1
|
Coelho MM, Nóbrega IBC, Torres L, de Medeiros RVB, de Alvarenga ÉC, Ladeira LO, Faria AMC, Carvalho CR, Costa RA. Gold nanoparticles associated with ovalbumin as adjuvant in the indirect effects of oral tolerance improve ear wound healing in mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 66:102822. [PMID: 40268213 DOI: 10.1016/j.nano.2025.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Oral tolerance suppresses immune responses, such as antibody production, following immunization with an antigen and adjuvant in animals previously exposed to the protein orally. Parenteral administration of orally tolerated antigens with alum adjuvants induces systemic effects that inhibit immune responses to unrelated antigens and enhance wound healing in mouse skin. This study investigated whether subcutaneous (s.c.) administration of gold nanoparticles conjugated with ovalbumin (AuNPs@OVA) could serve as an effective adjuvant in oral tolerance and promote ear lesion repair in mice. Male Swiss mice received a 5-day oral OVA treatment, followed by s.c. injections of AuNPs@OVA at the tail base 7 days later, with a secondary injection administered 20 days after the initial dose. Lesions were created on one ear during the primary injection. Transmission electron microscopy (TEM) confirmed a spherical morphology of the AuNPs, with an average diameter of approximately 6.84 nm. The findings demonstrated that AuNPs@OVA injections enhanced IgG1, IgG2a, and total anti-OVA antibody levels in non-tolerant mice. Immunization also increased leukocyte levels at the injection site. In OVA-tolerant mice, AuNPs@OVA elevated the percentage of TBET-expressing cells in the caudal lymph nodes but not in the spleen. Histological analysis revealed improved ear tissue remodeling in OVA-tolerant mice treated with AuNPs@OVA compared to other groups. These results indicate that AuNPs@OVA injections not only leverage the indirect effects of oral tolerance but also outperform Al(OH)3 as an adjuvant in promoting ear wound healing.
Collapse
Affiliation(s)
- Monique Macedo Coelho
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Beatriz Cabacinha Nóbrega
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Érika Costa de Alvarenga
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Luiz Orlando Ladeira
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia Rocha Carvalho
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, Brazil; Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel Alves Costa
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, Brazil.
| |
Collapse
|
2
|
Lago T, Peixoto F, Mambelli F, Carvalho LP, Guimarães LH, Carvalho AM, Cardoso L, Machado PRL, Scott P, Lago J, Andrade JM, Fahel JS, Oliveira SC, Carvalho EM. Use of topical rSm29 in combination with intravenous meglumine antimoniate in the treatment of cutaneous leishmaniasis: A randomized controlled trial. Int J Infect Dis 2024; 147:107206. [PMID: 39147194 DOI: 10.1016/j.ijid.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) braziliensis is associated with an inflammatory response. Granzyme (GzmB) and IL-1β play a key role in the pathology. Meglumine antimoniate (MA) is the first-choice drug for the treatment of CL, but therapy failure is observed in up to 50% of the cases. The protein, rSm29 of Schistosoma mansoni, down-modulates pro-inflammatory cytokine production. We evaluate if the combination of topical rSm29 plus MA increases the cure rate of CL. METHODS In this randomized clinical trial, 91 CL patients were allocated in 3 groups. All cases received MA (20 mg/kg/weight) for 20 days. Group 1 used topical rSm29 (10 µg), group 2 a placebo topically applied, and group 3 received only MA. RESULTS The cure rate on day 90 was 71% in subjects treated with rSm29 plus MA, and 43% in patients who received MA plus placebo or MA alone (P < 0.05). There was a decrease in GzmB and an increase in IFN-γ (P < 0.05) in supernatants of skin biopsies of the lesions obtained on D7 of therapy (P < 0.05) in patients who received rSm29. CONCLUSION rSm29 associated with MA reduces GzmB levels, is more effective than MA alone, and decreases CL healing time. CLINICAL TRIALS REGISTRATION ClinicalTrial.gov under NCT06000514.
