1
|
Zhang J, Read JE, Mittal G, Poston RN, Reilly J, Howling G, Golland B, Sukhorukov GB, Gould D. Injectable biodegradable microchamber array films for long-term delivery of glucocorticoids. J Control Release 2025; 381:113590. [PMID: 40023228 DOI: 10.1016/j.jconrel.2025.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Glucocorticoids (GCs) are widely recognized for their potent anti-inflammatory and analgesic effects. Although they can cause an array of side effects when delivered systemically these are generally avoided when delivered locally at disease sites such as the eyes, lungs and joints. Glucocorticoid formulations for local use range from crystals and particles through to non-biodegradable implants. In many formulations burst release means that their effectiveness does not persist for more than a few weeks. Novel delivery methods that achieve prolonged delivery of GCs along with sequential degradation of the polymer vehicle has the potential to enhance the effectiveness of these drugs and achieve better control of disease. In this study we use a soft lithography method to produce polymer microchamber array films (MCAs) containing crystals of GCs. We demonstrate that the rate of glucocorticoid release can be adjusted through the choice of polymer used in the manufacture of films with rapid release observed with PLGA 50/50 over the course of 9 weeks and the longest duration of release observed with PLA films which continued beyond a year. Importantly, these release studies do not show evidence of burst release and all films displayed a significant duration of zero order release kinetics. Observations of film degradation were made through changes in their size, microscopic appearance and liberation of lactic acid from the films during the course of experiments demonstrated the association with GC release kinetics. These flexible films can be rolled into fibers with little change in release kinetics and the rolled MCAs can also be injected in vivo through a syringe needle to a delivery site. We envisage that this study could lead to an innovative approach to achieve prolonged release of GCs from biodegradable formulations at disease sites.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jordan E Read
- Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gayatri Mittal
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, United Kingdom
| | - Robin N Poston
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - John Reilly
- University of Kent, Canterbury, Kent CT2 7NZ, United Kingdom
| | - Graeme Howling
- Medipex Ltd, 4100 Park Approach, Thorpe Park, Leeds LS15 8GB, United Kingdom
| | - Ben Golland
- Queen Mary Innovation Ltd, The QMB Innovation Centre, 42 New Road, Whitechapel, London E1 2AX, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - David Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
2
|
Abdurashtov AS, Proshin PI, Sukhorukov GB. The pursuit of linear dosage in pharmacy: reservoir-based drug delivery systems from macro to micro scale. Expert Opin Drug Deliv 2025; 22:219-238. [PMID: 39764701 DOI: 10.1080/17425247.2024.2448026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies. AREAS COVERED The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications. Detailed examination of reservoir-based systems, their design, mechanisms of action and materials used are highlighted. By addressing these areas, the discussion aims to provide a thorough understanding of most recent zero-order drug delivery systems, their performance advantages and methods of their manufacturing. To ensure the complete coverage of the explored research area, modern AI-assistant tools were used to find not only the most relevant, but also connected and similar articles. EXPERT OPINION Future developments in reservoir-based drug delivery systems are expected to significantly enhance therapeutic effectiveness and patient outcomes through the integration of innovative materials and technologies. The fabrication of intelligent drug delivery systems that utilize sensors and feedback mechanisms can enable real-time monitoring of drug release and patient reactions.
Collapse
Affiliation(s)
- Arkady S Abdurashtov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Pavel I Proshin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Gleb B Sukhorukov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skoltech, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| |
Collapse
|
3
|
Yu YH, Lee CH, Hsu YH, Chou YC, Yu PC, Huang CT, Liu SJ. Anti-Adhesive Resorbable Indomethacin/Bupivacaine-Eluting Nanofibers for Tendon Rupture Repair: In Vitro and In Vivo Studies. Int J Mol Sci 2023; 24:16235. [PMID: 38003425 PMCID: PMC10671766 DOI: 10.3390/ijms242216235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The treatment and surgical repair of torn Achilles tendons seldom return the wounded tendon to its original elasticity and stiffness. This study explored the in vitro and in vivo simultaneous release of indomethacin and bupivacaine from electrospun polylactide-polyglycolide composite membranes for their capacity to repair torn Achilles tendons. These membranes were fabricated by mixing polylactide-polyglycolide/indomethacin, polylactide-polyglycolide/collagen, and polylactide-polyglycolide/bupivacaine with 1,1,1,3,3,3-hexafluoro-2-propanol into sandwich-structured composites. Subsequently, the in vitro pharmaceutic release rates over 30 days were determined, and the in vivo release behavior and effectiveness of the loaded drugs were assessed using an animal surgical model. High concentrations of indomethacin and bupivacaine were released for over four weeks. The released pharmaceutics resulted in complete recovery of rat tendons, and the nanofibrous composite membranes exhibited exceptional mechanical strength. Additionally, the anti-adhesion capacity of the developed membrane was confirmed. Using the electrospinning technique developed in this study, we plan on manufacturing degradable composite membranes for tendon healing, which can deliver sustained pharmaceutical release and provide a collagenous habitat.
Collapse
Affiliation(s)
- Yi-Hsun Yu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Chen-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan
| | - Yung-Heng Hsu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
| | - Ping-Chun Yu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chao-Tsai Huang
- Department of Chemical and Materials Engineering, Tamkang University, New Taipei City 25137, Taiwan;
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.)
