Cells. Mol Ther Methods Clin Dev 2020; 18:145-158. [PMID: 32637446 PMCID: PMC7317221 DOI: 10.1016/j.omtm.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
Despite efforts to develop effective treatments for eradicating HIV-1, a cure has not yet been achieved. Whereas antiretroviral drugs target an actively replicating virus, latent, nonreplicative forms persist during treatment. Pharmacological strategies that reactivate latent HIV-1 and expose cellular reservoirs to antiretroviral therapy and the host immune system have, so far, been unsuccessful, often triggering severe side effects, mainly due to systemic immune activation. Here, we present an alternative approach for stimulating latent HIV-1 expression via direct protein delivery of cell-penetrating zinc-finger activators (ZFAs). Cys2-His2 zinc-fingers, fused to a transcription activation domain, were engineered to recognize the HIV-1 promoter and induce targeted viral transcription. Following conjugation with multiple positively charged nuclear localization signal (NLS) repeats, protein delivery of a single ZFA (3NLS-PBS1-VP64) efficiently internalized HIV-1 latently infected T-lymphocytes and specifically stimulated viral expression. We show that short-term treatment with this ZFA protein induces higher levels of viral reactivation in cell line models of HIV-1 latency than those observed with gene delivery. Our work establishes protein delivery of ZFA as a novel and safe approach toward eradication of HIV-1 reservoirs.
Collapse
Affiliation(s)
- Pedro R.L. Perdigão
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Chemistry, Department of Cell and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Catarina Cunha-Santos
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos F. Barbas
- Department of Chemistry, Department of Cell and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mariana Santa-Marta
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Joao Goncalves
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Lee AY, Cho MH, Kim S. Recent advances in aerosol gene delivery systems using non-viral vectors for lung cancer therapy. Expert Opin Drug Deliv 2019; 16:757-772. [PMID: 31282221 DOI: 10.1080/17425247.2019.1641083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer commonly occurs at a high incidence worldwide. Application of aerosol gene delivery systems using various kinds of vectors can improve the patient's quality of life by prolonging the survival rate. AREAS COVERED This review provides a recent update on aerosol gene delivery strategies using various kinds of vectors and gene-modification technologies. Peptide-mediated gene therapy achieves specific targeting of cells and highly improves efficacy. Promoter-operating expression and the CRISPR/Cas9 system are novel gene therapy strategies for effective lung cancer treatment. Furthermore, hybrid systems with a combination of vectors or drugs have been recently applied as new trends in gene therapy. EXPERT OPINION Although aerosol gene delivery has many advantages, physiological barriers in the lungs pose formidable challenges. Targeted gene delivery and gene-editing technology are promising strategies for lung cancer therapy. These strategies may allow the development of safety and high efficiency for clinical application. Recently, hybrid gene therapy combining novel and specific vectors has been developed as an advanced strategy. Although gene therapy for lung cancer is being actively researched, aerosol gene therapy strategies are currently lacking, and further studies on aerosol gene therapy are needed to treat lung cancer.
Collapse
Affiliation(s)
- Ah Young Lee
- a Center for Molecular Recognition Research, Materials and Life Science Research Division , Korea Institute of Science and Technology (KIST) , Seoul , Korea
| | - Myung-Haing Cho
- b Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine , Seoul National University , Seoul , Republic of Korea
| | - Sanghwa Kim
- c Cancer Biology Laboratory , Institut Pasteur Korea , Seongnam-si , Korea
| |
Collapse
|
8
|
Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes (Basel) 2018; 9:genes9110529. [PMID: 30384431 PMCID: PMC6266988 DOI: 10.3390/genes9110529] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Nucleic acid-based aptamers have emerged as efficient delivery carriers of therapeutics. Thanks to their unique features, they can be, to date, considered one of the best targeting moieties, allowing the specific recognition of diseased cells and avoiding unwanted off-target effects on healthy tissues. In this review, we revise the most recent contributes on bispecific and multifunctional aptamer therapeutic chimeras. We will discuss key examples of aptamer-mediated delivery of nucleic acid and peptide-based therapeutics underlying their great potentiality and versatility. Achieved objectives and challenges will be highlighted as well.
