1
|
Ye YX, Pan JC, Jiang Y, Tang P, Wang HC, Shi XA, Zhang XT, Zhu HL, Liu XH. A Mito-targeted, pH-sensitive type I photosensitizer for the diagnosis and therapy in bone metastasis of triple negative breast cancer by activating pyroptosis pathway. Biosens Bioelectron 2025; 283:117559. [PMID: 40345019 DOI: 10.1016/j.bios.2025.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Rational design of multifunctional molecules integrating diagnostic and therapeutic capabilities represents a cutting-edge yet challenging frontier in modern medicine. In this study, we present the first report on Rh-HB, a smart near-infrared (NIR) molecular probe engineered for mitochondria-targeted theranostics in triple-negative breast cancer (TNBC) bone metastasis. As a ratiometric, dual-excitation pH-sensitive fluorescent probe, Rh-HB enables real-time monitoring of mitochondrial pH fluctuations associated with early-stage metastatic progression. Moreover, Rh-HB functions as a highly efficient type I photosensitizer, generating cytotoxic reactive oxygen species (ROS) such as superoxide anion (O2•-) and hydroxyl radicals (·OH) upon light irradiation within mitochondria. This localized ROS production overcomes the limitations of short diffusion distances, ensuring effective oxidative damage. Crucially, Rh-HB induces severe mitochondrial oxidative stress, triggering pyroptosis in TNBC bone metastasis models. Thus, Rh-HB serves as a proof-of-concept theranostic agent, offering a promising strategy for combating bone metastasis of TNBC.
Collapse
Affiliation(s)
- Ya-Xi Ye
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Jian-Cheng Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Yu Jiang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Pei Tang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Hai-Chao Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Xin-Ai Shi
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China
| | - Xing-Tao Zhang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| | - Xin-Hua Liu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Suzhou University, Suzhou, 234000, PR China; School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
2
|
Ding J, Zhao X, Long S, Sun W, Du J, Fan J, Peng X. A Dual Stimuli-Responsive Nanoimmunomodulator for Antitumor Synergy of Macrophages and T Cells. ACS NANO 2025; 19:6468-6478. [PMID: 39919169 DOI: 10.1021/acsnano.4c17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Only a minority of patients benefit from current T-cell-focused adaptive immunotherapies, underscoring the need to engage innate immune cells, particularly macrophages, for multilayered tumor control. However, high-efficacy therapeutics capable of orchestrating multiple immune cells remain scarce. Herein, a dual stimuli-responsive nanoimmunomodulator (6EPP@si) that caters specifically to the tumor microenvironment (TME) is presented for the antitumor synergy of macrophages and T cells. Using the functional polymer-based carrier, we co-deliver the endoplasmic reticulum (ER)-localized photosensitizer 6E and small interfering RNA targeting CD47 (siCD47) into breast tumors. Within the acidic and high-glutathione TME, 6EPP@si undergoes self-lysosome escape and nanocleavage for precise, on-demand drug release. Consequently, siCD47 released into the cytoplasm enables potent CD47 silencing, while the ER-targeted photosensitizer 6E induces immunogenic cell death through reactive oxygen species-based ER stress, triggering the release of damage-associated molecular patterns, including calreticulin surface translocation. 6EPP@si enhances macrophage phagocytosis by modulating both antiphagocytic and prophagocytic signals and also promotes antigen presentation to activate T cells. In orthotopic breast tumor and spontaneous lung metastatic tumor models, this combined approach demonstrates robust antitumor effects and effective antimetastatic immunity, offering a meaningful strategy to simultaneously activate multiple immune cells for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Junying Ding
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xueze Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Huang Y, Xia M, Xu C, Lin Z, Chen M, Shi X, Ding Y, Xiao Y, Zhao C. A GSH-responsive oxidative stress nanoamplifier for self-augmented chemo/chemodynamic therapy to reverse cisplatin resistance. Acta Biomater 2025; 193:440-454. [PMID: 39706539 DOI: 10.1016/j.actbio.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Drug resistance and off-target toxicity of cisplatin (CDDP) pose significant challenges in effectively treating non-small cell lung cancer (NSCLC). Recently, chemodynamic therapy (CDT), an emerging reactive oxygen species (ROS)-mediated tumor-specific therapeutic modality, has shown great potential in sensitizing multidrug resistance tumor cells. Herein, a glutathione (GSH)-responsive Pt(IV) prodrug-based oxidative stress nanoamplifier (CuBSO@PtC16) was developed for effective chemo/chemodynamic therapy to reverse CDDP resistance in NSCLC. CuBSO@PtC16, a lipid-coated nanoagent, was constructed by coordinating Cu2+ with l-buthioninesulfoximine (BSO) as the core framework, and Pt(IV) prodrug (PtC16) was concurrently loaded on the outer lipid bilayer. With appropriate particle size (∼35 nm) and good physiological stability, CuBSO@PtC16 efficiently accumulated at tumor tissue. Under high intracellular GSH levels, PtC16 was reduced to generate cytotoxic CDDP that induced cell-killing and boosted intracellular H2O2 levels, and the CuBSO core was disassembled to release Cu ions and BSO simultaneously. The released BSO could efficiently reduce the intracellular GSH content to weaken its detoxification effect on CDDP, leading to more Pt-DNA adduct formation and more severe DNA damage. Meanwhile, Cu ions catalyzed the intracellular elevated H2O2 into highly lethal •OH through Fenton-like reactions, and the reduction of GSH weakened the •OH elimination, which jointly amplified the intracellular oxidative stress levels, finally achieving enhanced chemo/chemodynamic therapeutic effect and reversing CDDP resistance in NSCLC. Therefore, this work offers an inspirational idea for effectively treating drug-resistant cancers. STATEMENT OF SIGNIFICANCE: Cisplatin (CDDP) faces challenges in treating non-small cell lung cancer (NSCLC) due to drug resistance and off-target toxicity. Herein, a GSH-responsive nanoreactor (CuBSO@PtC16) was developed for effective chemo/chemodynamic therapy to address CDDP resistance. CuBSO@PtC16 could efficiently traffic to tumor site and response to high GSH levels in tumor cells to release CDDP, Cu ions and buthioninesulfoximine (BSO) simultaneously. CDDP could induce DNA damage and boost intracellular H2O2 levels, which then served as the substrate of Cu to induce •OH generation through Fenton-like reactions. Meanwhile, the released BSO efficiently reduced the intracellular GSH content to weaken its detoxification effect on CDDP and the elimination of the •OH, leading to amplified intracellular oxidative stress and more severe damage to induce cell death.
Collapse
Affiliation(s)
- Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meng Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Congjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zijun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xianmin Shi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaqing Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yan Xiao
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
4
|
Tian Q, Zhu Z, Feng Y, Zhao S, Lin H, Zhang W, Xu Z. H 2O 2-activated mitochondria-targeting photosensitizer for fluorescence imaging-guided combination photodynamic and radiotherapy. J Mater Chem B 2024; 13:326-335. [PMID: 39552242 DOI: 10.1039/d4tb01653j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Radiotherapy is a primary modality in cancer treatment but is accompanied by severe side effects to healthy tissues and radiation resistance to some extent. To overcome these limitations, we developed a H2O2-responsive photosensitizer, CyBT, which could be activated by the upregulated H2O2 induced by radiotherapy, enabling near-infrared fluorescence imaging-guided combination photodynamic and radiotherapy. The synthesis of CyBT began with the covalent linkage of hemicyanine and a free radical TEMPO through the click reaction, which demonstrated superior photodynamic properties. Shielding of fluorescence and photodynamic activity was achieved by incorporating phenylboronic acid pinacol ester. In X-ray irradiated tumor cells, the upregulation of H2O2 activated CyBT, thereby restoring its fluorescence and photodynamic activity. Additionally, the positive charge of CyBT facilitated its targeting to the mitochondria within tumor cells for more efficiently triggering cell apoptosis. CyBT was co-assembled with a polymer PEG-b-PDPA to form acid-responsive nanoparticles (NPs-CyBT). This formulation enhanced tumor targeting, improved water solubility of CyBT, and extended in vivo circulation time. Utilizing fluorescence imaging to guide photodynamic and radiotherapy, NPs-CyBT can accurately target solid tumors in mice, and lead to tumor elimination, suggesting that it is a potential strategy for the effective treatment of malignant tumors.