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
4
|
Cho Y, Jeong H, Kim B, Jang J, Song YS, Lee DY. Electrospun Poly(L-Lactic Acid)/Gelatin Hybrid Polymer as a Barrier to Periodontal Tissue Regeneration. Polymers (Basel) 2023; 15:3844. [PMID: 37765697 PMCID: PMC10537136 DOI: 10.3390/polym15183844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Poly(L-lactic acid) (PLLA) and PLLA/gelatin polymers were prepared via electrospinning to evaluate the effect of PLLA and gelatin content on the mechanical properties, water uptake capacity (WUC), water contact angle (WCA), degradation rate, cytotoxicity and cell proliferation of membranes. As the PLLA concentration increased from 1 wt% to 3 wt%, the tensile strength increased from 5.8 MPa to 9.1 MPa but decreased to 7.0 MPa with 4 wt% PLLA doping. The WUC decreased rapidly from 594% to 236% as the PLLA content increased from 1 to 4 wt% due to the increased hydrophobicity of PLLA. As the gelatin content was increased to 3 wt% PLLA, the strength, WUC and WCA of the PLLA/gelatin membrane changed from 9.1 ± 0.9 MPa to 13.3 ± 2.3 MPa, from 329% to 1248% and from 127 ± 1.2° to 0°, respectively, with increasing gelatin content from 0 to 40 wt%. However, the failure strain decreased from 3.0 to 0.5. The biodegradability of the PLLA/gelatin blend increased from 3 to 38% as the gelatin content increased to 40 wt%. The viability of L-929 and MG-63 cells in the PLLA/gelatin blend was over 95%, and the excellent cell proliferation and mechanical properties suggested that the tunable PLLA/gelatin barrier membrane was well suited for absorbable periodontal tissue regeneration.
Collapse
Affiliation(s)
- Youngchae Cho
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Heeseok Jeong
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| | - Baeyeon Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Juwoong Jang
- Department of R&D Center, Renewmedical Co., Ltd., Bucheon 14532, Republic of Korea;
| | - Yo-Seung Song
- Department of Materials Science and Engineering, Korea Aviation University, Goyang 10540, Republic of Korea;
| | - Deuk Yong Lee
- Department of Biomedical Engineering, Daelim University, Anyang 13916, Republic of Korea; (Y.C.); (H.J.)
| |
Collapse
|
5
|
Kurochkin MA, Sindeeva OA, Abdurashitov AS, Pyataev NA, Gorin DA, Sukhorukov GB. In Vivo Laser-Induced Vasoactive Microenvironmental Setting via a Stimuli-Responsive Microstructured Depot. Biomacromolecules 2023. [PMID: 37289998 DOI: 10.1021/acs.biomac.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A stimuli-responsive polymeric three-dimensional microstructured film (PTMF) is a 3D structure with an array of sealed chambers on its external surface. In this work, we demonstrate the use of PTMF as a laser-triggered stimulus-response system for local in vivo targeted blood vessels stimulation by vasoactive substances. The native vascular networks of the mouse mesentery were used as model tissues. Epinephrine and KCl were used as vasoactive agents that were sealed into individual chambers upon precipitation in the amount of pictograms. We demonstrated the method for non-damaged one-by-one chamber activation using a focused 532 nm laser light passed through biological tissues. To avoid laser-induced photothermal damage to biological tissues, the PTMF was functionalized with Nile Red dye, which effectively absorbs laser light. Chemically stimulated blood vessel fluctuations were analyzed using digital image processing methods. Hemodynamics changes were measured and visualized using the particle image velocimetry approach.
Collapse
Affiliation(s)
- Maxim A Kurochkin
- Skolkovo Institute of Science and Technology, 3 Nobelya Str., Moscow 143025, Russia
| | - Olga A Sindeeva
- Skolkovo Institute of Science and Technology, 3 Nobelya Str., Moscow 143025, Russia
| | | | - Nikolay A Pyataev
- National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., Saransk 430005, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 3 Nobelya Str., Moscow 143025, Russia
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, 3 Nobelya Str., Moscow 143025, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End road, London E1 4NS, U.K
| |
Collapse
|
6
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
7
|
Sindeeva OA, Abdurashitov AS, Proshin PI, Kadrev AV, Kulikov OA, Shaparov BM, Sorokin NI, Ageev VP, Pyataev NA, Kritskiy A, Tishin A, Kamalov AA, Sukhorukov GB. Ultrasound-Triggerable Coatings for Foley Catheter Balloons for Local Release of Anti-Inflammatory Drugs during Bladder Neck Dilation. Pharmaceutics 2022; 14:pharmaceutics14102186. [PMID: 36297621 PMCID: PMC9609387 DOI: 10.3390/pharmaceutics14102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bladder neck contracture (BNC) is a complication of the surgical treatment of benign and malignant prostate conditions and is associated with the partial or complete blockage of urination. Correction of this condition usually requires repeated surgical intervention, which does not guarantee recovery. Balloon dilation is a minimally invasive alternative to the surgical dissection of tissues; however, it significantly reduces the patient’s quality of life. Additional local anti-inflammatory treatment may reduce the number of procedures requested and increase the attractiveness of this therapeutic strategy. Here, we report about an ultrathin biocompatible coating based on polylactic acid for Foley catheter balloons that can provide localized release of Prednol-L in the range of 56–99 µg in the BNC zone under conventional diagnostic ultrasound exposure. Note that the exposure of a transrectal probe with a conventional gray-scale ultrasound regimen with and without shear wave elastography (SWE) was comparably effective for Prednol-L release from the coating surface of a Foley catheter balloon. This strategy does not require additional manipulations by clinicians. The trigger for the drug release is the ultrasound exposure, which is applied for visualization of the balloon’s location during the dilation process. In vivo experiments demonstrated the absence of negative effects of the usage of a coated Foley catheter for balloon dilation of the bladder neck and urethra.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
- Correspondence: (O.A.S.); (G.B.S.)