Collapse
Affiliation(s)
- Tainã Lago
- Immunology Service of University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; Post Graduate Program of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Fábio Peixoto
- Gonçalo Moniz Institute, Fiocruz, Salvador, Bahia, Brazil
| | - Fábio Mambelli
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas P Carvalho
- Immunology Service of University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; Post Graduate Program of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil; National Institute of Science and Technology of Tropical Diseases (INCT-DT), Ministry of Science, Technology, Innovations and Communications, CNPq, Brasília, Distrito Federal, Brazil; Health Science Institute, Federal University of Bahia, Salvador, Bahia, Brazil; Gonçalo Moniz Institute, Fiocruz, Salvador, Bahia, Brazil
| | - Luiz Henrique Guimarães
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), Ministry of Science, Technology, Innovations and Communications, CNPq, Brasília, Distrito Federal, Brazil; Federal University of the Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil
| | - Augusto M Carvalho
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), Ministry of Science, Technology, Innovations and Communications, CNPq, Brasília, Distrito Federal, Brazil; Gonçalo Moniz Institute, Fiocruz, Salvador, Bahia, Brazil
| | - Luciana Cardoso
- Immunology Service of University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; National Institute of Science and Technology of Tropical Diseases (INCT-DT), Ministry of Science, Technology, Innovations and Communications, CNPq, Brasília, Distrito Federal, Brazil
| | - Paulo R L Machado
- Immunology Service of University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; National Institute of Science and Technology of Tropical Diseases (INCT-DT), Ministry of Science, Technology, Innovations and Communications, CNPq, Brasília, Distrito Federal, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, PA, USA
| | - Jamile Lago
- Immunology Service of University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; Post Graduate Program of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Júlia S Fahel
- Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sérgio C Oliveira
- Federal University of Minas Gerais, Belo Horizonte, Brazil; National Institute of Science and Technology of Tropical Diseases (INCT-DT), Ministry of Science, Technology, Innovations and Communications, CNPq, Brasília, Distrito Federal, Brazil; University of São Paulo, São Paulo, Brazil
| | - Edgar M Carvalho
- Immunology Service of University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; National Institute of Science and Technology of Tropical Diseases (INCT-DT), Ministry of Science, Technology, Innovations and Communications, CNPq, Brasília, Distrito Federal, Brazil; Gonçalo Moniz Institute, Fiocruz, Salvador, Bahia, Brazil.
| |
Collapse
|
3
|
Elguindy DAS, Ashour DS, Elmarhoumy SM, El-Guindy DM, Ismail HIH. The efficacy of cercarial antigen loaded on nanoparticles as a potential vaccine candidate in Schistosoma mansoni-infected mice. J Parasit Dis 2024; 48:381-399. [PMID: 38840868 PMCID: PMC11147980 DOI: 10.1007/s12639-024-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis is one of the most common causes of morbidity and mortality from parasitic diseases. Mass treatment has proven to be insufficient because of repeated infection after treatment and the appearance of strains resistant to drug therapy. Hence, immunization is a new approach to control the disease and limit the pathological consequences of schistosomiasis. To evaluate the prophylactic effect of Cercarial antigen (CAP) loaded on chitosan nanoparticles (CSNPs) as a potential vaccine against Schistosoma mansoni-infected mice. 130 mice divided into 2 groups were used: Group I: Control groups (50 mice) subdivided into subgroup Ia (10 mice): Non-infected mice (normal control), subgroup Ib (20 mice): Schistosoma infected mice (infected control) and subgroup Ic (20 mice): Non-infected mice receiving NPs only. Group II: Vaccinated group (80 mice) subdivided equally into subgroup IIa (CAP): Received cercarial antigen and subgroup IIb (CAP + CSNP): Received cercarial antigen loaded on chitosan NPs then both vaccinated groups were infected with S. mansoni 3 weeks following the initial vaccination dose. CAP + CSNP and CAP groups showed significant reduction in adult worms count, hepatic egg count, hepatic granulomas number