Collapse
|
9
|
Liu BY, He XY, Xu C, Xu L, Ai SL, Cheng SX, Zhuo RX. A Dual-Targeting Delivery System for Effective Genome Editing and In Situ Detecting Related Protein Expression in Edited Cells. Biomacromolecules 2018; 19:2957-2968. [DOI: 10.1021/acs.biomac.8b00511] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bo-Ya Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Lei Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shu-Lun Ai
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
10
|
Ma XX, Gao H, Zhang YX, Jia YY, Li C, Zhou SY, Zhang BL. Construction and evaluation of BSA-CaP nanomaterials with enhanced transgene performance via biocorona-inspired caveolae-mediated endocytosis. NANOTECHNOLOGY 2018; 29:085101. [PMID: 29256442 DOI: 10.1088/1361-6528/aaa2b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Non-viral nanovectors have attracted much attention owing to their ability to condense genetic materials and their ease of modification. However, their poor stability, low biocompatibility and gene degradation in endosomes or lysosomes has significantly hampered their application in vivo and in the clinic. In an attempt to overcome these difficulties a series of bovine serum albumin (BSA)-calcium phosphate (CaP) nanoparticles were constructed. The CaP condenses with DNA to form nanocomplexes coated with a biomimetic corona of BSA. Such complexes may retain the inherent endocytosis profile of BSA, with improved biocompatibility. In particular the transgene performance may be enhanced by stimulating the cellular uptake pathway via caveolae-mediated endocytosis. Two methods were employed to construct and optimize the formulation of BSA-CaP nanomaterials. The optimized BSA-CaP-50-M2 nanoparticles prepared by our second method exhibited good stability, negligible cytotoxicity and enhanced transgene performance with long-term expression for 72 h in vivo even with a single dose. Determination of the cellular uptake pathway and Western blot revealed that cellular uptake of the designed BSA-CaP-50-M2 nanoparticles was mainly via caveolae-mediated endocytosis in a non-degradative pathway in which the biomimetic uptake profile of BSA was retained.
Collapse
Affiliation(s)
- Xi-Xi Ma
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for genome editing in the context of Huntington's disease. Here, we provide protocols that cover the design of various genome editing strategies, the cloning of CRISPR/Cas9 elements into lentiviral vectors, and the assessment of cleavage efficiency, as well as potential unwanted effects.
Collapse
Affiliation(s)
- Gabriel Vachey
- Laboratory of Neurotherapies and Neuromodulation (LNCM), Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nicole Déglon
- Laboratory of Neurotherapies and Neuromodulation (LNCM), Neuroscience Research Center (CRN), Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
12
|
Bon C, Hofer T, Bousquet-Mélou A, Davies MR, Krippendorff BF. Capacity limits of asialoglycoprotein receptor-mediated liver targeting. MAbs 2017; 9:1360-1369. [PMID: 28876162 DOI: 10.1080/19420862.2017.1373924] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The abundant cell surface asialoglycoprotein receptor (ASGPR) is a highly selective receptor found on hepatocytes that potentially can be exploited as a selective shuttle for delivery. Various nucleic acid therapeutics that bind ASGPR are already in clinical development, but this receptor-mediated delivery mechanism can be saturated, which will likely result in reduced selectivity for the liver and therefore increase the likelihood for systemic adverse effects. Therefore, when aiming to utilize this mechanism, it is important to optimize both the administration protocol and the molecular properties. We here present a study using a novel ASGPR-targeted antibody to estimate ASGPR expression, turnover and internalization rates in vivo in mice. Using pharmacokinetic data (intravenous and subcutaneous dosing) and an in-silico target-mediated drug disposition (TMDD) model, we estimate an ASGPR expression level of 1.8 million molecules per hepatocyte. The half-life of the degradation of the receptor was found to be equal to 15 hours and the formed ligand-receptor complex is internalized with a half-life of 5 days. A biodistribution study was performed and confirmed the accuracy of the TMDD model predictions. The kinetics of the ASGPR shows that saturation of the shuttle at therapeutic concentrations is possible; however, simulation allows the dosing schedule to be optimized. The developed TMDD model can be used to support the development of therapies that use the ASGPR as a shuttle into hepatocytes.
