1
|
Zhang L, Zhang H. Recent advances of affibody molecules in biomedical applications. Bioorg Med Chem 2024; 113:117923. [PMID: 39278106 DOI: 10.1016/j.bmc.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Affibody molecules are 58-amino-acid peptides with a molecular weight of about 6.5 kDa, derived from the Z domain of Staphylococcal Protein A. Since they have been used as substitutes for antibodies in biomedicine, several therapeutic affibody molecules have been developed for clinical use. Additionally, affibody molecules have been designed for a range of different applications. This review focuses on the progress made in the last five years in the field of affibody molecules and their potential uses in medical imaging, especially in oncology and cancer treatment. It covers areas such as molecular imaging, targeted delivery of toxic drugs, and their use in combination with nanoparticles. We also highlight some current biomedical applications where affibody molecules are commonly used as a "guide." Due to their many advantages, affibody molecules offer significant potential for applications in both biochemical and medical fields.
Collapse
Affiliation(s)
- Liuyanlin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
2
|
Tang X, Chen J, Zhao Z, Liu J, Yu R, Zhao K, Wang F, Li Y, Tian B, Yuan D, Liu Y, Fan Q. PDGFRβ-Antagonistic Affibody-Mediated Tumor-Targeted Tumor Necrosis Factor-Alpha for Enhanced Radiotherapy in Lung Cancer. Mol Pharm 2024; 21:1222-1232. [PMID: 38364870 DOI: 10.1021/acs.molpharmaceut.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The morbidity and mortality of lung cancer are still the highest among all malignant tumors. Radiotherapy plays an important role in clinical treatment of lung cancer. However, the effect of radiotherapy is not ideal due to the radiation resistance of tumor tissues. Abnormalities in tumor vascular structure and function affect blood perfusion, and oxygen transport is impeded, making tumor microenvironment hypoxic. Tumor hypoxia is the major cause of radiotherapy resistance. By promoting tumor vessel normalization and enhancing vascular transport function, tumor hypoxia can be relieved to reduce radiotherapy resistance and increase tumor radiotherapy sensitivity. In our previous study, a pericytes-targeted tumor necrosis factor alpha (named Z-TNFα) was first constructed and produced by genetically fusing the platelet-derived growth factor receptor β (PDGFRβ)-antagonistic affibody (ZPDGFRβ) to the TNFα, and the Z-TNFα induced normalization of tumor vessels and improved the delivery of doxorubicin, enhancing tumor chemotherapy. In this study, the tumor vessel normalization effect of Z-TNFα in lung cancer was further clarified. Moreover, the tumor hypoxia improvement and radiosensitizing effect of Z-TNFα were emphatically explored in vivo. Inspiringly, Z-TNFα specifically accumulated in Lewis lung carcinoma (LLC) tumor graft and relieved tumor hypoxia as well as inhibited HIF-1α expression. As expected, Z-TNFα significantly increased the effect of radiotherapy in mice bearing LLC tumor graft. In conclusion, these results demonstrated that Z-TNFα is also a promising radiosensitizer for lung cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaohui Tang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Jie Chen
- NHC Key Lab of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, PR China
| | - Jie Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Ranfei Yu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Kunlong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Fei Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Yang Li
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Baoqing Tian
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Dandan Yuan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Yuguo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Qing Fan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| |
Collapse
|
3
|
Zhang D, Wang M, Li Y, Liang G, Zheng W, Gui L, Li X, Zhang L, Zeng W, Yang Y, Zeng Y, Huang Z, Fan R, Lu Y, Guan J, Li T, Cheng J, Yang H, Chen L, Zhou J, Gong M. Integrated metabolomics revealed the photothermal therapy of melanoma by Mo 2C nanosheets: toward rehabilitated homeostasis in metabolome combined lipidome. J Mater Chem B 2024; 12:730-741. [PMID: 38165726 DOI: 10.1039/d3tb02123h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Melanoma, the most aggressive and life-threatening form of skin cancer, lacks innovative therapeutic approaches and deeper bioinformation. In this study, we developed a photothermal therapy (PTT) based on Mo2C nanosheets to eliminate melanoma while utilizing integrated metabolomics to investigate the metabolic shift of metabolome combined lipidome during PTT at the molecular level. Our results demonstrated that 1 mg ml-1 Mo2C nanosheets could efficiently convert laser energy into heat with a strong and stable photothermal effect (74 ± 0.9 °C within 7 cycles). Furthermore, Mo2C-based PTT led to a rapid decrease in melanoma volume (from 3.299 to 0 cm2) on the sixth day, indicating the effective elimination of melanoma. Subsequent integrated metabolomics analysis revealed significant changes in aqueous metabolites (including organic acids, amino acids, fatty acids, and amines) and lipid classes (including phospholipids, lysophospholipids, and sphingolipids), suggesting that melanoma caused substantial fluctuations in both metabolome and lipidome, while Mo2C-based PTT helped improve amino acid metabolism-related biological events (such as tryptophan metabolism) impaired by melanoma. These findings suggest that Mo2C nanosheets hold significant potential as an effective therapeutic agent for skin tumors, such as melanoma. Moreover, through exploring multidimensional bioinformation, integrated metabolomics technology provides novel insights for studying the metabolic effects of tumors, monitoring the correction of metabolic abnormalities by Mo2C nanosheet therapy, and evaluating the therapeutic effect on tumors.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Wang
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Yijin Li
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Liang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Luolan Gui
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xin Li
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Lu Zhang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Wenjuan Zeng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Zeng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhe Huang
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
- Chengdu Research Institute, City University of Hong Kong, Chengdu, P. R. China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Yang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ligang Chen
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Jie Zhou
- Department of Neurosurgery, Sichuan Clinical Medical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P. R. China.