| | - Arkady S. Abdurashitov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Pavel I. Proshin
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Alexey V. Kadrev
- Ultrasound Diagnostics Department, Medical Research and Educational Center, Lomonosov Moscow State University, 27 Lomonosovsky Ave., 119192 Moscow, Russia
- Diagnostic Ultrasound Division, Russian Medical Academy of Continuous Professional Education, 1 Barrikadnaya Str., 125445 Moscow, Russia
| | - Oleg A. Kulikov
- Institute of Medicine, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia
| | - Boris M. Shaparov
- Department of Urology and Andrology, Faculty of Fundamental Medicine, Medical Scientific and Educational Center, Lomonosov Moscow State University, 27 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Nikolay I. Sorokin
- Department of Urology and Andrology, Faculty of Fundamental Medicine, Medical Scientific and Educational Center, Lomonosov Moscow State University, 27 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Valentin P. Ageev
- Institute of Medicine, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia
| | - Nikolay A. Pyataev
- Institute of Medicine, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia
| | - Aleksandr Kritskiy
- LLC Magnetic Drug Delivery, AMT & C Group, 4 Promyshlennaya Str., Troitsk, 108840 Moscow, Russia
| | - Alexander Tishin
- LLC Magnetic Drug Delivery, AMT & C Group, 4 Promyshlennaya Str., Troitsk, 108840 Moscow, Russia
| | - Armais A. Kamalov
- Department of Urology and Andrology, Faculty of Fundamental Medicine, Medical Scientific and Educational Center, Lomonosov Moscow State University, 27 Lomonosovsky Ave., 119192 Moscow, Russia
| | - Gleb B. Sukhorukov
- A.V. Zelmann Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
- Siberian State Medical University, 2 Moskovskiy Trakt, 634050 Tomsk, Russia
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Correspondence: (O.A.S.); (G.B.S.)
| |
Collapse
|
8
|
Talianov PM, Yakubova AA, Bukreeva A, Masharin M, Eliseev IE, Zelenkov L, Muslimov AR, Bukatin A, Gordeeva A, Kudryavtseva V, Makarov SV, Sukhorukov GB, Timin AS, Zyuzin MV. Incorporation of Perovskite Nanocrystals into Polymer Matrix for Enhanced Stability in Biological Media: In Vitro and In Vivo Studies. ACS APPLIED BIO MATERIALS 2022; 5:2411-2420. [PMID: 35426657 DOI: 10.1021/acsabm.2c00295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The outstanding optical properties and multiphoton absorption of lead halide perovskites make them promising for use as fluorescence tags in bioimaging applications. However, their poor stability in aqueous media and biological fluids significantly limits their further use for in vitro and in vivo applications. In this work, we have developed a universal approach for the encapsulation of lead halide perovskite nanocrystals (PNCs) (CsPbBr3 and CsPbI3) as water-resistant fluorescent markers, which are suitable for fluorescence bioimaging. The obtained encapsulated PNCs demonstrate bright green emission at 510 nm (CsPbBr3) and red emission at 688 nm (CsPbI3) under one- and two-photon excitation, and they possess an enhanced stability in water and biological fluids (PBS, human serum) for a prolonged period of time (1 week). Further in vitro and in vivo experiments revealed enhanced stability of PNCs even after their introduction directly into the biological microenvironment (CT26 cells and DBA mice). The developed approach allows making a step toward stable, low-cost, and highly efficient bioimaging platforms that are spectrally tunable and have narrow emission.
Collapse
Affiliation(s)
- Pavel M Talianov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Anastasia A Yakubova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.,Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Anastasia Bukreeva
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Mikhail Masharin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Igor E Eliseev
- Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Lev Zelenkov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.,Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Anton Bukatin
- Laboratory of Renewable Energy Sources, Alferov University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation
| | - Alexandra Gordeeva
- Skolkovo Institute of Science and Technology, Moscow 143026, Russian Federation
| | - Valeriya Kudryavtseva
- School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 143026, Russian Federation.,School of Engineering and Material Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Alexander S Timin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation.,Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.,Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, 197101, St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Chu Z, Xue C, Shao K, Xiang L, Zhao X, Chen C, Pan J, Lin D. Photonic Crystal-Embedded Molecularly Imprinted Contact Lenses for Controlled Drug Release. ACS APPLIED BIO MATERIALS 2022; 5:243-251. [PMID: 35014810 DOI: 10.1021/acsabm.1c01045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As a noninvasive eye disease detection and drug delivery device, contact lenses can improve eye bioavailability and enable continuous drug delivery. In order to monitor the release of drugs in real time, molecularly imprinted contact lenses (MICLs) based on photonic crystals (PCs) were prepared for the treatment of diabetes-related diseases. The specific adsorption of molecularly imprinted polymers on dexamethasone sodium phosphate (DSP) increased the drug loading and optimized the drug release behavior. At the same time, the drug release ensures the rapid color report during the loading and releasing of drugs due to the volume and refractive index change of the hydrogel matrix. The continuous and slow release of DSP by MICLs in artificial tears was successfully monitored through structural color changes, and the cytotoxicity test results showed that the MICL had good biocompatibility. Therefore, MICLs with a PC structure color have great biomedical potentiality in the future.