and size in comparison to the infected control group. Elevation of serum IgG and IgM levels, CD4+ and CD8+ T cell frequencies, IL-4, IL-10 and INF-γ levels was more significant in CAP + CSNP group than CAP group. CAP + CSNP is a promising new preparation of Schistosomal antigens that gave better results than immunization with CAP alone. CSNPs enhanced the immune and protective effect of CAP as validated by parasitological, histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Dina A. S. Elguindy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sirria M. Elmarhoumy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M. El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howaida I. H. Ismail
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Kanika, Khan R. Functionalized nanomaterials targeting NLRP3 inflammasome driven immunomodulation: Friend or Foe. NANOSCALE 2023; 15:15906-15928. [PMID: 37750698 DOI: 10.1039/d3nr03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The advancement in drug delivery systems in recent times has significantly enhanced therapeutic effects by enabling site-specific targeting through nanocarriers. These nanocarriers serve as invaluable tools for pharmacotherapeutic advancements against various disorders that enhance the effectiveness of encapsulated drugs by reducing their toxicity and increasing the efficacy of less potent drugs, thereby improving the therapeutic index. Inflammasomes, protein complexes located in the activated immune cell cytoplasm, regulate the activation of caspases involved in inflammation. However, aberrant activation of inflammasomes can result in uncontrolled tissue responses, contributing to the development of various diseases. Therefore, achieving a precise balance between inflammasome inhibition and activation is crucial for effectively treating inflammatory disorders through targeted functionalized nanocarriers. Despite the wealth of available data on the relevance of functionalized nanocarriers in inflammatory disorders, the nanotechnological potential to modulate inflammasomes has not been adequately explored. In this comprehensive review, we highlight the latest research on the modulation of the inflammasome cascade, both upregulating and downregulating its function, using nanocarriers in the context of inflammatory disorders. The utilization of nanocarriers as a therapeutic strategy holds immense potential for researchers aiming to effectively target and modulate inflammasomes in the treatment of inflammatory disorders, thus improving disease severity outcomes.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
5
|
Qadeer A, Ullah H, Sohail M, Safi SZ, Rahim A, Saleh TA, Arbab S, Slama P, Horky P. Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis. Front Bioeng Biotechnol 2022; 10:1013354. [PMID: 36568300 PMCID: PMC9780462 DOI: 10.3389/fbioe.2022.1013354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis is one of the neglected tropical diseases that affect millions of people worldwide. Globally, it affects economically poor countries, typically due to a lack of proper sanitation systems, and poor hygiene conditions. Currently, no vaccine is available against schistosomiasis, and the preferred treatment is chemotherapy with the use of praziquantel. It is a common anti-schistosomal drug used against all known species of Schistosoma. To date, current treatment primarily the drug praziquantel has not been effective in treating Schistosoma species in their early stages. The drug of choice offers low bioavailability, water solubility, and fast metabolism. Globally drug resistance has been documented due to overuse of praziquantel, Parasite mutations, poor treatment compliance, co-infection with other strains of parasites, and overall parasitic load. The existing diagnostic methods have very little acceptability and are not readily applied for quick diagnosis. This review aims to summarize the use of nanotechnology in the treatment, diagnosis, and prevention. It also explored safe and effective substitute approaches against parasitosis. At this stage, various nanomaterials are being used in drug delivery systems, diagnostic kits, and vaccine production. Nanotechnology is one of the modern and innovative methods to treat and diagnose several human diseases, particularly those caused by parasite infections. Herein we highlight the current advancement and application of nanotechnological approaches regarding the treatment, diagnosis, and prevention of schistosomiasis.
