1
|
Jindal A, Mainuddin, Kumar A, Ratnesh RK, Singh J. Nanotechnology Driven Lipid and Metalloid Based Formulations Targeting Blood-Brain Barrier (3B) for Brain Tumor. Indian J Microbiol 2025; 65:92-119. [PMID: 40371021 PMCID: PMC12069182 DOI: 10.1007/s12088-024-01330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/08/2024] [Indexed: 05/16/2025] Open
Abstract
The evolution of nanotechnology-driven lipid and metalloid-based nanoformulations has garnered significant attention for developing effective drug delivery systems with position/time precision and efficacy. This study focuses on challenges of blood-brain barrier (BBB) and their pivotal role in drug targeting in chronic diseases such as brain tumors (BTs). These formulations encapsulate therapeutic agents within lipidic matrices, enhancing drug solubility, bioavailability, and targeted delivery. The diverse lipid materials used in these nanoformulations highlight their biocompatibility and versatility, covering a wide range of drugs. Emphasis is placed on metal nanoparticles, liposomes, ethosomes, quantum dots, carbon nanotubes, nanorobots, and micelles. The analysis explores their drug loading, stability, release characteristics, and bioavailability modulation. It also delves into the enhanced-permeability and retention (EPR) effect, crucial for passive targeting of tumors. Recent nanocarrier systems enable better penetration of therapeutic compounds through the BBB, addressing treatment failures in invasive BTs.This review highlights the latest nanotechnology developments and potential therapeutic approaches, serving as a valuable resource for researchers, clinicians, and pharmaceutical scientists.
Collapse
Affiliation(s)
- Amulya Jindal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005 India
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204 India
| | - Mainuddin
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005 India
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh 201301 India
| | - Anoop Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005 India
| | - Ratneshwar Kumar Ratnesh
- Department of Electronics and Communication Engineering, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh 250005 India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
2
|
Li S, Li X, Wang N, Zhang C, Sang Y, Sun Y, Xia X, Zheng M. Brain targeted biomimetic siRNA nanoparticles for drug resistance glioblastoma treatment. J Control Release 2024; 376:67-78. [PMID: 39368706 DOI: 10.1016/j.jconrel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive intracranial neoplasm, remains incurable at present, primarily due to drug resistance, which significantly contributes to elevated recurrence rates and dismal prognosis. Signal transducer and activator of transcription 3 (STAT3) is a critical gene closely associated with GBM drug resistance and the progression of GBM stem cells (GSCs), making it a promising therapeutic target. In this study, we developed cancer cell membrane-cloaked biomimetic nanoparticles to deliver STAT3 siRNA to reverse drug resistance in homologous GBM. These biomimetic nanoparticles leverage homotypic targeting, rapid endosome escape, and fast siRNA release, leading to efficient in vitro STAT3 knockdown in both temozolomide-resistant U251-TR cells and X01 GSCs. Moreover, benefited from the membrane functionalization, significant prolonged blood circulation, improved blood brain barrier (BBB) penetration and GBM tumor accumulation are achieved by these siRNA biomimetic nanoparticles. Importantly, these nanoparticles effectively inhibit tumor proliferation, significantly extending median survival time in orthotopic U251-TR (43.5 d versus 20 d for PBS control) and X01 GSC-bearing mouse xenografts (52 d versus 19.5 d for PBS control). Altogether, this biomimetic siRNA platform offers a promising strategy for gene therapy targeting drug-resistant GBM.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaozhe Li
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Chen Zhang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yujing Sang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yajing Sun
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Mu Y, Zhang Z, Zhou H, Ma L, Wang DA. Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment. Biomater Sci 2024; 12:4045-4064. [PMID: 38993162 DOI: 10.1039/d4bm00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.