Collapse
Affiliation(s)
- Zhaoran Chu
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Kan Shao
- Department of Endocrinology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Lanlan Xiang
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Xueling Zhao
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Cheng Chen
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Jianfeng Pan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Donghai Lin
- Shanghai Engineering Research Center of Advanced Thermal Functional Materials and School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
10
|
Padmakumar S, Varghese MM, Menon D. Differential Drug Release Kinetics from Paclitaxel-Loaded Polydioxanone Membranes and Capsules. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2022; 16:241-252. [PMID: 35796448 DOI: 10.2174/2667387816666220707143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drug laden implantable systems can provide drug release over several hours to years, which eventually aid in the therapy of both acute and chronic diseases. The present study focuses on a fundamental evaluation of the influence of implant properties such as morphology, architecture, porosity, surface area, and wettability in regulating the drug release kinetics from drug-loaded polymeric matrices. METHODS For this, Polydioxanone (PDS) was selected as the polymer and Paclitaxel (Ptx) as the model drug. Two different forms of the matrix implants, viz., reservoir type capsules developed by dip coating and matrix type membranes fabricated by phase inversion and electrospinning, were utilized for the study. Drug release from all the four different matrices prepared by simple techniques was evaluated in vitro in PBS and ex vivo in peritoneal wash fluid for ~4 weeks. The drug release profiles were thereafter correlated with the physicochemical parameters of the polymeric implants. RESULTS Reservoir-type capsules followed a slow and steady zero-order kinetics, while matrix-type electrospun and phase inversion membranes displayed typical biphasic kinetics. CONCLUSION It was inferred that the slow degradation rate of PDS polymer as well as the implant properties like porosity and wettability play an important role in controlling the drug release rates.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Merin Mary Varghese
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
11
|
Sindeeva OA, Prikhozhdenko ES, Schurov I, Sedykh N, Goriainov S, Karamyan A, Mordovina EA, Inozemtseva OA, Kudryavtseva V, Shchesnyak LE, Abramovich RA, Mikhajlov S, Sukhorukov GB. Patterned Drug-Eluting Coatings for Tracheal Stents Based on PLA, PLGA, and PCL for the Granulation Formation Reduction: In Vivo Studies. Pharmaceutics 2021; 13:pharmaceutics13091437. [PMID: 34575513 PMCID: PMC8469052 DOI: 10.3390/pharmaceutics13091437] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/25/2023] Open
Abstract
Expandable metallic stent placement is often the only way to treat airway obstructions. Such treatment with an uncoated stent causes granulation proliferation and subsequent restenosis, resulting in the procedure’s adverse complications. Systemic administration of steroids drugs in high dosages slows down granulation tissue overgrowth but leads to long-term side effects. Drug-eluting coatings have been used widely in cardiology for many years to suppress local granulation and reduce the organism’s systemic load. Still, so far, there are no available analogs for the trachea. Here, we demonstrate that PLA-, PCL- and PLGA-based films with arrays of microchambers to accommodate therapeutic substances can be used as a drug-eluting coating through securely fixing on the surface of an expandable nitinol stent. PCL and PLA were most resistant to mechanical damage associated with packing in delivery devices and making it possible to keep high-molecular-weight cargo. Low-molecular-weight methylprednisolone sodium succinate is poorly retained in PCL- and PLGA-based microchambers after immersion in deionized water (only 9.5% and 15.7% are left, respectively). In comparison, PLA-based microchambers retain 96.3% after the same procedure. In vivo studies on rabbits have shown that effective granulation tissue suppression is achieved when PLA and PLGA are used for coatings. PLGA-based microchamber coating almost completely degrades in 10 days in the trachea, while PLA-based microchamber films partially preserve their structure. The PCL-based film coating is most stable over time, which probably causes blocking the outflow of fluid from the tracheal mucosa and the aggravation of the inflammatory process against the background of low drug concentration. Combination and variability of polymers in the fabrication of films with microchambers to retain therapeutic compounds are suggested as a novel type of drug-eluting coating.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia
- Correspondence: (O.A.S.); (G.B.S.)
| | - Ekaterina S. Prikhozhdenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (E.A.M.); (O.A.I)
| | - Igor Schurov
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Nikolay Sedykh
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Sergey Goriainov
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Arfenya Karamyan
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Ekaterina A. Mordovina
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (E.A.M.); (O.A.I)
| | - Olga A. Inozemtseva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (E.A.M.); (O.A.I)
| | - Valeriya Kudryavtseva
- Nanoforce Ltd., School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| | - Leonid E. Shchesnyak
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Rimma A. Abramovich
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Sergey Mikhajlov
- Innovative Engineering Technologies Institute, Peoples Friendship University of Russia (RUDN University), 6 Mikluho-Maklaya Str., 117198 Moscow, Russia; (I.S.); (N.S.); (S.G.); (A.K.); (L.E.S.); (R.A.A.); (S.M.)
| | - Gleb B. Sukhorukov
- Nanoforce Ltd., School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
- Correspondence: (O.A.S.); (G.B.S.)
| |
Collapse
|
12
|
Yang R, Yang S, Li K, Luo Z, Xian B, Tang J, Ye M, Lu S, Zhang H, Ge J. Carbon Nanotube Polymer Scaffolds as a Conductive Alternative for the Construction of Retinal Sheet Tissue. ACS Chem Neurosci 2021; 12:3167-3175. [PMID: 34375091 DOI: 10.1021/acschemneuro.1c00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
With the great success of graphene in the biomedical field, carbon nanotubes have attracted increasing attention for different applications in ophthalmology. Here, we report a novel retinal sheet composed of carbon nanotubes (CNTs) and poly(lactic-co-glycolic acid) (PLGA) that can enhance retinal cell therapy. By tuning our CNTs to regulate the mechanical characteristics of retina sheets, we were able to improve the in vitro viability of retinal ganglion cells derived from human-induced pluripotent stem cells incorporated into CNTs. Engrafted retinal ganglion cells displayed signs of regenerating processes along the optic nerve. Compared with PLGA scaffolds, CNT-PLGA retinal sheet tissue has excellent electrical conductivity, biocompatibility, and biodegradation. This new biomaterial offers new insight into retinal injury, repair, and regeneration.