| | - Meng Gong
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, P. R. China.
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Zeng Y, Zhang S, Li S, Song G, Meng T, Yuan H, Hu F. Normalizing Tumor Blood Vessels to Improve Chemotherapy and Inhibit Breast Cancer Metastasis by Multifunctional Nanoparticles. Mol Pharm 2023; 20:5078-5089. [PMID: 37728215 DOI: 10.1021/acs.molpharmaceut.3c00381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The abnormal tumor blood vessels with high leakage can promote tumor cells to infiltrate into the systemic circulation and increase the risk of tumor metastasis. In addition, chemotherapy may destroy tumor blood vessels and further aggravate metastasis. Normalizing tumor blood vessels can reduce vascular leakage and increase vascular integrity. The simultaneous administration of vascular normalization drugs and chemotherapy drugs may resist the blood vessels' destruction of chemotherapy. Here, multifunctional nanoparticles (CCM@LMSN/DOX&St), which combined chemotherapy with tumor blood vessel normalization, were prepared for the treatment of breast cancer. The results showed that CCM@LMSN/DOX&St-loaded sunitinib (St) promoted the expression of junction proteins Claudin-4 and VE-cadherin of endothelial cells, reversed the destruction of DOX to the endothelial cell layer, protected the integrity of the endothelial cell layer, and inhibited the migration of 4T1 tumor cells across the endothelial cell layer. In vivo experiments showed that CCM@LMSN/DOX&St effectively inhibited tumor growth in situ; what is exciting was that it also inhibited distal metastasis of breast cancer. CCM@LMSN/DOX&St encapsulated with St can normalize tumor blood vessels, reverse the damage of DOX to tumor blood vessels, increase the integrity of blood vessels, and prevent tumor cell invasion into blood vessels, which can inhibit breast cancer spontaneous metastasis and reduce chemotherapy-induced metastasis. This drug delivery platform effectively inhibited the progression of tumors and provided a promising solution for effective tumor treatment.
Collapse
Affiliation(s)
- Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Sufen Li
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
5
|
Hanson EK, Whelan RJ. Application of the Nicoya OpenSPR to Studies of Biomolecular Binding: A Review of the Literature from 2016 to 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:4831. [PMID: 37430747 DOI: 10.3390/s23104831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
The Nicoya OpenSPR is a benchtop surface plasmon resonance (SPR) instrument. As with other optical biosensor instruments, it is suitable for the label-free interaction analysis of a diverse set of biomolecules, including proteins, peptides, antibodies, nucleic acids, lipids, viruses, and hormones/cytokines. Supported assays include affinity/kinetics characterization, concentration analysis, yes/no assessment of binding, competition studies, and epitope mapping. OpenSPR exploits localized SPR detection in a benchtop platform and can be connected with an autosampler (XT) to perform automated analysis over an extended time period. In this review article, we provide a comprehensive survey of the 200 peer-reviewed papers published between 2016 and 2022 that use the OpenSPR platform. We highlight the range of biomolecular analytes and interactions that have been investigated using the platform, provide an overview on the most common applications for the instrument, and point out some representative research that highlights the flexibility and utility of the instrument.