Collapse
Affiliation(s)
- Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Centre for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Sun X, Zhang W, Gou C, Wang X, Wang X, Shao X, Chen X, Chen Z. AS1411 binds to nucleolin via its parallel structure and disrupts the exos-miRNA-27a-mediated reciprocal activation loop between glioma and astrocytes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167211. [PMID: 38701957 DOI: 10.1016/j.bbadis.2024.167211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
The interaction between glioma cells and astrocytes promotes the proliferation of gliomas. Micro-RNAs (miRNAs) carried by astrocyte exosomes (exos) may be involved in this process, but the mechanism remains unclear. The oligonucleotide AS1411, which consists of 26 bases and has a G-quadruplex structure, is an aptamer that targets nucleolin. In this study, we demonstrate exosome-miRNA-27a-mediated cross-activation between astrocytes and glioblastoma and show that AS1411 reduces astrocytes' pro-glioma activity. The enhanced affinity of AS1411 toward nucleolin is attributed to its G-quadruplex structure. After binding to nucleolin, AS1411 inhibits the entry of the NF-κB pathway transcription factor P65 into the nucleus, then downregulates the expression of miRNA-27a in astrocytes surrounding gliomas. Then, AS1411 downregulates astrocyte exosome-miRNA-27a and upregulates the expression of INPP4B, the target gene of miRNA-27a in gliomas, thereby inhibiting the PI3K/AKT pathway and inhibiting glioma proliferation. These results were verified in mouse orthotopic glioma xenografts and human glioma samples. In conclusion, the parallel structure of AS1411 allows it to bind to nucleolin and disrupt the exosome-miRNA-27a-mediated reciprocal activation loop between glioma cells and astrocytes. Our results may help in the development of a novel approach to therapeutic modulation of the glioma microenvironment.
Collapse
Affiliation(s)
- Xiaoming Sun
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wenzi Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Changlong Gou
- Department of ultrasound medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xinyu Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xianhui Wang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xin Shao
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Xiao Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhuo Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China; Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
5
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
6
|
Vikram, Kumar S, Ali J, Baboota S. Potential of Nanocarrier-Associated Approaches for Better Therapeutic Intervention in the Management of Glioblastoma. Assay Drug Dev Technol 2024; 22:73-85. [PMID: 38193798 DOI: 10.1089/adt.2023.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Glioblastoma, commonly known as glioblastoma multiforme (GBM), is one of the deadliest and most invasive types of brain cancer. Two factors account for the majority of the treatment limitations for GBM. First, the presence of the blood-brain barrier (BBB) renders malignancy treatment ineffective, leading to recurrence without full recovery. Second, several adverse effects are associated with the drugs used in conventional GBM treatment. Recent studies have developed nanocarrier systems, such as liposomes, polymeric micelles, dendrimers, nanosuspensions, nanoemulsions, nanostructured lipid carriers, solid lipid nanocarriers, metal particles, and silica nanoparticles, which allow drug-loaded formulations to penetrate the BBB more effectively. This has opened up new possibilities for overcoming therapy issues. Extensive and methodical searches of databases such as PubMed, Science Direct, Google Scholar, and others were conducted to gather relevant literature for this work, using precise keyword combinations such as "GBM," "brain tumor," and "nanocarriers." This review provides deep insights into the administration of drugs using nanocarriers for the management of GBM and explores new advancements in nanotechnology. It also highlights how scientific developments can be explained in connection with hopeful findings about the potential of nanocarriers for the future successful management of GBM.
Collapse
Affiliation(s)
- Vikram
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
7
|
Catalano M, Limatola C, Trettel F. Non-neoplastic astrocytes: key players for brain tumor progression. Front Cell Neurosci 2024; 17:1352130. [PMID: 38293652 PMCID: PMC10825036 DOI: 10.3389/fncel.2023.1352130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Astrocytes are highly plastic cells whose activity is essential to maintain the cerebral homeostasis, regulating synaptogenesis and synaptic transmission, vascular and metabolic functions, ions, neuro- and gliotransmitters concentrations. In pathological conditions, astrocytes may undergo transient or long-lasting molecular and functional changes that contribute to disease resolution or exacerbation. In recent years, many studies demonstrated that non-neoplastic astrocytes are key cells of the tumor microenvironment that contribute to the pathogenesis of glioblastoma, the most common primary malignant brain tumor and of secondary metastatic brain tumors. This Mini Review covers the recent development of research on non-neoplastic astrocytes as tumor-modulators. Their double-edged capability to promote cancer progression or to represent potential tools to counteract brain tumors will be discussed.