Collapse
Affiliation(s)
- Abdul Qadeer
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hanif Ullah
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Muhammad Sohail
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Sher Zaman Safi
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore, Pakistan
- Faculty of Medicine, Bioscience and Nursing MAHSA University, Selangor, Malaysia
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tawfik A Saleh
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
6
|
Hočevar S, Puddinu V, Haeni L, Petri-Fink A, Wagner J, Alvarez M, Clift MJD, Bourquin C. PEGylated Gold Nanoparticles Target Age-Associated B Cells In Vivo. ACS NANO 2022; 16:18119-18132. [PMID: 36301574 PMCID: PMC9706664 DOI: 10.1021/acsnano.2c04871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Engineered gold nanoparticles (GNPs) have become a useful tool in various therapeutic and diagnostic applications. Uncertainty remains regarding the possible impact of GNPs on the immune system. In this regard, we investigated the interactions of polymer-coated GNPs with B cells and their functions in mice. Surprisingly, we observed that polymer-coated GNPs mainly interact with the recently identified subpopulation of B lymphocytes named age-associated B cells (ABCs). Importantly, we also showed that GNPs did not affect cell viability or the percentages of other B cell populations in different organs. Furthermore, GNPs did not activate B cell innate-like immune responses in any of the tested conditions, nor did they impair adaptive B cell responses in immunized mice. Together, these data provide an important contribution to the otherwise limited knowledge about GNP interference with B cell immune function, and demonstrate that GNPs represent a safe tool to target ABCs in vivo for potential clinical applications.
Collapse
Affiliation(s)
- Sandra Hočevar
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Viola Puddinu
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Laetitia Haeni
- BioNanomaterials,
Adolphe Merkle Institute, University of
Fribourg, Fribourg 1700, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials,
Adolphe Merkle Institute, University of
Fribourg, Fribourg 1700, Switzerland
| | - Julia Wagner
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Montserrat Alvarez
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | | | - Carole Bourquin
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
- Department
of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine,
Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
7
|
Egorova EA, Lamers GEM, Monikh FA, Boyle AL, Slütter B, Kros A. Gold nanoparticles decorated with ovalbumin-derived epitopes: effect of shape and size on T-cell immune responses. RSC Adv 2022; 12:19703-19716. [PMID: 35865201 PMCID: PMC9260517 DOI: 10.1039/d2ra03027f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
Gold nanoparticles (GNPs) can be manufactured in various shapes, and their size is programmable, which permits the study of the effects imposed by these parameters on biological processes. However, there is currently no clear evidence that a certain shape or size is beneficial. To address this issue, we have utilised GNPs and gold nanorods (GNRs) functionalised with model epitopes derived from chicken ovalbumin (OVA257-264 and OVA323-339). By using two distinct epitopes, it was possible to draw conclusions regarding the impact of nanoparticle shape and size on different aspects of the immune response. Our findings indicate that the peptide amphiphile-coated GNPs and GNRs are a safe and versatile epitope-presenting system. Smaller GNPs (∼15 nm in diameter) induce significantly less intense T-cell responses. Furthermore, effective antigen presentation via MHC-I was observed for larger spherical particles (∼40 nm in diameter), and to a lesser extent for rod-like particles (40 by 15 nm). At the same time, antigen presentation via MHC-II strongly correlated with the cellular uptake, with smaller GNPs being the least efficient. We believe these findings will have implications for vaccine development, and lead to a better understanding of cellular uptake and antigen egress from lysosomes into the cytosol.
Collapse
Affiliation(s)
- Elena A Egorova
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Gerda E M Lamers
- Core Facility Microscopy, Institute of Biology, Leiden University The Netherlands
| | - Fazel Abdolahpur Monikh
- Environmental Biology, Institute of Environmental Sciences, Leiden University The Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Biotherapeutics, Leiden University The Netherlands
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University The Netherlands
| |
Collapse
|
8
|
Efficacy and Immune Response Elicited by Gold Nanoparticle- Based Nanovaccines against Infectious Diseases. Vaccines (Basel) 2022; 10:vaccines10040505. [PMID: 35455254 PMCID: PMC9030786 DOI: 10.3390/vaccines10040505] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
The use of nanoparticles for developing vaccines has become a routine process for researchers and pharmaceutical companies. Gold nanoparticles (GNPs) are chemical inert, have low toxicity, and are easy to modify and functionalize, making them an attractive choice for nanovaccine development. GNPs are modified for diagnostics and detection of many pathogens. The biocompatibility and biodistribution properties of GNPs render them ideal for use in clinical settings. They have excellent immune modulatory and adjuvant properties. They have been used as the antigen carrier for the delivery system to a targeted site. Tagging them with antibodies can direct the drug or antigen-carrying GNPs to specific tissues or cells. The physicochemical properties of the GNP, together with its dynamic immune response based on its size, shape, surface charge, and optical properties, make it a suitable candidate for vaccine development. The clear outcome of modulating dendritic cells, T and B lymphocytes, which trigger cytokine release in the host, indicates GNPs' efficiency in combating pathogens. The high titer of IgG and IgA antibody subtypes and their enhanced capacity to neutralize pathogens are reported in multiple studies on GNP-based vaccine development. The major focus of this review is to illustrate the role of GNPs in developing nanovaccines against multiple infectious agents, ranging from viruses to bacteria and parasites. Although the use of GNPs has its shortcomings and a low but detectable level of toxicity, their benefits warrant investing more thought and energy into the development of novel vaccine strategies.