Collapse
Affiliation(s)
- Qiufen Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Zifan Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Yun Feng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Shirui Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Hui Lin
- Gastroenterology department, Shanghai Jing'an District Zhabei Central Hospital, Shanghai 200072, China.
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Shabnum SS, Siranjeevi R, Raj CK, Saravanan A, Vickram AS, Chopra H, Malik T. Advancements in nanotechnology-driven photodynamic and photothermal therapies: mechanistic insights and synergistic approaches for cancer treatment. RSC Adv 2024; 14:38952-38995. [PMID: 39659608 PMCID: PMC11629304 DOI: 10.1039/d4ra07114j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/01/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is a disease that involves uncontrolled cell division triggered by genetic damage to the genes that control cell growth and division. Cancer starts as a localized illness, but subsequently spreads to other areas in the human body (metastasis), making it incurable. Cancer is the second most prevalent cause of mortality worldwide. Every year, almost ten million individuals get diagnosed with cancer. Although different cancer treatment options exist, such as chemotherapy, radiation, surgery and immunotherapy, their clinical efficacy is limited due to their significant side effects. New cancer treatment options, such as phototherapy, which employs light for the treatment of cancer, have sparked a growing fascination in the cancer research community. Phototherapies are classified into two types: photodynamic treatment (PDT) and photothermal therapy (PTT). PDT necessitates the use of a photosensitizing chemical and exposure to light at a certain wavelength. Photodynamic treatment (PDT) is primarily based on the creation of singlet oxygen by the stimulation of a photosensitizer, which is then used to kill tumor cells. PDT can be used to treat a variety of malignancies. On the other hand, PTT employs a photothermal molecule that activates and destroys cancer cells at the longer wavelengths of light, making it less energetic and hence less hazardous to other cells and tissues. While PTT is a better alternative to standard cancer therapy, in some irradiation circumstances, it can cause cellular necrosis, which results in pro-inflammatory reactions that can be harmful to therapeutic effectiveness. Latest research has revealed that PTT may be adjusted to produce apoptosis instead of necrosis, which is attractive since apoptosis reduces the inflammatory response.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS Chennai-602105 Tamil Nadu India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai-602105 Tamil Nadu India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University 378 Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara 144411 India
| |
Collapse
|
6
|
Miao L, Zhu Y, Chang H, Zhang X. Nanotheranostics in Breast Cancer Bone Metastasis: Advanced Research Progress and Future Perspectives. Pharmaceutics 2024; 16:1491. [PMID: 39771471 PMCID: PMC11676679 DOI: 10.3390/pharmaceutics16121491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer is the leading cause of cancer-related morbidity and mortality among women worldwide, with bone being the most common site of all metastatic breast cancer. Bone metastases are often associated with pain and skeletal-related events (SREs), indicating poor prognosis and poor quality of life. Most current therapies for breast cancer bone metastasis primarily serve palliative purposes, focusing on pain management, mitigating the risk of bone-related complications, and inhibiting tumor progression. The emergence of nanodelivery systems offers novel insights and potential solutions for the diagnosis and treatment of breast cancer-related bone metastasis. This article reviews the recent advancements and innovative applications of nanodrug delivery systems in the context of breast cancer bone metastasis and explores future directions in nanotheranostics.
Collapse
Affiliation(s)
- Lin Miao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| | - Yidan Zhu
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Hong Chang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
| | - Xinfeng Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang 110042, China; (L.M.); (Y.Z.)
- Graduate School, China Medical University, Shenyang 110122, China
| |
Collapse
|
7
|
Bai W, Xue Y, Guo Y, Zhang D, Ma K, Chen Z, Xia K, Liao B, Huang G, Pan S, Zheng Y, Wang H, Yang H, Zhang LK, Guan YQ. Reactive oxygen species produced by photodynamic therapy enhance docosahexaenoic acid lipid peroxidation and induce the death of breast cancer cells. Colloids Surf B Biointerfaces 2024; 241:114012. [PMID: 38850743 DOI: 10.1016/j.colsurfb.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Breast cancer remains a serious threat to women's physical and emotional health. The combination therapies can overcome the deficiency of single therapy, enhance the therapeutic effects and reduce the side effects at the same time. In this study, we synthesize a novel nanomedicine that enhanced the therapeutic effects of breast cancer treatment by combining photodynamic therapy and chemotherapy. The doxorubicin (DOX) and photosensitizer methyl pyropheophorbide-a (MPPa) are loaded into the nano-drug delivery system as DPSPFA/MPPa/DOX. In response to near-infrared (NIR) laser, the drugs were quickly released to the cancer cells. The MPPa produces reactive oxygen species (ROS) under the action of photodynamics. Unsaturated fatty acids with ROS promotes lipid peroxidation and the combination of chemotherapy and photodynamic therapy. The data shows that the DPSPFA/MPPa/DOX has a spherical shape, good dispersibility and stability, and the particle size is roughly 200 nm. The drug loading capability of DOX is about 13 %. Both of MCF7 cell model in vitro and breast cancer model in vivo, DPSPFA/MPPa/DOX showed an excellent anti-tumor effect of 86.9 % and without any obvious side effects. These findings might offer potential for a new approach for breast cancer treatment.
Collapse
Affiliation(s)
- Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yongyong Xue
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kuo Ma
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Beining Liao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Guowei Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoyuan Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; School of Engineering, Westlake University, Hangzhou 310030, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
8
|
Barba-Rosado LV, Carrascal-Hernández DC, Insuasty D, Grande-Tovar CD. Graphene Oxide (GO) for the Treatment of Bone Cancer: A Systematic Review and Bibliometric Analysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:186. [PMID: 38251150 PMCID: PMC10820493 DOI: 10.3390/nano14020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Cancer is a severe disease that, in 2022, caused more than 9.89 million deaths worldwide. One worrisome type of cancer is bone cancer, such as osteosarcoma and Ewing tumors, which occur more frequently in infants. This study shows an active interest in the use of graphene oxide and its derivatives in therapy against bone cancer. We present a systematic review analyzing the current state of the art related to the use of GO in treating osteosarcoma, through evaluating the existing literature. In this sense, studies focused on GO-based nanomaterials for potential applications against osteosarcoma were reviewed, which has revealed that there is an excellent trend toward the use of GO-based nanomaterials, based on their thermal and anti-cancer activities, for the treatment of osteosarcoma through various therapeutic approaches. However, more research is needed to develop highly efficient localized therapies. It is suggested, therefore, that photodynamic therapy, photothermal therapy, and the use of nanocarriers should be considered as non-invasive, more specific, and efficient alternatives in the treatment of osteosarcoma. These options present promising approaches to enhance the effectiveness of therapy while also seeking to reduce side effects and minimize the damage to surrounding healthy tissues. The bibliometric analysis of photothermal and photochemical treatments of graphene oxide and reduced graphene oxide from January 2004 to December 2022 extracted 948 documents with its search strategy, mainly related to research papers, review papers, and conference papers, demonstrating a high-impact field supported by the need for more selective and efficient bone cancer therapies. The central countries leading the research are the United States, Iran, Italy, Germany, China, South Korea, and Australia, with strong collaborations worldwide. At the same time, the most-cited papers were published in journals with impact factors of more than 6.0 (2021), with more than 290 citations. Additionally, the journals that published the most on the topic are high impact factor journals, according to the analysis performed, demonstrating the high impact of the research field.