Collapse
Affiliation(s)
- Charlotte Bon
- a Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , Basel , Switzerland.,b Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM , Université de Toulouse , Toulouse , France
| | - Thomas Hofer
- c Roche Pharmaceutical Research and Early Development, Roche Innovation Center Zurich , Zurich , Switzerland
| | - Alain Bousquet-Mélou
- b Ecole Nationale Vétérinaire de Toulouse, Institut National de la Recherche Agronomique, TOXALIM , Université de Toulouse , Toulouse , France
| | | | - Ben-Fillippo Krippendorff
- a Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , Basel , Switzerland
| |
Collapse
|
13
|
Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat Commun 2017; 8:66. [PMID: 28687761 PMCID: PMC5501794 DOI: 10.1038/s41467-017-00124-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/01/2017] [Indexed: 11/09/2022] Open
Abstract
Off-target or random integration of exogenous DNA hampers precise genomic engineering and presents a safety risk in clinical gene therapy strategies. Genetic definition of random integration has been lacking for decades. Here, we show that the A-family DNA polymerase θ (Pol θ) promotes random integration, while canonical non-homologous DNA end joining plays a secondary role; cells double deficient for polymerase θ and canonical non-homologous DNA end joining are devoid of any integration events, demonstrating that these two mechanisms define random integration. In contrast, homologous recombination is not reduced in these cells and gene targeting is improved to 100% efficiency. Such complete reversal of integration outcome, from predominately random integration to exclusively gene targeting, provides a rational way forward to improve the efficacy and safety of DNA delivery and gene correction approaches.Random off-target integration events can impair precise gene targeting and poses a safety risk for gene therapy. Here the authors show that repression of polymerase θ and classical non-homologous recombination eliminates random integration.
Collapse
Affiliation(s)
- Alex N Zelensky
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Centre, Rotterdam,, 3000 CA, The Netherlands
| | - Joost Schimmel
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, Leiden,, 2300 RC, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, Leiden,, 2300 RC, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Centre, Rotterdam,, 3000 CA, The Netherlands.
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, Leiden,, 2300 RC, The Netherlands.
| |
Collapse
|
14
|
White MK, Kaminski R, Young WB, Roehm PC, Khalili K. CRISPR Editing Technology in Biological and Biomedical Investigation. J Cell Biochem 2017; 118:3586-3594. [PMID: 28460414 DOI: 10.1002/jcb.26099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 01/01/2023]
Abstract
The CRISPR or clustered regularly interspaced short palindromic repeats system is currently the most advanced approach to genome editing and is notable for providing an unprecedented degree of specificity, effectiveness, and versatility in genetic manipulation. CRISPR evolved as a prokaryotic immune system to provide an acquired immunity and resistance to foreign genetic elements such as bacteriophages. It has recently been developed into a tool for the specific targeting of nucleotide sequences within complex eukaryotic genomes for the purpose of genetic manipulation. The power of CRISPR lies in its simplicity and ease of use, its flexibility to be targeted to any given nucleotide sequence by the choice of an easily synthesized guide RNA, and its ready ability to continue to undergo technical improvements. Applications for CRISPR are numerous including creation of novel transgenic cell animals for research, high-throughput screening of gene function, potential clinical gene therapy, and nongene-editing approaches such as modulating gene activity and fluorescent tagging. In this prospect article, we will describe the salient features of the CRISPR system with an emphasis on important drawbacks and considerations with respect to eliminating off-target events and obtaining efficient CRISPR delivery. We will discuss recent technical developments to the system and we will illustrate some of the most recent applications with an emphasis on approaches to eliminate human viruses including HIV-1, JCV and HSV-1 and prospects for the future. J. Cell. Biochem. 118: 3586-3594, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Martyn K White
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Rafal Kaminski
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Won-Bin Young
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Pamela C Roehm
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| | - Kamel Khalili
- Center for Neurovirology and Comprehensive NeuroAIDS Center, Department of Neuroscience, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
15
|
He ZY, Men K, Qin Z, Yang Y, Xu T, Wei YQ. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. SCIENCE CHINA. LIFE SCIENCES 2017; 60:458-467. [PMID: 28527117 DOI: 10.1007/s11427-017-9033-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/16/2017] [Indexed: 02/08/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.
Collapse
Affiliation(s)
- Zhi-Yao He
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhou Qin
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|