Collapse
|
9
|
Ossai EC, Eze AA, Ogugofor MO. Plant-derived compounds for the treatment of schistosomiasis: Improving efficacy via nano-drug delivery. Niger J Clin Pract 2022; 25:747-764. [DOI: 10.4103/njcp.njcp_1322_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Al-Naseri A, Al-Absi S, El Ridi R, Mahana N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis 2021; 45:557-580. [PMID: 33935395 PMCID: PMC8068781 DOI: 10.1007/s12639-021-01387-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
A digenetic platyhelminth Schistosoma is the causative agent of schistosomiasis, one of the neglected tropical diseases that affect humans and animals in numerous countries in the Middle East, sub-Saharan Africa, South America and China. Several control methods were used for prevention of infection or treatment of acute and chronic disease. Mass drug administration led to reduction in heavy-intensity infections and morbidity, but failed to decrease schistosomiasis prevalence and eliminate transmission, indicating the need to develop anti-schistosome vaccine to prevent infection and parasite transmission. This review summarizes the efficacy and protective capacity of available schistosomiasis vaccine candidates with some insights and future prospects.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| |
Collapse
|
11
|
The role of the adaptor molecule STING during Schistosoma mansoni infection. Sci Rep 2020; 10:7901. [PMID: 32404867 PMCID: PMC7220917 DOI: 10.1038/s41598-020-64788-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 01/06/2023] Open
Abstract
Schistosomiasis is a human parasitic disease responsible for serious consequences for public health, as well as severe socioeconomic impacts in developing countries. Here, we provide evidence that the adaptor molecule STING plays an important role in Schistosoma mansoni infection. S. mansoni DNA is sensed by cGAS leading to STING activation in murine embryonic fibroblasts (MEFs). Sting-/- and C57BL/6 (WT) mice were infected with schistosome cercariae in order to assess parasite burden and liver pathology. Sting-/- mice showed worm burden reduction but no change in the number of eggs or granuloma numbers and area when compared to WT animals. Immunologically, a significant increase in IFN-γ production by the spleen cells was observed in Sting-/- animals. Surprisingly, Sting-/- mice presented an elevated percentage of neutrophils in lungs, bronchoalveolar lavage, and spleens. Moreover, Sting-/- neutrophils exhibited increased survival rate, but similar ability to kill schistosomula in vitro when stimulated with IFN-γ when compared to WT cells. Finally, microbiota composition was altered in Sting-/- mice, revealing a more inflammatory profile when compared to WT animals. In conclusion, this study demonstrates that STING signaling pathway is important for S. mansoni DNA sensing and the lack of this adaptor molecule leads to enhanced resistance to infection.