Collapse
Affiliation(s)
- Eliza K Hanson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Rebecca J Whelan
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Colon-targeted bacterial hydrogel for tumor vascular normalization and improved chemotherapy. J Control Release 2023; 356:59-71. [PMID: 36842488 DOI: 10.1016/j.jconrel.2023.02.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/13/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
The endogenous H2S plays an important role in the occurrence and development of colon cancer, and is related to the abnormal blood vessels. Here, we reported on a sulfhydryl hyaluronid-based hydrogel (HA-SH) synthesized by amide reaction and further obtained a bacterial hydrogel by loading Thiobacillus denitrificans to the hydrogel for targeting adhesion to the colon. It was found that the loaded bacteria in HA-SH hydrogel can scavenge excess H2S in colon cancer, then promote tumor vascular normalization and improve the delivery of chemotherapy drug CPT to inhibit tumor progression. Both in vivo and in vitro experiments show that the self-crosslinked bacterial hydrogel has satisfactory effects in inhibiting tumor progression and promoting tumor vascular normalization in colon cancer. This study presents an efficient method to target the colon and consume overexpressed H2S in colon cancer to inhabit tumor progression, providing a new way for oral drug treatment of colon cancer.
Collapse
|
7
|
Li X, Li Z, Huang M, Wang R, Li M, Yang H, Lu X, Cai H, Tian R. Gallium-68-Labeled Z PDGFRβ Affibody: A Potential PET Probe for Platelet-Derived Growth Factor Receptor β-Expressing Carcinomas. Mol Pharm 2023; 20:1357-1364. [PMID: 36692381 DOI: 10.1021/acs.molpharmaceut.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) has been demonstrated to be an effective biomarker for a variety of malignant cancers, and affibody-based PDGFRβ molecules have potential as positron emission tomography (PET) tracers for the diagnosis of cancers. Based on previous pharmacokinetics studies, short-lived positron emission radionuclides, such as fluorine-18 and gallium-68, would be more suitable for affibody-based PET imaging. Thus, in the present study, we prepared a gallium-68-labeled PDGFRβ-targeting dimeric affibody conjugate and evaluated its capability for visualizing malignant tumors by micro-PET/computed tomography (CT) imaging. The PDGFRβ-targeting ZPDGFRβ affibody was conjugated with the p-NCS-Bn-DOTA macrocyclic ligand and radiolabeled with gallium-68 to generate the 68Ga-DOTA-ZPDGFRβ PET probe . Then, several types of malignant carcinoma cells (U-87 MG, LS 174T, A549, H1688, and H446) were used to evaluate the targeted cellular binding capability of the PET probe through in vitro/in vivo cellular assays and whole-body imaging by micro-PET/CT. The 68Ga-DOTA-ZPDGFRβ was successfully prepared with a radiochemical yield of 93% and exhibited ideal stability for up to 4 h at room temperature in vitro. This radioactive conjugate demonstrated specific binding ability with PDGFRβ-expressing U-87 MG cells, which was suppressed by PDGFRβ ligands. The biodistribution of 68Ga-DOTA-ZPDGFRβ indicated fast liver clearance and a kidney-bladder excretion route. The U-87 MG xenografted tumor was clearly visualized with 68Ga-DOTA-ZPDGFRβ at 1 h postinjection using micro-PET/CT imaging. 68Ga-DOTA-ZPDGFRβ is a potential radiopharmaceutical for the diagnosis of PDGFRβ-expressing tumors.