Collapse
Affiliation(s)
- Runcai Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Sijing Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Hangzhou, Zhejiang 310000, China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Ziming Luo
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Bikun Xian
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jiaqi Tang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Meifang Ye
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Shoutao Lu
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification,
Branden Industrial Park, Dezhou, Shandong 251100, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
13
|
Demina PA, Sindeeva OA, Abramova AM, Prikhozhdenko ES, Verkhovskii RA, Lengert EV, Sapelkin AV, Goryacheva IY, Sukhorukov GB. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19701-19709. [PMID: 33900738 DOI: 10.1021/acsami.1c02767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.
Collapse
Affiliation(s)
- Polina A Demina
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna M Abramova
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | | | | | | | - Andrei V Sapelkin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
14
|
Kudryavtseva V, Boi S, Read J, Guillemet R, Zhang J, Udalov A, Shesterikov E, Tverdokhlebov S, Pastorino L, Gould DJ, Sukhorukov GB. Biodegradable Defined Shaped Printed Polymer Microcapsules for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2371-2381. [PMID: 33404209 DOI: 10.1021/acsami.0c21607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 μm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 μm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Stefania Boi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - Jordan Read
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Raphael Guillemet
- THALES Research & Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Jiaxin Zhang
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Andrei Udalov
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
| | - Evgeny Shesterikov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
- Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Sergei Tverdokhlebov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - David J Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gleb B Sukhorukov
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 143025, Russian Federation
| |
Collapse
|
15
|
Kiryukhin MV, Lau HH, Lim SH, Salgado G, Fan C, Ng YZ, Leavesley DI, Upton Z. Arrays of Biocompatible and Mechanically Robust Microchambers Made of Protein-Polyphenol-Clay Multilayer Films. ACS Biomater Sci Eng 2020; 6:5653-5661. [PMID: 33320583 DOI: 10.1021/acsbiomaterials.0c00973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a growing demand for biocompatible and mechanically robust arrays of microcompartments loaded with minute amounts of active substances for sensing or controlled release applications. Here we report on a novel biocompatible composite material, protein-polyphenol-clay (PPC) multilayer film. The material is shown to be strong enough to make robust microchambers retaining the shape and dimensions of truncated square pyramids. We study the mechanical properties and biocompatibility of the PPC microchambers and compare them to those made of synthetic polyelectrolyte multilayer film, poly(styrenesulfonate)-poly(allylammonium) (PSS-PAH). The mechanical properties of the microchambers were characterized under uniaxial compression using nanoindentation with a flat-punch tip. The effective Young's modulus of PPC microchambers, 166 ± 53 MPa, is found to be lower than that of PSS-PAH microchambers, 245 ± 52 MPa. However, the capacity to elastically absorb the energy of the former, 2.4 ± 1.0 MPa, is marginally higher than of the latter, 2.0 ± 1.3 MPa. Arrays of microchambers were sealed onto a polyethylene film, loaded with a model oil-soluble drug, and their biocompatibility was tested using an ex vivo 3D human skin reconstruct model. We found no evidence for toxicity with the PPC microchambers; however, PSS-PAH microchambers stimulated reduced cell density in the epidermis and significantly affected epidermal-dermal attachment. Both materials do not alter skin cell proliferation but affect skin cell differentiation. We interpret that rather than affecting epidermal barrier function, these data suggest the applied plastic films with microchamber arrays affect transpiration, normoxia, and moisture exchange.
Collapse
Affiliation(s)
- Maxim V Kiryukhin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Hooi Hong Lau
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Su Hui Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Giorgiana Salgado
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Chen Fan
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Yi Zhen Ng
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - David I Leavesley
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| | - Zee Upton
- Skin Research Institute of Singapore, A*STAR, 11 Mandalay Road, #17-01, Singapore 308232
| |
Collapse
|
16
|
Sun H, Zhang Y, Chen S, Wang R, Chen Q, Li J, Luo Y, Wang X, Chen H. Photothermal Fenton Nanocatalysts for Synergetic Cancer Therapy in the Second Near-Infrared Window. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30145-30154. [PMID: 32515573 DOI: 10.1021/acsami.0c07013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemodynamic therapy (CDT) that utilizes endogenous hydrogen peroxide (H2O2) to produce reactive oxygen species (ROS) to kill cancer cells has shown a promising strategy for malignant tumor treatment. Nevertheless, limited H2O2 levels in the tumor microenvironment often compromise the therapeutic benefits of CDT, leading to cancer recurrence and metastasis. Herein, a second near-infrared (NIR-II) photothermal Fenton nanocatalyst (PFN) was developed for activatable magnetic resonance imaging (MRI)-guided synergetic photothermal therapy (PTT) and CDT of pancreatic carcinoma. Such a PFN consists of manganese dioxide (MnO2), copper sulfide (CuS), and human serum albumin (HSA), which serve as the activatable imaging contrast agent, the NIR-II photothermal agent and Fenton catalyst, and the stabilizer, respectively. The acidic tumor microenvironment increased the relaxivity of PFN by 2.1-fold, allowing for improved imaging performance and monitoring of nanoparticle accumulation in tumors. Under NIR-II laser irradiation at 1064 nm, PFN generates local heat, which not only permits PTT but also enhances the nanocatalyst-mediated Fenton-like reaction. As such, PFN exerts a synergetic action to completely ablate xenografted tumor models in living animals, while the sole CDT fails to do so. This study thus provides an NIR-II photothermal nanocatalyst for potential treatment of deep-seated tumors.