Collapse
|
12
|
Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 2020; 19:465-477. [PMID: 32306785 PMCID: PMC7196924 DOI: 10.1080/14760584.2020.1758070] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Vaccination remains very effective in stimulating protective immune responses against infections. An important task in antibody and vaccine preparation is to choose an optimal carrier that will ensure a high immune response. Particularly promising in this regard are nanoscale particle carriers. An antigen that is adsorbed or encapsulated by nanoparticles can be used as an adjuvant to optimize the immune response during vaccination. a very popular antigen carrier used for immunization and vaccination is gold nanoparticles, with are being used to make new vaccines against viral, bacterial, and parasitic infections. AREAS COVERED This review summarizes what is currently known about the use of gold nanoparticles as an antigen carrier and adjuvant to prepare antibodies in vivo and design vaccines against viral, bacterial, and parasitic infections. The basic principles, recent advances, and current problems in the use of gold nanoparticles are discussed. EXPERT OPINION Gold nanoparticles can be used as adjuvants to increase the effectiveness of vaccines by stimulating antigen-presenting cells and ensuring controlled antigen release. Studying the characteristics of the immune response obtained from the use of gold nanoparticles as a carrier and an adjuvant will permit the particles' potential for vaccine design to be increased.
Collapse
Affiliation(s)
- Lev A. Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
13
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
14
|
Zhu M, Du L, Zhao R, Wang HY, Zhao Y, Nie G, Wang RF. Cell-Penetrating Nanoparticles Activate the Inflammasome to Enhance Antibody Production by Targeting Microtubule-Associated Protein 1-Light Chain 3 for Degradation. ACS NANO 2020; 14:3703-3717. [PMID: 32057231 PMCID: PMC7457719 DOI: 10.1021/acsnano.0c00962] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Engineered nanoparticles could trigger inflammatory responses and potentiate a desired innate immune response for efficient immunotherapy. Here we report size-dependent activation of innate immune signaling pathways by gold (Au) nanoparticles. The ultrasmall-size (<10 nm) Au nanoparticles preferentially activate the NLRP3 inflammasome for Caspase-1 maturation and interleukin-1β production, while the larger-size Au nanoparticles (>10 nm) trigger the NF-κB signaling pathway. Ultrasmall (4.5 nm) Au nanoparticles (Au4.5) activate the NLRP3 inflammasome through directly penetrating into cell cytoplasm to promote robust ROS production and target autophagy protein-LC3 (microtubule-associated protein 1-light chain 3) for proteasomal degradation in an endocytic/phagocytic-independent manner. LC3-dependent autophagy is required for inhibiting NLRP3 inflammasome activation and plays a critical role in the negative control of inflammasome activation. Au4.5 nanoparticles promote the degradation of LC3, thus relieving the LC3-mediated inhibition of the NLRP3 inflammasome. Finally, we show that Au4.5 nanoparticles could function as vaccine adjuvants to markedly enhance ovalbumin (OVA)-specific antibody production in an NLRP3-dependent pattern. Our findings have provided molecular insights into size-dependent innate immune signaling activation by cell-penetrating nanoparticles and identified LC3 as a potential regulatory target for efficient immunotherapy.
Collapse
Affiliation(s)
- Motao Zhu
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Helen Y Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Rong-Fu Wang
- Department of Medicine, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027, United States
| |
Collapse
|
15
|
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. NANO TODAY 2019; 27:73-98. [PMID: 32292488 PMCID: PMC7156029 DOI: 10.1016/j.nantod.2019.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vaccines and immunotherapies have changed the face of health care. Biomaterials offer the ability to improve upon these medical technologies through increased control of the types and concentrations of immune signals delivered. Further, these carriers enable targeting, stability, and delivery of poorly soluble cargos. Inorganic nanomaterials possess unique optical, electric, and magnetic properties, as well as defined chemistry, high surface-to-volume- ratio, and high avidity display that make this class of materials particularly advantageous for vaccine design, cancer immunotherapy, and autoimmune treatments. In this review we focus on this understudied area by highlighting recent work with inorganic materials - including gold nanoparticles, carbon nanotubes, and quantum dots. We discuss the intrinsic features of these materials that impact the interactions with immune cells and tissue, as well as recent reports using inorganic materials across a range of emerging immunological applications.