Collapse
Affiliation(s)
- Xin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhao Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxing Huang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rang Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mufeng Li
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Jia D, Liu H, Zheng S, Yuan D, Sun R, Wang F, Li Y, Li H, Yuan F, Fan Q, Zhao Z. ICG-Dimeric Her2-Specific Affibody Conjugates for Tumor Imaging and Photothermal Therapy for Her2-Positive Tumors. Mol Pharm 2023; 20:427-437. [PMID: 36315025 DOI: 10.1021/acs.molpharmaceut.2c00708] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human epidermal growth factor receptor 2 (Her2) is abundantly expressed in various solid tumors. The Her2-specific Affibody (ZHer2:2891) has been clinically tested in patients with Her2-positive breast cancer and is regarded as an ideal drug carrier for tumor diagnosis and targeted treatment. Indocyanine green (ICG) can be used as a photosensitizer for photothermal therapy (PTT), in addition to fluorescent dyes for tumor imaging. In this study, a dimeric Her2-specific Affibody (ZHer2) based on ZHer2:2891 was prepared using the E. coli expression system and then coupled to ICG through an N-hydroxysuccinimide (NHS) ester reactive group to construct a novel bifunctional protein drug (named ICG-ZHer2) for tumor diagnosis and PTT. In vitro, ICG-ZHer2-mediated PTT selectively and efficiently killed Her2-positive BT-474 and SKOV-3 tumor cells rather than Her2-negative HeLa tumor cells. In vivo, ICG-ZHer2 specifically accumulated in Her2-positive SKOV-3 tumor grafts rather than Her2-negative HeLa tumor grafts; high-contrast tumor optical images were obtained. However, Her2-negative HeLa tumor grafts were not detected. More importantly, ICG-ZHer2-mediated PTT exhibited a significantly enhanced antitumor effect in mice bearing SKOV-3 tumor grafts owing to the good photothermal properties of ICG-ZHer2. Of note, ICG-ZHer2 did not exhibit acute toxicity in mice during short-term treatment. Overall, our findings indicate that ICG-ZHer2 is a promising bifunctional drug for Her2-positive tumor diagnosis and PTT.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Huimin Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shuhui Zheng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Dandan Yuan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ruohan Sun
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Fei Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yang Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 317700, China
| |
Collapse
|
9
|
Zeng Y, Yu T, Zhang S, Song G, Meng T, Yuan H, Hu F. Combination of tumor vessel normalization and immune checkpoint blockade for breast cancer treatment via multifunctional nanocomplexes. Biomater Sci 2022; 10:4140-4155. [PMID: 35726757 DOI: 10.1039/d2bm00600f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor vessel normalization can alleviate hypoxia, reduce the intratumoral infiltration of immunosuppressive cells and increase the intratumoral infiltration of immune effector cells (CD8+ T cells), further reversing the immunosuppressive microenvironment. Here, nanocomplexes (lipo/St@FA-COSA/BMS-202) which can accurately deliver drugs to tumor tissues and release different drugs at different sites with different rates were prepared to combine tumor vessel normalization with immune checkpoint blockade. The results of drug release in vitro showed that in a pH 6.5 release medium, lipo/St@FA-COSA/BMS-202 rapidly released the vascular normalizing drug (sunitinib, St) and slowly released the PD-1/PD-L1-blocking drug (BMS-202). The results of in vivo experiments showed that the rapidly released St normalized tumor vessels and formed an immunosupportive microenvironment which improved the anti-tumor efficacy of BMS-202. In conclusion, the drug delivery strategy significantly inhibited tumor growth and had excellent anti-tumor efficacy, which can provide a potential approach for effective tumor treatment.
Collapse
Affiliation(s)
- Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tong Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Liu H, Jia D, Yuan F, Wang F, Wei D, Tang X, Tian B, Zheng S, Sun R, Shi J, Fan Q. Her3-specific affibody mediated tumor targeting delivery of ICG enhanced the photothermal therapy against Her3-positive tumors. Int J Pharm 2022; 617:121609. [PMID: 35217073 DOI: 10.1016/j.ijpharm.2022.121609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/19/2022] [Indexed: 02/08/2023]
Abstract
Photothermal therapy (PTT), mediated by tumor-targeted drug delivery of indocyanine green (ICG), is a promising strategy for cancer therapy. Human epidermal growth factor receptor 3 (Her3) is highly expressed in several solid tumors and is an ideal target for tumor diagnosis and therapy. This study prepared a Her3-specific dimeric affibody (ZHer3) using an Escherichia coli expression system. The affibody could bind explicitly to Her3-positive MCF7 and LS174T cells, rather than to Her3-negative SKOV-3 cells in vitro. ICG was coupled with the ZHer3 affibody (ICG-ZHer3) through an N-hydroxysuccinimide (NHS) ester reactive group for tumor-targeted delivery. As expected, Her3-positive cells were selectively and efficiently killed by ICG-ZHer3-mediated PTT in vitro. In vivo, ICG-ZHer3 preferentially accumulated in Her3-positive LS174T tumor grafts because of the tumor-targeting ability of the ZHer3 affibody. As a result of the local generation of cytotoxic reactive oxygen species and hyperthermia, the growth rates of LS174T tumor grafts were significantly inhibited by ICG-ZHer3-mediated PTT, and ICG-ZHer3 showed good safety performance during short-term treatment. In conclusion, these results demonstrated that ICG-ZHer3 is a promising photosensitizer for PTT against Her3-positive tumors.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Danfeng Wei