Collapse
Affiliation(s)
- Lemy Vanessa Barba-Rosado
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| | - Domingo César Carrascal-Hernández
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia 081008, Colombia; (L.V.B.-R.); (D.C.C.-H.)
| |
Collapse
|
9
|
Lan H, Wu B, Jin K, Chen Y. Beyond boundaries: unraveling innovative approaches to combat bone-metastatic cancers. Front Endocrinol (Lausanne) 2024; 14:1260491. [PMID: 38260135 PMCID: PMC10800370 DOI: 10.3389/fendo.2023.1260491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Evidence demonstrated that bones, liver, and lungs are the most common metastasis sites in some human malignancies, especially in prostate and breast cancers. Bone is the third most frequent target for spreading tumor cells among these organs and tissues. Patients with bone-metastatic cancers face a grim prognosis characterized by short median survival time. Current treatments have proven insufficient, as they can only inhibit metastasis or tumor progression within the bone tissues rather than providing a curative solution. Gaining a more profound comprehension of the interplay between tumor cells and the bone microenvironment (BME) is of utmost importance in tackling this issue. This knowledge will pave the way for developing innovative diagnostic and therapeutic approaches. This review summarizes the mechanisms underlying bone metastasis and discusses the clinical aspects of this pathologic condition. Additionally, it highlights emerging therapeutic interventions aimed at enhancing the quality of life for patients affected by bone-metastatic cancers. By synthesizing current research, this review seeks to shed light on the complexities of bone metastasis and offer insights for future advancements in patient care.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Bo Wu
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hosptial, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yefeng Chen
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
10
|
Zhang Z, Wang R, Xue H, Knoedler S, Geng Y, Liao Y, Alfertshofer M, Panayi AC, Ming J, Mi B, Liu G. Phototherapy techniques for the management of musculoskeletal disorders: strategies and recent advances. Biomater Res 2023; 27:123. [PMID: 38017585 PMCID: PMC10685661 DOI: 10.1186/s40824-023-00458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
Musculoskeletal disorders (MSDs), which include a range of pathologies affecting bones, cartilage, muscles, tendons, and ligaments, account for a significant portion of the global burden of disease. While pharmaceutical and surgical interventions represent conventional approaches for treating MSDs, their efficacy is constrained and frequently accompanied by adverse reactions. Considering the rising incidence of MSDs, there is an urgent demand for effective treatment modalities to alter the current landscape. Phototherapy, as a controllable and non-invasive technique, has been shown to directly regulate bone, cartilage, and muscle regeneration by modulating cellular behavior. Moreover, phototherapy presents controlled ablation of tumor cells, bacteria, and aberrantly activated inflammatory cells, demonstrating therapeutic potential in conditions such as bone tumors, bone infection, and arthritis. By constructing light-responsive nanosystems, controlled drug delivery can be achieved to enable precise treatment of MSDs. Notably, various phototherapy nanoplatforms with integrated imaging capabilities have been utilized for early diagnosis, guided therapy, and prognostic assessment of MSDs, further improving the management of these disorders. This review provides a comprehensive overview of the strategies and recent advances in the application of phototherapy for the treatment of MSDs, discusses the challenges and prospects of phototherapy, and aims to promote further research and application of phototherapy techniques.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yongtao Geng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Rhine, Germany
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
11
|
Liu S, Wang Z, Wei Q, Duan X, Liu Y, Wu M, Ding J. Biomaterials-enhanced bioactive agents to efficiently block spinal metastases of cancers. J Control Release 2023; 363:721-732. [PMID: 37741462 DOI: 10.1016/j.jconrel.2023.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
The spine is the most common site of bone metastases, as 20%-40% of cancer patients suffer from spinal metastases. Treatments for spinal metastases are scarce and palliative, primarily aiming at relieving bone pain and preserving neurological function. The bioactive agents-mediated therapies are the most effective modalities for treating spinal metastases because they achieve systematic and specific tumor regression. However, the clinical applications of some bioactive agents are limited due to the lack of targeting capabilities, severe side effects, and vulnerability of drug resistance. Fortunately, advanced biomaterials have been developed as excipients to enhance these treatments, including chemotherapy, phototherapy, magnetic hyperthermia therapy, and combination therapy, by improving tumor targeting and enabling sustaining and stimuli-responsive release of various therapeutic agents. Herein, the review summarizes the development of biomaterials-mediated bioactive agents for enhanced treatments of spinal metastases and predicts future research trends.
Collapse
Affiliation(s)
- Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China
| | - Qi Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, PR China
| | - Xuefeng Duan
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Yang Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, 388 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
12
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
13
|
Miao W, Ti Y, Lu J, Zhao J, Xu B, Chen L, Bao N. Mesoporous nanoplatform integrating photothermal effect and enhanced drug delivery to treat breast cancer bone metastasis. Front Chem 2022; 10:1088823. [PMID: 36531327 PMCID: PMC9749821 DOI: 10.3389/fchem.2022.1088823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 08/28/2023] Open
Abstract
Bone metastatic breast cancer has severely threatened the survival and life quality of patients. Due to the suboptimal efficacy of anti-metastatic chemotherapeutic drugs and the complicated bone marrow microenvironments, effective treatment of metastatic breast cancer remains challenging for traditional clinical approaches. In this work, we developed a mesoporous nanoplatform (m-CuS-PEG) with the co-loading of CuS nanodots and a chemotherapeutic drug cisplatin for the combined photothermal-chemotherapy of bone-metastasized breast cancer. The CuS nanodots were decorated onto mesoporous silica (m-SiO2) surface with dendritic mesoporous channels, into which the cisplatin was accommodated. The carboxyl-terminated poly (ethylene glycol) (PEG) was further functionalized onto the surface to obtain the functional nanoplatform m-CuS-PEG. The drug release of the loaded cisplatin exhibited pH- and thermal-dual responsive manner. The attached CuS nanodots rendered the mesoporous nanoplatform with high photothermal conversion ability. Upon irradiation with a near-infrared laser in the second near-infrared (NIR-II) window, m-CuS-PEG dispersions exhibited rapid temperature elevation and high photostability. The results revealed that m-CuS-PEG had excellent biocompatibility. The cisplatin-loaded m-CuS-PEG not only showed superior cancer cell-killing effects, but also significantly inhibit the growth of metastatic tumors. The tumor-induced bone destruction was also dramatically attenuated by the mesoporous nanoplatform-mediated combined therapy. Overall, the developed functional nanoplatform integrates photothermal therapy and efficient chemotherapeutic drug delivery to offer an alternative approach for combating breast cancer bone metastasis.