Collapse
Affiliation(s)
- Myriam Catalano
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Flavia Trettel
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Zhou Z, Zhou Y, Huang Z, Wang M, Jiang J, Yan M, Xiang W, Li S, Yu Y, Chen L, Zhou J, Dong W. Notopterol improves cognitive dysfunction and depression-like behavior via inhibiting STAT3/NF-ĸB pathway mediated inflammation in glioma-bearing mice. Int Immunopharmacol 2023; 118:110041. [PMID: 37004346 DOI: 10.1016/j.intimp.2023.110041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
Over the past few decades, clinicians and experts applied kinds of therapies for patients with malignant gliomas such as chemotherapy, radiation or surgical extraction. However, they used to ignore the real seriousness of neuropsychiatric symptoms after glioma, including cognitive dysfunction, anxiety, and depression, which severely impeded patients' recovery and prognosis. Interestingly, one of our previous clinical studies have found some behavioral symptoms in glioma patients were associated with systemic inflammation. Notopterol is one of the principal extracts of the traditional Chinese medicinal herb Notopterygium incisum having anti-tumour and anti-inflammatory activity. However, whether notopterol is beneficial to the treatment of glioma has not been reported. In this study, we found that notopterol inhibited growth and increased apoptosis of glioma via inhibiting STAT3 activity. In addition, notopterol treatment improved cognitive impairment and depression-like behavior in GL261 cell-based glioma mice via preventing the loss of dendritic spines and the reduction of synapse related proteins (PSD95 and Synapsin-1) in hippocampal neurons. Notopterol significantly reduced the levels of cytokines (iNOS, TNF-α, IL-6, and IL-β) and the activity of STAT3/NF-kB signalling pathway in peritumoural brain tissues and GL261 conditioned medium (GCM) treated microglial cell line (BV2 cells). These results demonstrated that notopterol not only exerted anti-glioma effects via inhibiting STAT3 activity, but improved neuropsychiatric symptoms via inhibiting tumour associated inflammation through modulation of the STAT3/NF-kB pathway in glioma-bearing mice.
Collapse
|
9
|
Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol 2023; 11:1098482. [PMID: 36923251 PMCID: PMC10009693 DOI: 10.3389/fcell.2023.1098482] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant of astrocytomas mainly involving the cerebral hemispheres and the cerebral cortex. It is one of the fatal and refractory solid tumors, with a 5-year survival rate of merely 5% among the adults. IL6/JAK/STAT3 is an important signaling pathway involved in the pathogenesis and progression of GBM. The expression of STAT3 in GBM tissues is substantially higher than that of normal brain cells. The abnormal activation of STAT3 renders the tumor microenvironment of GBM immunosuppression. Besides, blocking the STAT3 pathway can effectively inhibit the growth and metastasis of GBM. On this basis, inhibition of STAT3 may be a new therapeutic approach for GBM, and the combination of STAT3 targeted therapy and conventional therapies may improve the current status of GBM treatment. This review summarized the roles of STAT3 in the pathogenesis of GBM and the feasibility of STAT3 for GBM target therapy.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
10
|
Neganova ME, Aleksandrova YR, Sukocheva OA, Klochkov SG. Benefits and limitations of nanomedicine treatment of brain cancers and age-dependent neurodegenerative disorders. Semin Cancer Biol 2022; 86:805-833. [PMID: 35779712 DOI: 10.1016/j.semcancer.2022.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023]
Abstract
The treatment of central nervous system (CNS) malignancies, including brain cancers, is limited by a number of obstructions, including the blood-brain barrier (BBB), the heterogeneity and high invasiveness of tumors, the inaccessibility of tissues for early diagnosis and effective surgery, and anti-cancer drug resistance. Therapies employing nanomedicine have been shown to facilitate drug penetration across the BBB and maintain biodistribution and accumulation of therapeutic agents at the desired target site. The application of lipid-, polymer-, or metal-based nanocarriers represents an advanced drug delivery system for a growing group of anti-cancer chemicals. The nanocarrier surface is designed to contain an active ligand (cancer cell marker or antibody)-binding structure which can be modified to target specific cancer cells. Glioblastoma, ependymoma, neuroblastoma, medulloblastoma, and primary CNS lymphomas were recently targeted by easily absorbed nanocarriers. The metal- (such as transferrin drug-loaded systems), polymer- (nanocapsules and nanospheres), or lipid- (such as sulfatide-containing nanoliposomes)-based nano-vehicles were loaded with apoptosis- and/or ferroptosis-stimulating agents and demonstrated promising anti-cancer effects. This review aims to discuss effective nanomedicine approaches designed to overcome the current limitations in the therapy of brain cancers and age-dependent neurodegenerative disorders. To accent current obstacles for successful CNS-based cancer therapy, we discuss nanomedicine perspectives and limitations of nanodrug use associated with the specificity of nervous tissue characteristics and the effects nanocarriers have on cognition.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| | - Olga A Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, 1, Severnii pr., Chernogolovka 142432, Russia
| |
Collapse
|
11
|
Sun X, Chen Y, Tao X, Zhang W, Wang X, Wang X, Ruan Z, Chen Z. INPP4B inhibits glioma cell proliferation and immune escape via inhibition of the PI3K/AKT signaling pathway. Front Oncol 2022; 12:983537. [PMID: 36147923 PMCID: PMC9487419 DOI: 10.3389/fonc.2022.983537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
INPP4B (Inositol polyphosphate 4-phosphatase type II) has been regarded as a suppressor of several human tumors, but its biological function, expression, and clinical significance in glioma tissues and cell lines are unclear. Notably, whether INPP4B participates in immune escape of glioma deserves urgent attention. Here, we confirmed that INPP4B expression is often downregulated in low- and high-grade human glioma tissues, in tissues from an orthotopic mouse model of brain glioma and in glioma cells. We found that INPP4B overexpression restrained the proliferation, migration, apoptosis resistance, PD-L1 expression, and T cell suppression by glioma cells, whereas INPP4B silencing had the opposite effects. Moreover, we showed that INPP4B inhibited glioma cell proliferation, migration, and PD-L1 expression by downregulating PI3K/AKT signaling. Collectively, these data support that INPP4B may inhibit glioma progression, and particularly, glioma’s immune escape. Thus, INPP4B may constitute a valuable target for glioma treatment.