Collapse
Affiliation(s)
- Haitao Sun
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yaying Zhang
- Department of Radiology, Changhai Hospital of Shanghai, No. 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Siyu Chen
- Department of Medical Imaging, The Third Affiliated Hospital, Orthopedic Hospital of Guangdong Province, Southern Medical University, No. 183 Zhongshan Road, Tianhe District, Guangdong 510000, China
| | - Ruizhi Wang
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Qian Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | - Yu Luo
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaolin Wang
- Shanghai Institute of Medical Imaging, Department of Interventional Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China
| |
Collapse
|
17
|
Sindeeva OA, Kopach O, Kurochkin MA, Sapelkin A, Gould DJ, Rusakov DA, Sukhorukov GB. Polylactic Acid-Based Patterned Matrixes for Site-Specific Delivery of Neuropeptides On-Demand: Functional NGF Effects on Human Neuronal Cells. Front Bioeng Biotechnol 2020; 8:497. [PMID: 32596218 PMCID: PMC7304324 DOI: 10.3389/fbioe.2020.00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
The patterned microchamber arrays based on biocompatible polymers are a versatile cargo delivery system for drug storage and site-/time-specific drug release on demand. However, functional evidence of their action on nerve cells, in particular their potential for enabling patterned neuronal morphogenesis, remains unclear. Recently, we have established that the polylactic acid (PLA)-based microchamber arrays are biocompatible with human cells of neuronal phenotype and provide safe loading for hydrophilic substances of low molecular weight, with successive site-specific cargo release on-demand to trigger local cell responses. Here, we load the nerve growth factor (NGF) inside microchambers and grow N2A cells on the surface of patterned microchamber arrays. We find that the neurite outgrowth in local N2A cells can be preferentially directed towards opened microchambers (upon-specific NGF release). These observations suggest the PLA-microchambers can be an efficient drug delivery system for the site-specific delivery of neuropeptides on-demand, potentially suitable for the migratory or axonal guidance of human nerve cells.
Collapse
Affiliation(s)
- Olga A. Sindeeva
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- Remote Controlled Theranostic Systems Lab, Department of Nanotechnology, Educational and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Maxim A. Kurochkin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Andrei Sapelkin
- School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
| | - David J. Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Dmitri A. Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom
- Center of Biomedical Engineering, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
18
|
Kurochkin MA, Sindeeva OA, Brodovskaya EP, Gai M, Frueh J, Su L, Sapelkin A, Tuchin VV, Sukhorukov GB. Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110664. [DOI: 10.1016/j.msec.2020.110664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/25/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
19
|
Zhang J, Gai M, Ignatov AV, Dyakov SA, Wang J, Gippius NA, Frueh J, Sukhorukov GB. Stimuli-Responsive Microarray Films for Real-Time Sensing of Surrounding Media, Temperature, and Solution Properties via Diffraction Patterns. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19080-19091. [PMID: 32223175 DOI: 10.1021/acsami.0c05349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimuli-responsive polymers have attracted increasing attention over the years due to their ability to alter physiochemical properties upon external stimuli. However, many stimuli-responsive polymer-based sensors require specialized and expensive equipment, which limits their applications. Here an inexpensive and portable sensing platform of novel microarray films made of stimuli-responsive polymers is introduced for the real-time sensing of various environmental changes. When illuminated by laser light, microarray films generate diffraction patterns that can reflect and magnify variations of the periodical microstructure induced by surrounding invisible parameters in real time. Stimuli-responsive polyelectrolyte complexes are structured into micropillar arrays to monitor the pH variation and the presence of calcium ions based on reversible swelling/shrinking behaviors of the polymers. A pH hysteretic effect of the selected polyelectrolyte pair is determined and explained. Furthermore, polycaprolactone microchamber arrays are fabricated and display a thermal-driven structural change, which is exploited for photonic threshold temperature detection. Experimentally observed diffraction patterns are additionally compared with rigorous coupled-wave analysis simulations that prove that induced diffraction pattern alterations are solely caused by geometrical microstructure changes. Microarray-based diffraction patterns are a novel sensing platform with versatile sensing capabilities that will likely pave the way for the use of microarray structures as photonic sensors.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Meiyu Gai
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Sergey A Dyakov
- Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| | - Jing Wang
- Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
- Advanced Analytical Technologies Laboratory, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | | | - Johannes Frueh
- Micro-Nanotechnology Research Center, Harbin Institute of Technology, Harbin 150080, China
- Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| | - Gleb B Sukhorukov
- School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Moscow 143025, Russia
| |
Collapse
|
20
|