Collapse
Affiliation(s)
- Wujun Miao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunfan Ti
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwei Lu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianning Zhao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bin Xu
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, China
| | - Nirong Bao
- Department of Orthopedics, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
"NIR-triggered ROS storage" photodynamic intraocular implant for high-efficient and safe posterior capsular opacification prevention. Asian J Pharm Sci 2022; 17:838-854. [PMID: 36600895 PMCID: PMC9800949 DOI: 10.1016/j.ajps.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022] Open
Abstract
Posterior capsular opacification (PCO) is the leading cause of vision loss after cataract, mainly caused by the adhesion, proliferation and trans-differentiation of post-operative residual lens epithelial cells (LECs). Effective PCO prevention remains a huge challenge to ophthalmologists and researches for decades. Herein, we developed a "NIR-triggered ROS storage" intraocular implant (CTR-Py-PpIX) based on capsular tension ring (CTR), which is concurrently linked with photosensitizer protophorphyrin IX (PpIX) and energy storage 2-pyridone derivative (Py), to guarantee instantaneous and sustainable ROS generation for LECs killing, aiming to achieve more efficient and safer photodynamic therapy (PDT) to effectively prevent PCO. The silylated PpIX-Si and Py-Si were covalently conjugated to the plasma activated CTR surface to obtain CTR-Py-PpIX. Results demonstrated that CTR-Py-PpIX had dual functions of PDT and battery, in which PpIX could generate ROS extracellularly under irradiation, with one part directly inhibiting LECs by lipid peroxidation (LPO) induction of cell membranes. Meanwhile, the excess ROS stored in Py could be continuously released to amplify LPO levels after the irradiation was removed. Ultimately, the proliferation of LECs in capsular bag was completely inhibited under mild irradiation conditions, achieving a sustainable and controlled PDT effect for effective PCO prevention with good biocompatibility. This NIR-triggered ROS storage intraocular implant would provide a more efficient and safer approach for long-term PCO prevention.
Collapse
|
15
|
|
16
|
Huang Y, Lai H, Jiang J, Xu X, Zeng Z, Ren L, Liu Q, Chen M, Zhang T, Ding X, Zhao C, Cui S. pH-activatable oxidative stress amplifying dissolving microneedles for combined chemo-photodynamic therapy of Melanoma. Asian J Pharm Sci 2022; 17:679-696. [DOI: 10.1016/j.ajps.2022.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
|
17
|
Hu B, Zhang Y, Zhang G, Li Z, Jing Y, Yao J, Sun S. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022; 350:377-388. [PMID: 36007681 DOI: 10.1016/j.jconrel.2022.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Bone metastases are common in malignant tumors and the effect of conventional treatment is limited. How to effectively inhibit tumor bone metastasis and deliver the drug to the bone has become an urgent issue to be solved. While bone targeting drug delivery systems have obvious advantages in the treatment of bone tumors. The research on bone-targeted anti-tumor therapy has made significant progress in recent years. We introduced the related tumor pathways of bone metastases. The tumor microenvironment plays an important role in metastatic bone tumors. We introduce a drug-loading systems based on different environment-responsive nanocomposites for anti-tumor and anti-metastatic research. According to the process of bone metastases and the structure of bone tissue, we summarized the information on bone-targeting molecules. Bisphosphate has become the first choice of bone-targeted drug delivery carrier because of its affinity with hydroxyapatite in bone. Therefore, we sought to summarize the bone-targeting molecule of bisphosphate to identify the modification effect on bone-targeting. And this paper discusses the relationship between bisphosphate bone targeting molecular structure and drug delivery carriers, to provide some new ideas for the research and development of bone-targeting drug delivery carriers. Targeted therapy will make a more outstanding contribution to the treatment of tumors.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China; State Key Laboratory Breeding Base-Hebei Province, Key Laboratory of Molecular Chemistry for Drug, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongkang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Guogang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Zhongqiu Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Jun Yao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| | - Shiguo Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| |
Collapse
|
18
|
Huang Y, Guan Z, Ren L, Luo Y, Chen M, Sun Y, He Y, Zeng Z, Dai X, Jiang J, Huang Z, Zhao C. Bortezomib prodrug catalytic nanoreactor for chemo/chemodynamic therapy and macrophage re-education. J Control Release 2022; 350:332-349. [PMID: 36028045 DOI: 10.1016/j.jconrel.2022.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
Chemodynamic therapy (CDT), an emerging tumor-specific therapeutic modality, is frequently restrained by insufficient intratumoral Fenton catalysts and increasingly inefficient catalysis caused by the continuous consumption of limited H2O2 within tumors. Herein, we engineered a pH-responsive bortezomib (BTZ) polymer prodrug catalytic nanoreactor (HeZn@HA-BTZ) capable of self-supplying Fenton catalyst and H2O2. It is aimed for tumor-specific chemo/chemodynamic therapy via oxidative stress and endoplasmic reticulum (ER) stress dual-amplification and macrophage repolarization. A catechol‑boronate bond-based hyaluronic acid-BTZ prodrug HA-DA-BTZ was modified on Hemin and Zn2+ coordination nanoscale framework (HeZn), an innovative CDT inducer, to construct He-Zn@HA-BTZ. He-Zn@HA-BTZ with good stability and superior peroxidase-like activity preferentially accumulated at tumor sites and be actively internalized by tumor cells. Under the cleavage of catechol‑boronate bond in acidic endo/lysosomes, pre-masked BTZ was rapidly released to induce ubiquitinated protein aggregation, robust ER stress and elevated H2O2 levels. The amplified H2O2 was further catalyzed by HeZn via Fenton-catalytic reactions to produce hypertoxic •OH, enabling cascaded oxidative stress amplification and long-lasting effective CDT, which in turn aggravated BTZ-induced ER stress. Eventually, a dual-amplification of oxidative stress and ER stress was achieved to initiate cell apoptosis/necrosis with reduced BTZ toxicity. Intriguingly, He-Zn@HA-BTZ could repolarize macrophages from M2 to antitumor M1 phenotype for potential tumor therapy. This "all in one" prodrug nanocatalytic reactor not only enriches the CDT inducer library, but provides inspirational strategy for simultaneous oxidative stress and ER stress based excellent cancer therapy.
Collapse
Affiliation(s)
- Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zilin Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Lingling Ren
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yong Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yue Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuanfeng He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiuling Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China..