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaohui Tang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Baoqing Tian
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Shuhui Zheng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Ruohan Sun
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Jing Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
11
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
12
|
Yang X, Xia X, Xia XX, Sun Z, Yan D. Improving Targeted Delivery and Antitumor Efficacy with Engineered Tumor Necrosis Factor-Related Apoptosis Ligand-Affibody Fusion Protein. Mol Pharm 2021; 18:3854-3861. [PMID: 34543035 DOI: 10.1021/acs.molpharmaceut.1c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tumor necrosis factor-related apoptosis ligand (TRAIL) is a promising protein candidate for selective apoptosis of a variety of cancer cells. However, the short half-life and a lack of targeted delivery are major obstacles for its application in cancer therapy. Here, we propose a simple strategy to solve the targeting problem by genetically fusing an anti-HER2 affibody to the C-terminus of the TRAIL. The fusion protein TRAIL-affibody was produced as a soluble form with high yield in recombinant Escherichia coli. In vitro studies proved that the affibody domain promoted the cellular uptake of the fusion protein in the HER2 overexpressed SKOV-3 cells and improved its apoptosis-inducing ability. In addition, the fusion protein exhibited higher accumulation at the tumor site and greater antitumor effect than those of TRAIL in vivo, indicating that the affibody promoted the tumor homing of the TRAIL and then improved the therapeutic efficacy. Importantly, repeated injection of high-dose TRAIL-affibody showed no obvious toxicity in mice. These results demonstrated that the engineered TRAIL-affibody is promising to be a highly tumor-specific and targeted cancer therapeutic agent.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuelin Xia
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhao Sun
- Shandong Luning Pharmaceutical Co. Ltd., Guangrao County, Shandong Province 257336, People's Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
13
|
Wang H, Jia D, Yuan D, Yin X, Yuan F, Wang F, Shi W, Li H, Zhu LM, Fan Q. Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy. J Nanobiotechnology 2021; 19:138. [PMID: 33985511 PMCID: PMC8120847 DOI: 10.1186/s12951-021-00885-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Solid tumor hypoxic conditions prevent the generation of reactive oxygen species (ROS) and the formation of DNA double-strand breaks (DSBs) induced by ionizing radiation, which ultimately contributes to radiotherapy (RT) resistance. Recently, there have been significant technical advances in nanomedicine to reduce hypoxia by facilitating in situ O2 production, which in turn serves as a "radiosensitizer" to increase the sensitivity of tumor cells to ionizing radiation. However, off-target damage to the tumor-surrounding healthy tissue by high-energy radiation is often unavoidable, and tumor cells that are further away from the focal point of ionizing radiation may avoid damage. Therefore, there is an urgent need to develop an intelligent targeted nanoplatform to enable precise enhanced RT-induced DNA damage and combined therapy. RESULTS Human epidermal growth factor receptor 2 (Her2)-specific dimeric affibody (ZHer2) mediated cisplatin-loaded mesoporous polydopamine/MnO2/polydopamine nanoparticles (Pt@mPDA/MnO2/PDA-ZHer2 NPs) for MRI and enhanced chemo-radiotherapy of Her2-positive ovarian tumors is reported. These NPs are biodegradable under a simulated tumor microenvironment, resulting in accelerated cisplatin release, as well as localized production of O2. ZHer2, produced using the E. coli expression system, endowed NPs with Her2-dependent binding ability in Her2-positive SKOV-3 cells. An in vivo MRI revealed obvious T1 contrast enhancement at the tumor site. Moreover, these NPs achieved efficient tumor homing and penetration via the efficient internalization and penetrability of ZHer2. These NPs exhibited excellent inhibition of tumor growth with X-ray irradiation. An immunofluorescence assay showed that these NPs significantly reduced the expression of HIF-1α and improved ROS levels, resulting in radiosensitization. CONCLUSIONS The nanocarriers described in the present study integrated Her2 targeting, diagnosis and RT sensitization into a single platform, thus providing a novel approach for translational tumor theranostics.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.,School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Dandan Yuan
- Department of Digestive Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaolei Yin
- School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
14
|