Zhang J, Sun R, DeSouza-Edwards AO, Frueh J, Sukhorukov GB. Microchamber arrays made of biodegradable polymers for enzymatic release of small hydrophilic cargos. SOFT MATTER 2020; 16:2266-2275. [PMID: 32039413 DOI: 10.1039/c9sm01856e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The encapsulation of small hydrophilic molecules and response to specific biological triggers in a controlled manner have become two of the significant challenges in biomedical research, in particular in the field of localized drug delivery and biosensing. This work reports the fabrication of free-standing microchamber array films made of biodegradable polymers for the encapsulation and enzymatically triggered release of small hydrophilic molecules. Polycaprolactone (PCL) microchamber arrays were demonstrated to fully biodegrade within 5 hours of exposure to lipase from Pseudomonas cepacia (lipase PS) at a concentration of 0.5 mg ml-1, with lower concentrations producing correspondingly longer degradation times. The gradual process of deterioration was real-time monitored utilising laser Fraunhofer diffraction patterns. Additionally, a small hydrophilic molecule, 5(6)-carboxyfluorescein (CF), was loaded into the PCL microchamber arrays in a dry state; however, the substantial permeability of the PCL film led to leakage of the dye molecules. Consequently, polylactic acid (PLA) was blended with PCL to reduce its permeability, enabling blended PCL-PLA (1 : 2 ratio correspondingly) microchamber arrays to trap the small hydrophilic molecule CF. PCL-PLA (1 : 2) microchamber arrays hold potential for controlled release under the catalysis of lipase within 26 hours. Additionally, it is calculated that approximately 11 pg of CF dye crystals was loaded into individual microchambers of 10 μm size, indicating that the microchamber array films could yield a highly efficient encapsulation.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Engineering and Material Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Rui Sun
- Institute of Dentistry, Bart's and the London, School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Arun O DeSouza-Edwards
- School of Engineering and Material Science, Queen Mary University of London, Mile End, London, E1 4NS, UK
| | - Johannes Frueh
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin 150001, China and Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Gleb B Sukhorukov
- School of Engineering and Material Science, Queen Mary University of London, Mile End, London, E1 4NS, UK and Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
| |
Collapse
|
21
|
Liu Y, Gai M, Sukvanitvichai D, Frueh J, Sukhorukov GB. pH dependent degradation properties of lactide based 3D microchamber arrays for sustained cargo release. Colloids Surf B Biointerfaces 2020; 188:110826. [PMID: 32007703 DOI: 10.1016/j.colsurfb.2020.110826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Encapsulation of small water soluble molecules is important in a large variety of applications, ranging from medical substance releasing implants in the field of medicine over release of catalytically active substances in the field of chemical processing to anti-corrosion agents in industry. In this work polylactic acid (PLA) based hollow-structured microchamber (MC) arrays are fabricated via one-step dip coating of a silicone rubber stamp into PLA solution. These PLA MCs are able to retain small water soluble molecules (Rhodamine B) stably entrapped within aqueous environments. It is shown, that degradation of PLA MCs strongly depends on environmental conditions like surrounding pH and follows first order degradation kinetics. This pH dependent PLA MC degradation can be utilized to control the release kinetics of encapsulated cargo.
Collapse
Affiliation(s)
- Yuechi Liu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China
| | - Meiyu Gai
- Max Plank Institute of Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Dusita Sukvanitvichai
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Johannes Frueh
- Key Laboratory of Micro-systems and Micro-structures Manufacturing Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China; Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Stefano-Franscini-Platz 3, 8093, Zürich, Switzerland.
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom; Skolkovo Institute of Science and Technology, Moscow, 143025, Russia.
| |
Collapse
|
22
|
Ermakov AV, Kudryavtseva VL, Demina PA, Verkhovskii RA, Zhang J, Lengert EV, Sapelkin AV, Goryacheva IY, Sukhorukov GB. Site-specific release of reactive oxygen species from ordered arrays of microchambers based on polylactic acid and carbon nanodots. J Mater Chem B 2020; 8:7977-7986. [DOI: 10.1039/d0tb01148g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Illustration of the laser-assisted release of hydrophilic H2O2 cargo from free-standing ordered arrays of biopolymer-based microchambers in a highly controlled manner.
Collapse
Affiliation(s)
- Alexey V. Ermakov
- N.G. Chernyshevsky Saratov State University
- Saratov 410012
- Russia
- I.M. Sechenov First Moscow State Medical University
- Moscow 119991
| | - Valeriya L. Kudryavtseva
- Queen Mary University of London
- London E1 4NS
- UK
- National Research Tomsk Polytechnic University, 30 Lenin Avenue
- Tomsk 634050
| | | | | | | | | | - Andrei V. Sapelkin
- N.G. Chernyshevsky Saratov State University
- Saratov 410012
- Russia
- Queen Mary University of London
- London E1 4NS
| | | | - Gleb B. Sukhorukov
- N.G. Chernyshevsky Saratov State University
- Saratov 410012
- Russia
- I.M. Sechenov First Moscow State Medical University
- Moscow 119991
| |
Collapse
|
23
|
Dhatrak P, Girme V, Shirsat U, Sumanth S, Deshmukh V. Significance of Orthotropic Material Models to Predict Stress Around Bone-Implant Interface Using Numerical Simulation. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00649-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zykova Y, Kudryavtseva V, Gai M, Kozelskaya A, Frueh J, Sukhorukov G, Tverdokhlebov S. Free-standing microchamber arrays as a biodegradable drug depot system for implant coatings. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Rutkowski S, Si T, Gai M, Sun M, Frueh J, He Q. Magnetically-guided hydrogel capsule motors produced via ultrasound assisted hydrodynamic electrospray ionization jetting. J Colloid Interface Sci 2019; 541:407-417. [PMID: 30710823 DOI: 10.1016/j.jcis.2019.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Hydrogel capsules are a potential candidate for drug delivery and an interesting alternative to polyelectrolyte multilayer capsules which are under investigation since 20 years. Recently introduced polyelectrolyte complex capsules produced by spraying are non-biodegradable and not biocompatible, which limits their practical application, while biodegradable alginate capsules require complex coaxial electrospray ionization jetting. In this work, biodegradable alginate capsules cross-linked by calcium are successfully produced by hydrodynamic electrospray ionization jetting with the assistance of low frequency ultrasound. The size and shape of most capsules show significant differences with respect to different spraying distance, spraying mode, electrode shape and spraying concentration. Capsules in the shape of vase, mushrooms and spheres were successfully produced. Average capsule size can be adjusted from 10 μm to 2 mm. These capsules are used to encapsulate a model drug. Encapsulated paramagnetic particles enable defined directional motion under the propulsion of a rotating magnetic field, while model drugs can be released by ultrasound.