| |
Collapse
|
19
|
Kadkhoda J, Tarighatnia A, Nader ND, Aghanejad A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci 2022; 307:120898. [PMID: 35987340 DOI: 10.1016/j.lfs.2022.120898] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Mitochondria are critical multifunctional organelles in cells that generate power, produce reactive oxygen species, and regulate cell survival. Mitochondria that are dysfunctional are eliminated via mitophagy as a way to protect cells under moderate stress and physiological conditions. However, mitophagy is a double-edged sword and can trigger cell death under severe stresses. By targeting mitochondria, photodynamic (PD) and photothermal (PT) therapies may play a role in treating cancer. These therapeutic modalities alter mitochondrial membrane potential, thereby affecting respiratory chain function and generation of reactive oxygen species promotes signaling pathways for cell death. In this regard, PDT, PTT, various mitochondrion-targeting agents and therapeutic methods could have exploited the vital role of mitochondria as the doorway to regulated cell death. Targeted mitochondrial therapies would provide an excellent opportunity for effective mitochondrial injury and accurate tumor erosion. Herein, we summarize the recent progress on the roles of PD and PT treatments in regulating cancerous cell death in relation to mitochondrial targeting and the signaling pathways involved.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Kappa Carrageenan/PEG-halloysite nanocomposites: Surface characterization with an artificial intelligence technique, antimicrobial, and anticancer properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Ostańska E, Barnaś E, Bartusik-Aebisher D, Dynarowicz K, Szpunar M, Skręt-Magierło J, Aebisher D. Histopathological Analysis of the Effect of Photodynamic Action on Post-Chemotherapy Excised Breast Cancer Tissue. Medicina (B Aires) 2022; 58:medicina58060700. [PMID: 35743961 PMCID: PMC9228729 DOI: 10.3390/medicina58060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: Breast cancer is the most commonly diagnosed cancer in women and its mortality is increasing. Therefore, research to improve treatment is of paramount importance. One method of treatment is photodynamic therapy. Photodynamic therapy selectively stimulates apoptosis in photosensitizer-treated neoplastic breast cells as a result of cytotoxic singlet oxygen generation via collisions between triplet excited state photosensitizer and triplet ground state oxygen upon tissue irradiation. The aim of this study was to evaluate the effects of photodynamic action on cancerous breast tissue samples as a model of photodynamic therapy. Materials and Methods: Breast cancer tissue samples were obtained from post-operative material and the patterns of histopathological changes in breast cancer tissue before and after photodynamic action on post-chemotherapy tissue were evaluated. Excised tissue samples were obtained from 48 female breast cancer patients who had previously undergone chemotherapy. Breast cancer tissues for this study were taken from macroscopically visible tumors larger than 10 mm. Histopathological analysis was performed to evaluate any morphological changes prior to and after photodynamic action on the post-chemotherapy tissue samples. Eighteen breast cancer tissue samples were analyzed before chemotherapy, fifteen after chemotherapy, and fifteen samples were analyzed after chemotherapy and application of photodynamic action. The photosensitizer Rose Bengal was applied to the samples subjected to photodynamic action. Results: Photodynamic action on post-chemotherapy neoplastic tissue showed histological changes under a light microscope. The results showed that morphological changes in breast cancer tissues after chemotherapy and photodynamic action were dependent on the concentration of Rose Bengal. In all cases, follow-up imaging showed tumor shrinkage of an average of 35% from baseline size. Conclusions: Histopathological examination revealed photosensitizer-concentration-dependent changes after photodynamic action in excised post-chemotherapy tissue. The effects of photodynamic action observed in this study suggest that the application of photodynamic therapy after chemotherapy can aid in breast cancer cell eradication.
Collapse
Affiliation(s)
- Elżbieta Ostańska
- Clinical Department of Pathology, Frederick Chopin Clinical Provincial Hospital No. 1, 35-055 Rzeszów, Poland;
| | - Edyta Barnaś
- Department of Midwifery, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland; (E.B.); (J.S.-M.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Magdalena Szpunar
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| | - Joanna Skręt-Magierło
- Department of Midwifery, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland; (E.B.); (J.S.-M.)
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, University of Rzeszów, 35-959 Rzeszów, Poland
- Correspondence:
| |
Collapse
|
22
|
Chen J, Tan X, Huang Y, Xu C, Zeng Z, Shan T, Guan Z, Xu X, Huang Z, Zhao C. Reactive oxygen species-activated self-amplifying prodrug nanoagent for tumor-specific Cu-chelate chemotherapy and cascaded photodynamic therapy. Biomaterials 2022; 284:121513. [DOI: 10.1016/j.biomaterials.2022.121513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
|
23
|
Ghosh R, Mondal S, Mukherjee D, Adhikari A, Bhattacharyya M, Pal SK. Inorganic-Organic Synergy in Nano-hybrids makes a New Class of Drug with Targeted Delivery: Glutamate Functionalization of Iron Nanoparticles for Potential Bone Marrow Delivery and X-ray Dynamic Therapy. Curr Drug Deliv 2022; 19:991-1000. [DOI: 10.2174/1567201819666220328142620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
The direct delivery of therapeutic molecules is generally inefficient and has several problems. Hence, nano medicines with targeted and controlled delivery applications have been an exciting field of research for the past decade. In this regard, the adjustable properties of inorganic nanoparticles like particle size distribution, ability to change the targeting ligand to have a higher affinity towards the pathologic cell, and controlled delivery properties have made it indispensable for targeted drug delivery applications. Changing the ligand on the surface of the inorganic nanoparticle can direct different therapeutic molecules to different organs like the liver, spleen, kidney, bone, and even brain. However, while the other targeted nano medicines are well-reported targeting of therapeutics to bone marrow cells is sparse in the literature. Hence, the administration of therapeutics for bone-related disorders like bone metastases leads to several problems like severe systemic toxicity and suboptimal efficacy. In this direction, we have shown our successful effort to functionalise a model inorganic nanoparticle (Fe2O3) by glutamate ligand which is reported to have a high affinity towards the NMDA receptors of the bone cells. We have performed spectroscopic studies to characterize the nano-hybrid. We have shown that the cargo or the Fe2O3 nanoparticle possesses the ability to generate photo-induced reactive oxygen species (ROS), thereby leading to a therapeutic opportunity for bone metastases. In addition, the nanoparticle also possesses the ability to generate enhanced ROS on X-ray irradiation, which may provide a new strategy for bone metastases and cancer therapy. Also, this paper reviews the advancement in the drug delivery applications of inorganic nanoparticles and highlights the crosstalk between the inorganic nanoparticles with the conjugated targeting ligand for efficient delivery applications.
Collapse
Affiliation(s)
- Ria Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata, India
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Dipanjan Mukherjee
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering and Advanced Studies, University of California, Los Angeles
| | | | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
24
|
Niu Y, Yang H, Yu Z, Gao C, Ji S, Yan J, Han L, Huo Q, Xu M, Liu Y. Intervention with the Bone-Associated Tumor Vicious Cycle through Dual-Protein Therapeutics for Treatment of Skeletal-Related Events and Bone Metastases. ACS NANO 2022; 16:2209-2223. [PMID: 35077154 DOI: 10.1021/acsnano.1c08269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bone metastasis is a common metastasis site such as lung cancer, prostate cancer, and other malignant tumors. The occurrence of bone metastases of lung cancer is often accompanied by bone loss, fracture, and other skeletal-related events (SREs) caused by tumor proliferation and osteoclast activation. Furthermore, along with the differentiation and maturation of osteoclasts in the bone microenvironment, it will further promote the occurrence and development of bone metastasis. Protein drugs are one of the most promising therapeutic pharmaceuticals, but in vivo delivery of protein therapeutics still confronts great challenges. In order to more effectively conquer bone metastases and alleviate SREs, herein, we constructed biomineralized metal-organic framework (MOF) nanoparticles carrying protein toxins with both bone-seeking and CD44-receptor-targeting abilities. More importantly, through combination with Receptor Activator of Nuclear Factor-κ B Ligand (RANKL) antibody, in vivo results demonstrated that these two protein agents not only enhanced the detraction effects of protein toxin agents as ribosome-inactivating protein (RIP) on bone metastatic tumor cells but also exhibited synergistic intervention of the crosstalk between bone cells and tumor cells and reduced SREs such as bone loss. Collectively, we expect that this strategy can provide an effective and safe option in regulating bone-tumor microenvironments to overcome bone metastasis and SREs.