A single nucleotide mutation drastically increases the expression of tumor-homing NGR-TNFα in the E. coli M15-pQE30 system by improving gene transcription. Appl Microbiol Biotechnol 2021; 105:1447-1460. [PMID: 33528691 PMCID: PMC7852052 DOI: 10.1007/s00253-021-11136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
Due to their potent immune stimulation, tumor necrosis factor alpha (TNFα) variants with tumor-homing activity are attractive as novel antitumor drugs. The promising antitumor effect of NGR-TNFα in clinical trials triggered extensive interest in developing novel tumor-homing TNFα variants in recent years. Owing to its promising antitumor effect, NGR-TNFα is usually used as a control for newly developed tumor-homing TNFα variants. In our previous works, we produced a pericyte-targeting Z-TNFα at high levels using the Escherichia coli (E. coli) M15-pQE30 system. To further compare Z-TNFα and NGR-TNFα, we attempted to express NGR-TNFα using the same system. Surprisingly, native NGR-TNFα was expressed at a low (~ 0.2 mg/L) level in E. coli M15 containing the pQE30 plasmid. However, a single nucleotide mutation of C to G, resulting in a substitution of leucine (L) with valine (V) at the start of TNFα, increased the expression of NGR-TNFα by ~ 100 times through improving transcription. In addition, the amino acid substitution showed a little impact on the receptor binding, in vitro cytotoxicity, and in vivo antitumor effect of NGR-TNFα. As fusing NGR to the N-terminus of TNFα with a valine substitution did not reduce the protein yield, the TNFα gene with a C > G mutation might be used to prepare novel tumor-homing TNFα when the native TNFα-based variant is expressed at an extremely low level in E. coli. Notably, in addition to the mutated valine, the impact of N-terminal additional amino acids provided by pQE30 vector on the function of TNFα variant must be carefully evaluated. KEY POINTS : • A single nucleotide mutation increased the expression of NGR-TNFα by two orders. • Nucleotide mutation-induced amino acid substitution did not reduce NGR-TNFα activity.
Collapse
|
15
|
Jia D, Yang Y, Yuan F, Fan Q, Wang F, Huang Y, Song H, Hu P, Wang R, Li G, Liu R, Li J. Increasing the antitumor efficacy of doxorubicin liposomes with coupling an anti-EGFR affibody in EGFR-expressing tumor models. Int J Pharm 2020; 586:119541. [PMID: 32544521 DOI: 10.1016/j.ijpharm.2020.119541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/14/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in a wide range of solid tumors. In this study, we exploited a high-affinity EGFR-antagonistic affibody (ZEGFR) coupled to a doxorubicin loaded pegylated liposome (LS-Dox) for concurrent passive and active targeting of EGFR+ A431 tumor cells in vitro and in vivo. The in vitro studies revealed that the Dox liposomes coupled with ZEGFR (AS-Dox) showed a higher Dox uptake than LS-Dox in EGFR+ A431 cells but not in EGFR- B16F10 cells, resulting in a selectively enhanced cytotoxicity. In vivo, AS-Dox confirmed its long circulation time and efficient accumulation in tumors. This targeted chemotherapy achieved greater tumor suppression. Further, this low-dose but effective targeted treatment reduced systemic toxicity such as body weight loss and organ injury demonstrated by H&E staining. Thus, selective targeting of LS-Dox coupled with ZEGFR enhanced antitumor effects and improved systemic safety. These results demonstrated that LS-Dox coupled with ZEGFR might be developed as a potential tool for therapy of EGFR+ tumors.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Yujiao Yang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China.
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Yujiao Huang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Hao Song
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/ Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Guangyong Li
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Renmin Liu
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, PR China.
| |
Collapse
|
16
|
Su X, Huang L, Qu Y, Xiao D, Mu D. Pericytes in Cerebrovascular Diseases: An Emerging Therapeutic Target. Front Cell Neurosci 2019; 13:519. [PMID: 31824267 PMCID: PMC6882740 DOI: 10.3389/fncel.2019.00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Pericytes are functional components of the neurovascular unit (NVU) that are located around the blood vessels, and their roles in the regulation of cerebral health and diseases has been reported. Currently, the potential properties of pericytes as emerging therapeutic targets for cerebrovascular diseases have attracted considerable attention. Nonetheless, few reviews have comprehensively discussed pericytes and their roles in cerebrovascular diseases. Therefore, in this review, we not only summarized and described the basic characteristics of pericytes but also focused on clarifying the new understanding about the roles of pericytes in the pathogenesis of cerebrovascular diseases, including white matter injury (WMI), hypoxic-ischemic brain damage, depression, neovascular insufficiency disease, and Alzheimer's disease (AD). Furthermore, we summarized the current therapeutic strategies targeting pericytes for cerebrovascular diseases. Collectively, this review is aimed at providing a comprehensive understanding of pericytes and new insights about the use of pericytes as novel therapeutic targets for cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|