Collapse
Affiliation(s)
- Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene St, Baltimore, MD, 21201 USA
- U.S. Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
16
|
Hočevar S, Milošević A, Rodriguez-Lorenzo L, Ackermann-Hirschi L, Mottas I, Petri-Fink A, Rothen-Rutishauser B, Bourquin C, Clift MJD. Polymer-Coated Gold Nanospheres Do Not Impair the Innate Immune Function of Human B Lymphocytes in Vitro. ACS NANO 2019; 13:6790-6800. [PMID: 31117377 DOI: 10.1021/acsnano.9b01492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (GNPs) are intended for use within a variety of biomedical applications due to their physicochemical properties. Although, in general, biocompatibility of GNPs with immune cells such as macrophages and dendritic cells is well established, the impact of GNPs on B lymphocyte immune function remains to be determined. Since B lymphocytes play an important role in health and disease, the suitability of GNPs as a B cell-targeting tool is of high relevance. Thus, we provide information on the interactions of GNPs with B lymphocytes. Herein, we exposed freshly isolated human B lymphocytes to a set of well-characterized and biomedically relevant GNPs with distinct surface (polyethylene glycol (PEG), PEG/poly(vinyl alcohol) (PEG/PVA)) and shape (spheres, rods) characteristics. Polymer-coated GNPs poorly interacted with B lymphocytes, in contrast to uncoated GNPs. Importantly, none of the GNPs significantly affected cell viability, even at the highest concentration of 20 μg/mL over a 24 h suspension exposure period. Furthermore, none of the nanosphere formulations affected the expression of activation markers (CD69, CD86, MHC II) of the naive B lymphocytes, nor did they cause an increase in the secretion of pro-inflammatory cytokines ( i.e. , IL-6, IL-1β). However, the absence of polymer coating on the sphere GNPs and the rod shape caused a decrease in IL-6 cytokine production by activated B lymphocytes, suggesting a functional impairment. With these findings, the present study contributes imperative knowledge toward the safe-by-design approaches being conducted to benefit the development of nanomaterials, specifically those as theranostic tools.
Collapse
Affiliation(s)
- Sandra Hočevar
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , 1211 Geneva , Switzerland
| | - Ana Milošević
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
| | - Laura Rodriguez-Lorenzo
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
| | | | - Ines Mottas
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , 1211 Geneva , Switzerland
- Chair of Pharmacology, Faculty of Science and Medicine , University of Fribourg , 1700 Fribourg , Switzerland
| | - Alke Petri-Fink
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
| | | | - Carole Bourquin
- School of Pharmaceutical Sciences , University of Geneva, University of Lausanne , 1211 Geneva , Switzerland
- Chair of Pharmacology, Faculty of Science and Medicine , University of Fribourg , 1700 Fribourg , Switzerland
- Faculty of Medicine , University of Geneva , Rue Michel-Servet 1 , 1211 Geneva , Switzerland
| | - Martin James David Clift
- BioNanomaterials , Adolphe Merkle Institute, University of Fribourg , 1700 Fribourg , Switzerland
- In Vitro Toxicology Group , Swansea University Medical School , Wales SA2 8PP , U.K
| |
Collapse
|
17
|
Staroverov SA, Volkov AA, Mezhenny PV, Domnitsky IY, Fomin AS, Kozlov SV, Dykman LA, Guliy OI. Prospects for the use of spherical gold nanoparticles in immunization. Appl Microbiol Biotechnol 2019; 103:437-447. [PMID: 30402771 PMCID: PMC7080143 DOI: 10.1007/s00253-018-9476-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022]
Abstract
Recent years have seen extremely fast development of new viral nanovaccines and diagnostic agents using nanostructures prepared by biological and chemical synthesis. We used spherical gold nanoparticles (average diameter, 15 nm) as a platform for the antigen for swine transmissible gastroenteritis virus (TGEV). The literature data demonstrate that immunization of animals with the TGEV antigen coupled to gold nanoparticles (GNPs) not only activates antigen-presenting cells but also increases the proliferative activity of splenic lymphoid (antibody-forming) cells. The contents of γ-IFN, IL-1β, and IL-6 in animals immunized with GNP-antigen conjugates were found to be higher than those in intact animals or in animals given the antigen alone. The increased concentration of IL-1β in the immunized animals directly correlated with the activity of macrophages and stimulated B cells, which produce this cytokine when activated. The increased concentration of IL-6 indicates that the injected preparations are stimulatory to cellular immunity. Immunization with the TGEV antigen conjugated to GNPs as a carrier activates the respiratory activity of lymphoid cells and peritoneal macrophages, which is directly related to their transforming activity and to the activation of antibody generation. Furthermore, the use of this conjugate allows marked improvement of the structure of the animals' immune organs and restores the morphological-functional state of these organs. The microanatomical changes (increased number of follicles) indicate the activation of the B-dependent zone of the spleen and, consequently, the development of a humoral-type immunological reaction. The degradative processes observed in the animals immunized with TGEV antigen alone are evidence of weak resistance to pathogen attack. These results can be used to develop vaccines against this infection by employing TGEV antigen coupled to gold nanoparticles as a carrier.