Collapse
Affiliation(s)
- Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hongbin Yang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zhenyan Yu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Cuicui Gao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Shuaishuai Ji
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jie Yan
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Lei Han
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
25
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
26
|
Wu Y, Li J, Zhong X, Shi J, Cheng Y, He C, Li J, Zou L, Fu C, Chen M, Zhang J, Gao H. A pH-sensitive supramolecular nanosystem with chlorin e6 and triptolide co-delivery for chemo-photodynamic combination therapy. Asian J Pharm Sci 2022; 17:206-218. [PMID: 35582637 PMCID: PMC9091603 DOI: 10.1016/j.ajps.2021.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
The combination of Ce6, an acknowledged photosensitizer, and TPL, a natural anticancer agent, has been demonstrated as a useful strategy to reinforce the tumor growth suppression, as well as decrease the systemic side effects compared with their monotherapy. However, in view of the optimal chemo-photodynamic combination efficiency, there is still short of the feasible nanovehicle to steadily co-deliver Ce6 and TPL, and stimuli-responsively burst release drugs in tumor site. Herein, we described the synergistic antitumor performance of a pH-sensitive supramolecular nanosystem, mediated by the host–guest complexing between β-CD and acid pH-responsive amphiphilic co-polymer mPEG-PBAE-mPEG, showing the shell–core structural micelles with the tight β-CD layer coating. Both Ce6 and TPL were facilely co-loaded into the spherical supramolecular NPs (TPL+Ce6/NPs) by one-step nanoprecipitation method, with an ideal particle size (156.0 nm), acid pH-responsive drug release profile, and enhanced cellular internalization capacity. In view of the combination benefit of photodynamic therapy and chemotherapy, as well as co-encapsulation in the fabricated pH-sensitive supramolecular NPs, TPL+Ce6/NPs exhibited significant efficacy to suppress cellular proliferation, boost ROS level, lower MMP, and promote cellular apoptosis in vitro. Particularly, fluorescence imaging revealed that TPL+Ce6/NPs preferentially accumulated in the tumor tissue area, with higher intensity than that of free Ce6. As expected, upon 650-nm laser irradiation, TPL+Ce6/NPs exhibited a cascade of amplified synergistic chemo-photodynamic therapeutic benefits to suppress tumor progression in both hepatoma H22 tumor-bearing mice and B16 tumor-bearing mice. More importantly, lower systemic toxicity was found in the tumor-bearing mice treated with TPL+Ce6/NPs. Overall, the designed supramolecular TPL+Ce6/NPs provided a promising alternative approach for chemo-photodynamic therapy in tumor treatment.
Collapse
Affiliation(s)
- Yihan Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingjing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Xuemei Zhong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinfeng Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenglin He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiaxin Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Corresponding author.
| | - Huile Gao
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Corresponding author.
| |
Collapse
|
27
|
Czarnecka-Czapczyńska M, Aebisher D, Oleś P, Sosna B, Krupka-Olek M, Dynarowicz K, Latos W, Cieślar G, Kawczyk-Krupka A. The role of photodynamic therapy in breast cancer - A review of in vitro research. Biomed Pharmacother 2021; 144:112342. [PMID: 34678730 DOI: 10.1016/j.biopha.2021.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/04/2023] Open
Abstract
Breast cancer is the most common cancer affecting women and the incidence of occurrence is increasing. Currently, there are many methods of detecting and treating breast cancer. Some treatments have a number of side effects. Photodynamic therapy (PDT) is a minimally invasive method of treatment which uses monochromatic light of low to medium energy to excite previously applied photosensitizers (PS) for ROS production. The purpose of this article is to present a general overview of the use of PDT in in vitro studies of various cancer cell lines. A literature search for articles corresponding to the topic of this review was performed using the PubMed and Scopus databases using the following keywords: 'photodynamic therapy', 'breast cancer', and 'photosensitizer(s).' Much of the reviewed literature is based on evaluations of the cytotoxic potential of various PSs, particularly against the MCF-7 cell line, and enhancement of PDT potential with nanotechnology. Research on photodynamic effects in vitro may be helpful in the pre-clinical search for optimal methods for in vivo clinical treatment.
Collapse
Affiliation(s)
- Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Piotr Oleś
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Barbara Sosna
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Magdalena Krupka-Olek
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | | | - Wojciech Latos
- Specialist Hospital No. 2, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego Street 15, 41-902 Bytom, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland.
| |
Collapse
|
28
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
29
|
Engineered macrophages as near-infrared light activated drug vectors for chemo-photodynamic therapy of primary and bone metastatic breast cancer. Nat Commun 2021; 12:4310. [PMID: 34262026 PMCID: PMC8280231 DOI: 10.1038/s41467-021-24564-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with primary and bone metastatic breast cancer have significantly reduced survival and life quality. Due to the poor drug delivery efficiency of anti-metastasis therapy and the limited response rate of immunotherapy for breast cancer, effective treatment remains a formidable challenge. In this work, engineered macrophages (Oxa(IV)@ZnPc@M) carrying nanomedicine containing oxaliplatin prodrug and photosensitizer are designed as near-infrared (NIR) light-activated drug vectors, aiming to achieve enhanced chemo/photo/immunotherapy of primary and bone metastatic tumors. Oxa(IV)@ZnPc@M exhibits an anti-tumor M1 phenotype polarization and can efficiently home to primary and bone metastatic tumors. Additionally, therapeutics inside Oxa(IV)@ZnPc@M undergo NIR triggered release, which can kill primary tumors via combined chemo-photodynamic therapy and induce immunogenic cell death simultaneously. Oxa(IV)@ZnPc@M combined with anti-PD-L1 can eliminate primary and bone metastatic tumors, activate tumor-specific antitumor immune response, and improve overall survival with limited systemic toxicity. Therefore, this all-in-one macrophage provides a treatment platform for effective therapy of primary and bone metastatic tumors.
Collapse
|
30
|
Liu P, Peng Y, Zhou Y, Shi X, Li Q, Ding J, Gao Y, Zhou W. Rapamycin as a "One-Stone-Three-Birds" Agent for Cooperatively Enhanced Phototherapies Against Metastatic Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25674-25684. [PMID: 34042422 DOI: 10.1021/acsami.1c03312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cooperative photothermal therapy (PTT) and photodynamic therapy (PDT) represents a promising strategy to conquer tumor with synergistic effect, while their long-term efficacy has been strictly limited by the multiple resistances of tumor. Here, we reported a core-shell nanoplatform for enhanced PTT/PDT combination against metastatic breast cancer. The nanosystem had photosensitizer chlorin e6 (Ce6) and rapamycin (RAP) pure drugs core and the polydopamine (PDA) shell, with surface PEGylation. Notably, we found that RAP was a highly robust sensitizer to boost the efficacy of both PTT and PDT by inhibiting the expression of heat shock protein 70 (HSP 70) and hypoxia inducible factor-1α (HIF-1α), respectively, resulting in cooperatively enhanced antitumor efficiency. Moreover, metastasis, the fatal risk of breast cancer, was also inhibited by virtue of RAP-mediated matrix metalloproteinases-2 (MMP-2) suppression. Upon intravenous injection, the nanosystem could passively accumulate into the tumor and impose potent phototherapies upon dual laser irradiations for complete tumor elimination and metastasis inhibition, giving rise to 100% mice survival over a long observation period. Collectively, this work offers a general solution to address the key limitations of tumor-resistant phototherapies and provides a highly promising nanoplatform for the management of metastatic cancer.