Collapse
Affiliation(s)
- Sven Rutkowski
- Key Lab of Microsystems and Microstructures Manufacturing, Yikuang Street 2 B1, Harbin Institute of Technology, Harbin 150080, PR China
| | - Tieyan Si
- Physics Department, Yikuang Street 2 2H, School of Science, Harbin Institute of Technology, Harbin 150080, PR China.
| | - Meiyu Gai
- Max-Planck-Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany; National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| | - Mengmeng Sun
- Key Lab of Microsystems and Microstructures Manufacturing, Yikuang Street 2 B1, Harbin Institute of Technology, Harbin 150080, PR China
| | - Johannes Frueh
- Key Lab of Microsystems and Microstructures Manufacturing, Yikuang Street 2 B1, Harbin Institute of Technology, Harbin 150080, PR China; National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation; Institute of Environmental Engineering, ETH Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland.
| | - Qiang He
- Key Lab of Microsystems and Microstructures Manufacturing, Yikuang Street 2 B1, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
26
|
Gai M, Li W, Frueh J, Sukhorukov GB. Polylactic acid sealed polyelectrolyte complex microcontainers for controlled encapsulation and NIR-Laser based release of cargo. Colloids Surf B Biointerfaces 2019; 173:521-528. [DOI: 10.1016/j.colsurfb.2018.10.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/14/2023]
|
27
|
Sindeeva OA, Prikhozhdenko ES, Bratashov DN, Vostrikova AM, Atkin VS, Ermakov AV, Khlebtsov BN, Sapelkin AV, Goryacheva IY, Sukhorukov GB. Carbon dot aggregates as an alternative to gold nanoparticles for the laser-induced opening of microchamber arrays. SOFT MATTER 2018; 14:9012-9019. [PMID: 30378616 DOI: 10.1039/c8sm01714j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon dots (CDs) are usually used as an alternative to other fluorescent nanoparticles. Apart from fluorescence, CDs also have other important properties for use in composite materials, first of all their ability to absorb light energy and convert it into heat. In our work, for the first time, CDs have been proposed as an alternative to gold nanostructures for harvesting light energy, which results in the opening of polymer-based containers with biologically active compounds. In this paper, we propose a method for the synthesis of polylactic acid microchamber arrays with embedded CDs. A comparative analysis was made of the damage to microchambers functionalized with gold nanorods and with CD aggregates, depending on the wavelength and power of the laser used. The release of fluorescent cargo from the microchamber arrays with CD aggregates under laser exposure was demonstrated.
Collapse
|
28
|
Sindeeva OA, Gusliakova OI, Inozemtseva OA, Abdurashitov AS, Brodovskaya EP, Gai M, Tuchin VV, Gorin DA, Sukhorukov GB. Effect of a Controlled Release of Epinephrine Hydrochloride from PLGA Microchamber Array: In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37855-37864. [PMID: 30299076 DOI: 10.1021/acsami.8b15109] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper presents the synthesis of highly biocompatible and biodegradable poly(lactide- co-glycolide) (PLGA) microchamber arrays sensitive to low-intensity therapeutic ultrasound (1 MHz, 1-2 W, 1 min). A reliable method was elaborated that allowed the microchambers to be uniformly filled with epinephrine hydrochloride (EH), with the possibility of varying the cargo amount. The maximum load of EH was 4.5 μg per array of 5 mm × 5 mm (about 24 pg of EH per single microchamber). A gradual, spontaneous drug release was observed to start on the first day, which is especially important in the treatment of acute patients. Ultrasound triggered a sudden substantial release of EH from the films. In vivo real-time studies using a laser speckle contrast imaging system demonstrated changes in the hemodynamic parameters as a consequence of EH release under ultrasound exposure. We recorded a decrease in blood flow as a vascular response to EH release from a PLGA microchamber array implanted subcutaneously in a mouse. This response was immediate and delayed (1 and 2 days after the implantation of the array). The PLGA microchamber array is a new, promising drug depot implantable system that is sensitive to external stimuli.
Collapse
Affiliation(s)
- Olga A Sindeeva
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
| | | | | | | | - Ekaterina P Brodovskaya
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
- Ogarev Mordovia State University , 68 Bolshevistskaya Street , Saransk 430005 , Russia
| | - Meiyu Gai
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
- Tomsk Polytechnic University , 30 Lenin Avenue , Tomsk 634050 , Russia
- Max Plank Institute of Polymer Research , 10 Ackermannweg , Mainz 55128 , Germany
| | - Valery V Tuchin
- Interdisciplinary Laboratory of Biophotonics , Tomsk State University , 36 Lenin Avenue , Tomsk 634050 , Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems , Institute of Precision Mechanics and Control of RAS , 24 Rabochaya Street , 410028 Saratov , Russia
| | - Dmitry A Gorin
- Laboratory of Biophotonics, Center for Photonics and Quantum Materials , Skolkovo Institute of Science and Technology , Nobel Street, Building 3 , Moscow 121205 , Russia
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science , Queen Mary University of London , Mile End, Eng, 215 , London E1 4NS , United Kingdom
- Tomsk Polytechnic University , 30 Lenin Avenue , Tomsk 634050 , Russia
| |
Collapse
|
29
|
Park K. Microchamber arrays for controlled NIR laser mediated drug delivery to single cells. J Control Release 2018; 276:168. [PMID: 29626947 DOI: 10.1016/j.jconrel.2018.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kinam Park
- Purdue University Biomedical Engineering and Pharmaceutics West Lafayette, IN 47907, USA.
| |
Collapse
|