Collapse
Affiliation(s)
- Sergey A Staroverov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Alexei A Volkov
- Saratov State Vavilov Agrarian University, Saratov, Russian Federation
| | - Pavel V Mezhenny
- Saratov State Vavilov Agrarian University, Saratov, Russian Federation
| | - Ivan Yu Domnitsky
- Saratov State Vavilov Agrarian University, Saratov, Russian Federation
| | - Alexander S Fomin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Sergey V Kozlov
- Saratov State Vavilov Agrarian University, Saratov, Russian Federation
| | - Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation
| | - Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russian Federation.
- Saratov State Vavilov Agrarian University, Saratov, Russian Federation.
| |
Collapse
|
18
|
Alves CC, Araujo N, Bernardes WPDOS, Mendes MM, Oliveira SC, Fonseca CT. A Strong Humoral Immune Response Induced by a Vaccine Formulation Containing rSm29 Adsorbed to Alum Is Associated With Protection Against Schistosoma mansoni Reinfection in Mice. Front Immunol 2018; 9:2488. [PMID: 30450095 PMCID: PMC6224358 DOI: 10.3389/fimmu.2018.02488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/08/2018] [Indexed: 01/17/2023] Open
Abstract
The helminth Schistosoma mansoni is one of main causes of human schistosomiasis, a health and economic concern in some of the world's poorest countries. Current treatment regimens can lead to serious side effects and are not suitable for breastfeeding mothers. As such, efforts have been undertaken to develop a vaccine to prevent infection. Of these, Sm29 is a promising candidate that has been associated with resistance to infection/reinfection in humans and mice. Its ability to induce resistance to reinfection has also been recently demonstrated using a vaccine formulation containing Freund's adjuvant. However, Freund's adjuvant is unsuitable for use in human vaccines. We therefore evaluated the ability of Sm29 to induce protection against S. mansoni reinfection when formulated with either alum or MPLA as an adjuvant, both approved for human use. Our data demonstrate that, in contrast to Sm29 with MPLA, Sm29 with alum reduced parasite burden after reinfection compared to a control. We next investigated whether the immune response was involved in creating the differences between the protective (Sm29Alum) and non-protective (Sm29MPLA) vaccine formulations. We observed that both formulations induced a similar mixed-profile immune response, however, the Sm29 with alum formulation raised the levels of antibodies against Sm29. This suggests that there is an association between a reduction in worm burden and parasite-specific antibodies. In summary, our data show that Sm29 with an alum adjuvant can successfully protect against S. mansoni reinfection in mice, indicating a potentially effective vaccine formulation that could be applied in humans.
Collapse
Affiliation(s)
- Clarice Carvalho Alves
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Neusa Araujo
- Laboratório de Esquistossomose, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Mariana Moreira Mendes
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Laboratório de Imunologia de doenças Infeciosas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais, CNPq, MCT, Salvador, Brazil
| | - Cristina Toscano Fonseca
- Laboratório de Biologia e Imunologia de Doenças Infeciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
19
|
Park K. Enhanced immune responses by co-adsorption of liposomal adjuvant formulations to the aluminum-antigen complex. J Control Release 2018; 275:269. [DOI: 10.1016/j.jconrel.2018.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|