Collapse
Affiliation(s)
- Peng Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yanbin Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xinyi Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Qingnian Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
31
|
NR4A1 enhances MKP7 expression to diminish JNK activation induced by ROS or ER-stress in pancreatic β cells for surviving. Cell Death Discov 2021; 7:133. [PMID: 34088892 PMCID: PMC8178316 DOI: 10.1038/s41420-021-00521-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 12/03/2022] Open
Abstract
Under adverse conditions, such as sustained or chronic hyperglycemia or hyperlipidemia, ROS (reactive oxygen species) or/and ER-stress (endoplasmic reticulum stress) will be induced in pancreatic β cells. ROS or ER-stress damages β-cells even leads to apoptosis. Previously we found ROS or ER-stress resulted in JNK activation in β cells and overexpressing NR4A1 in MIN6 cells reduced JNK activation via modulating cbl-b expression and subsequent degrading the upstream JNK kinase (MKK4). To search other possible mechanisms, we found the mRNA level and protein level of MKP7 (a phosphatase for phospho-JNK) were dramatic reduced in pancreatic β cells in the islets from NR4A1 KO mice compared with that from wild type mice. To confirm what we found in animals, we applied pancreatic β cells (MIN6 cells) and found that the expression of MKP7 was increased in NR4A1-overexpression MIN6 cells. We further found that knocking down the expression of MKP7 increased the p-JNK level in pancreatic β cells upon treatment with TG or H2O2. After that, we figured out that NR4A1 did enhance the transactivation of the MKP7 promoter by physical association with two putative binding sites. In sum, NR4A1 attenuates JNK phosphorylation incurred by ER-stress or ROS partially via enhancing MKP7 expression, potentially decreases pancreatic β cell apoptosis induced by ROS or ER-stress. Our finding provides a clue for diabetes prevention.
Collapse
|
32
|
Li F, Liang Y, Wang M, Xu X, Zhao F, Wang X, Sun Y, Chen W. Multifunctional nanoplatforms as cascade-responsive drug-delivery carriers for effective synergistic chemo-photodynamic cancer treatment. J Nanobiotechnology 2021; 19:140. [PMID: 34001157 PMCID: PMC8130269 DOI: 10.1186/s12951-021-00876-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Synergistic chemo-photodynamic therapy has garnered attention in the field of cancer treatment. Here, a pH cascade-responsive micellar nanoplatform with nucleus-targeted ability, for effective synergistic chemo-photodynamic cancer treatment, was fabricated. In this micellar nanoplatform, 5-(4-carboxyphenyl)-10,15,20-triphenylporphyrin (Por), a photodynamic therapy (PDT) agent was utilized for carrying the novel anticancer drug GNA002 to construct a hydrophobic core, and cyclic RGD peptide (cRGD)-modified polyethylene glycol (PEG) (cRGD-PEG) connected the cell-penetrating peptide hexaarginine (R6) through a pH-responsive hydrazone bond (cRGD-PEG-N = CH-R6) to serve as a hydrophilic shell for increasing blood circulation time. After passively accumulating in tumor sites, the self-assembled GNA002-loaded nanoparticles were actively internalized into cancer cells via the cRGD ligands. Once phagocytosed by lysosomes, the acidity-triggered detachment of the cRGD-PEG shell led to the formation of R6-coated secondary nanoparticles and subsequent R6-mediated nucleus-targeted drug delivery. Combined with GNA002-induced nucleus-specific chemotherapy, reactive oxygen species produced by Por under 532-nm laser irradiation achieved a potent synergistic chemo-photodynamic cancer treatment. Moreover, our in vitro and in vivo anticancer investigations revealed high cancer-suppression efficacy of this ideal multifunctional nanoplatform, indicating that it could be a promising candidate for synergistic anticancer therapy.![]()
Collapse
Affiliation(s)
- Fan Li
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Yan Liang
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China
| | - Miaochen Wang
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Xing Xu
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Fen Zhao
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, China.
| | - Yong Sun
- Department of Pharmaceutics, Qingdao University School of Pharmacy, Qingdao, 266021, China.
| | - Wantao Chen
- Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
33
|
Abstract
Glucose-regulating protein 78 (GRP78) is a molecular chaperone in the endoplasmic reticulum (ER) that promotes folding and assembly of proteins, controls the quality of proteins, and regulates ER stress signaling through Ca2+ binding to the ER. In tumors, GRP78 is often upregulated, acting as a central stress sensor that senses and adapts to changes in the tumor microenvironment, mediating ER stress of cancer cells under various stimulations of the microenvironment to trigger the folding protein response. Increasing evidence has shown that GRP78 is closely associated with the progression and poor prognosis of lung cancer, and plays an important role in the treatment of lung cancer. Herein, we reviewed for the first time the functions and mechanisms of GRP78 in the pathological processes of lung cancer, including tumorigenesis, apoptosis, autophagy, progression, and drug resistance, giving a comprehensive understanding of the function of GRP78 in lung cancer. In addition, we also discussed the potential role of GRP78 as a prognostic biomarker and therapeutic target for lung cancer, which is conducive to improving the assessment of lung cancer and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xinri Zhang
- Department of Respiratory and Critical Care Medicine, The First Hospital, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, 030001, Shanxi, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, No. 467 Zhongshan Road, Dalian, 116023, China. .,Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
34
|
Xia Y, Chen J, Yu Y, Wu F, Shen X, Qiu C, Zhang T, Hong L, Zheng P, Shao R, Xu C, Wu F, Chen W, Xie C, Cui R, Zou P. Compensatory combination of mTOR and TrxR inhibitors to cause oxidative stress and regression of tumors. Am J Cancer Res 2021; 11:4335-4350. [PMID: 33754064 PMCID: PMC7977446 DOI: 10.7150/thno.52077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/31/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Cancer is a leading cause of death worldwide. Extensive research over decades has led to the development of therapies that inhibit oncogenic signaling pathways. The mammalian target of rapamycin (mTOR) signaling pathway plays an important role in the development of many cancers. Several mTOR inhibitors are approved for the treatment of cancers. However, the anticancer efficacies of mTOR inhibitor monotherapy are still limited. Methods: Western blot was used to detect the expression of indicated molecules. Thioredoxin reductase (TrxR) activity in cells was determined by the endpoint insulin reduction assay. Immunofluorescence staining was used to analyze precise location and expression of target proteins. Nude mice were used for xenograft tumor models. Results: We identified a synergistic lethal interaction of mTOR and TrxR inhibitors and elucidated the underlying molecular mechanisms of this synergism. We demonstrated that mTOR and TrxR inhibitors cooperated to induce cell death by triggering oxidative stress, which led to activation of autophagy, endoplasmic reticulum (ER) stress and c-Jun N-terminal Kinase (JNK) signaling pathway in cancer cells. Remarkably, we found that auranofin (AF) combined with everolimus significantly suppressed tumor growth in HCT116 and SGC-7901 xenograft models with no significant signs of toxicity. Conclusion: Our findings identify a promising therapeutic combination for cancer and has important implications for developing mTOR inhibitor-based combination treatments.
Collapse
|
35
|
Sun Y, Geng X, Wang Y, Su X, Han R, Wang J, Li X, Wang P, Zhang K, Wang X. Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharmacol Transl Sci 2021; 4:802-812. [PMID: 33860203 DOI: 10.1021/acsptsci.1c00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 01/10/2023]
Abstract
The clinical applications of many photosensitizers (PSs) are limited because of their poor water solubility, weak tissue penetration, low chemical purity, and severe toxicity in the absence of light. We designed a novel chlorin-based PS (designated as HPS) to achieve fluorescence image-guided photodynamic therapy (PDT) with efficient ROS generation. In addition to its simple fabrication process, HPS has other advantages such as excellent water solubility, strong NIR absorption, and high biocompatibility upon chemical functionalization for enhanced phototherapy. HPS exhibited high photodynamic performance against lung cancer and breast cancer cells by generating a large amount of singlet oxygen (1O2) under 654 nm laser irradiation. HPS accumulated into multiple organelles such as mitochondria and the endoplasmic reticulum and triggered cell apoptosis by laser exposure. In the tumor-bearing mice, in vivo, HPS showed an optimal half-life in circulation and achieved fluorescence-image-guided PDT within the irradiation window, resulting in effective tumor growth inhibition and the prolonged survival of animals. Moreover, the antitumor PDT effect of HPS was close to the clinical trial phase II stage of HPPH even at the low dosage of 0.32 mg/kg (under 75 J/cm2 laser), while the systemic safety of HPS was much higher. In conclusion, HPS is a novel water-soluble chlorin derivative with excellent PDT potential for clinical transformation.
Collapse
Affiliation(s)
- Yue Sun
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaorui Geng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Yihui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaomin Su
- Shannxi Blood Center, Xi'an 710061, The People's Republic of China
| | - Ruyin Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Jiangyue Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xinyan Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, The People's Republic of China
| |
Collapse
|
36
|
Huang Y, Xiao Z, Guan Z, Zeng Z, Shen Y, Xu X, Zhao C. Bone-seeking nanoplatform co-delivering cisplatin and zoledronate for synergistic therapy of breast cancer bone metastasis and bone resorption. Acta Pharm Sin B 2020; 10:2384-2403. [PMID: 33354509 PMCID: PMC7745129 DOI: 10.1016/j.apsb.2020.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
The "vicious cycle" established between tumor growth and osteolysis aggravates the process of breast cancer bone metastasis, leading to life-threatening skeletal-related events that severely reduce survival and quality of life. To effectively interrupt the "vicious cycle", innovative therapeutic strategies that not only reduce osteolysis but also relieve tumor burden are urgently needed. Herein, a bone-seeking moiety, alendronate (ALN), functionalized coordination polymer nanoparticles (DZ@ALN) co-delivering cisplatin prodrug (DSP) and antiresorptive agent zoledronate (ZOL) via Zn2+ crosslinking for combination therapy was reported. The versatile DZ@ALN with a diameter of about 40 nm can cross the fissure in the bone marrow sinus capillaries, and possesses an excellent bone-seeking ability both in vitro and in vivo. Additionally, DZ@ALN could synergistically inhibit the proliferation of cancer cells, suppress the formation of osteoclast-like cells and induce the apoptosis of osteoclasts in vitro. Importantly, it could preferentially accumulate in bone affected site, remarkably inhibit the proliferation of tumor cells, relieving bone pain, and significantly inhibit the activation of osteoclasts, protecting the bone from destruction in vivo, eventually leading to the breakdown of "vicious cycle" without inducing obvious systemic toxicity. This innovative nanoagent combines chemotherapy and osteolysis inhibition, exhibiting an inspiring strategy for effective treatment of bone metastasis.
Collapse
|
37
|
Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem Int Ed Engl 2020; 59:23228-23238. [DOI: 10.1002/anie.202010005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Yongxin Li
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Pan Sun
- CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
38
|
Li Y, Sun P, Zhao L, Yan X, Ng DKP, Lo P. Ferric Ion Driven Assembly of Catalase‐like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yongxin Li
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| | - Pan Sun
- CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin N.T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong China
| |
Collapse
|
39
|
Bone-targeting polymer vesicles for simultaneous imaging and effective malignant bone tumor treatment. Biomaterials 2020; 269:120345. [PMID: 33172607 DOI: 10.1016/j.biomaterials.2020.120345] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
We present a bone-targeting polymer vesicle with excellent single photon emission computed tomography/computed tomography (SPECT/CT) imaging capability and high antitumor drug delivery efficiency as an integrated platform for the simultaneous diagnosing and treatment of malignant bone tumors. This polymer vesicle can be self-assembled from poly(ε-caprolactone)67-b-poly[(L-glutamic acid)6-stat-(L-glutamic acid-alendronic acid)16] (PCL67-b-P[Glu6-stat-(Glu-ADA)16]), directly in water without the aid of a cosolvent. SPECT/CT dynamically tracked the drug distribution in the bone tumor rabbit models, and the tumor size was significantly reduced from >2.0 cm3 to <0.6 cm3 over 11 days. The pathological analysis demonstrated obvious necrosis and apoptosis of the tumor cells. Overall, this bone-targeting polymer vesicle provides us with a new platform for the combination of real-time diagnosis and therapy of malignant bone tumors.
Collapse
|
40
|
Haney MJ, Zhao Y, Fay J, Duhyeong H, Wang M, Wang H, Li Z, Lee YZ, Karuppan MK, El-Hage N, Kabanov AV, Batrakova EV. Genetically modified macrophages accomplish targeted gene delivery to the inflamed brain in transgenic Parkin Q311X(A) mice: importance of administration routes. Sci Rep 2020; 10:11818. [PMID: 32678262 PMCID: PMC7366622 DOI: 10.1038/s41598-020-68874-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cell-based drug delivery systems have generated an increasing interest in recent years. We previously demonstrated that systemically administered macrophages deliver therapeutics to CNS, including glial cell line-derived neurotrophic factor (GDNF), and produce potent effects in Parkinson’s disease (PD) mouse models. Herein, we report fundamental changes in biodistribution and brain bioavailability of macrophage-based formulations upon different routes of administration: intravenous, intraperitoneal, or intrathecal injections. The brain accumulation of adoptively transferred macrophages was evaluated by various imaging methods in transgenic Parkin Q311(X)A mice and compared with those in healthy wild type littermates. Neuroinflammation manifested in PD mice warranted targeting macrophages to the brain for each route of administration. The maximum amount of cell-carriers in the brain, up to 8.1% ID/g, was recorded followed a single intrathecal injection. GDNF-transfected macrophages administered through intrathecal route provided significant increases of GDNF levels in different brain sub-regions, including midbrain, cerebellum, frontal cortex, and pons. No significant offsite toxicity of the cell-based formulations in mouse brain and peripheral organs was observed. Overall, intrathecal injection appeared to be the optimal administration route for genetically modified macrophages, which accomplished targeted gene delivery, and significant expression of reporter and therapeutic genes in the brain.
Collapse
Affiliation(s)
- Matthew J Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - James Fay
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Hwang Duhyeong
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Mengzhe Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Wang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zibo Li
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yueh Z Lee
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mohan K Karuppan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA
| | - Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7362, USA.
| |
Collapse
|
41
|
Demirbaş Ü, Özçifçi Z, Akçay HT, Menteşe E. Novel phthalocyanines bearing 1,2,4 triazole substituents: Synthesis, characterization, photophysical and photochemical properties. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
42
|
A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer. J Control Release 2020; 322:401-415. [PMID: 32246976 DOI: 10.1016/j.jconrel.2020.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Multifunctional magnetic nanoparticles (MNPs) were widely used for ablation of cancer cells because of their potential on physical treatment. Herein, we developed the "cell targeting destructive" multifunctional polymeric nanoparticles (named as HA-Olb-PPMNPs) based on PEI-PLGA co-loaded with the anticancer drug Olaparib (Olb) and superparamagnetic iron oxide nanoparticles (Fe3O4 NPs), and further coated with a low molecular weight hyaluronic acid (HA) on its surface. Due to the high affinity between HA and CD44-receptor on cell surface of triple negative breast cancer (TNBC), an active targeting can be achieved. Under a rotating magnetic field (RMF), HA-Olb-PPMNPs produced a physical transfer of mechanical force by incomplete rotation. This mechanical force could cause the "two strikes" effect on the cells, in which "First-strike" was to damage the cell membrane structure (magneto-cell-lysis), another "Second-strike" could activate the lysosome-mitochondrial pathway by injuring lysosomes to induce cell apoptosis (magneto-cell-apoptosis). Therefore, the mechanical force and Olb exert dual anti-tumor effect to achieve synergistic therapeutic in the presence of RMF. This study proposes a novel multi-therapeutic concept for TNBC, as well as provided evidences of new anti-tumor therapeutic effects induced by the magnetic nanoparticles drug system.
Collapse
|