Collapse
Affiliation(s)
- Xiaoming Sun
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Yani Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiaoyang Tao
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Wenzi Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xinyu Wang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xianhui Wang
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Zhihua Ruan
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Zhuo Chen, ; Zhihua Ruan,
| | - Zhuo Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- *Correspondence: Zhuo Chen, ; Zhihua Ruan,
| |
Collapse
|
12
|
Pandey N, Anastasiadis P, Carney CP, Kanvinde PP, Woodworth GF, Winkles JA, Kim AJ. Nanotherapeutic treatment of the invasive glioblastoma tumor microenvironment. Adv Drug Deliv Rev 2022; 188:114415. [PMID: 35787387 PMCID: PMC10947564 DOI: 10.1016/j.addr.2022.114415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022]
Abstract
Glioblastoma (GBM) is the most common malignant adult brain cancer with no curative treatment strategy. A significant hurdle in GBM treatment is effective therapeutic delivery to the brain-invading tumor cells that remain following surgery within functioning brain regions. Developing therapies that can either directly target these brain-invading tumor cells or act on other cell types and molecular processes supporting tumor cell invasion and recurrence are essential steps in advancing new treatments in the clinic. This review highlights some of the drug delivery strategies and nanotherapeutic technologies that are designed to target brain-invading GBM cells or non-neoplastic, invasion-supporting cells residing within the GBM tumor microenvironment.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, United States.
| |
Collapse
|
13
|
Chen N, Peng C, Li D. Epigenetic Underpinnings of Inflammation: A Key to Unlock the Tumor Microenvironment in Glioblastoma. Front Immunol 2022; 13:869307. [PMID: 35572545 PMCID: PMC9100418 DOI: 10.3389/fimmu.2022.869307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, and immunotherapies and genetic therapies for GBM have evolved dramatically over the past decade, but GBM therapy is still facing a dilemma due to the high recurrence rate. The inflammatory microenvironment is a general signature of tumors that accelerates epigenetic changes in GBM and helps tumors avoid immunological surveillance. GBM tumor cells and glioma-associated microglia/macrophages are the primary contributors to the inflammatory condition, meanwhile the modification of epigenetic events including DNA methylation, non-coding RNAs, and histone methylation and deacetylases involved in this pathological process of GBM, finally result in exacerbating the proliferation, invasion, and migration of GBM. On the other hand, histone deacetylase inhibitors, DNA methyltransferases inhibitors, and RNA interference could reverse the inflammatory landscapes and inhibit GBM growth and invasion. Here, we systematically review the inflammatory-associated epigenetic changes and regulations in the microenvironment of GBM, aiming to provide a comprehensive epigenetic profile underlying the recognition of inflammation in GBM.
Collapse
Affiliation(s)
- Nian Chen
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
15
|
Singh M, Mazumder B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharm Nanotechnol 2021; 10:42-55. [PMID: 34951376 DOI: 10.2174/2211738510666211222111938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the "Blood-Brain Barrier", which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. OBJECTIVE This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. CONCLUSION NDs could be the next"revolution "in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. Lay Summary: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.
Collapse
Affiliation(s)
- Mohini Singh
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| | - Bhaskar Mazumder
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| |
Collapse
|
16
|
Rafiee Z, Omidi S. Modification of carbon-based nanomaterials by polyglycerol: recent advances and applications. RSC Adv 2021; 12:181-192. [PMID: 35424494 PMCID: PMC8978678 DOI: 10.1039/d1ra07554c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperbranched polymers, a subclass of dendritic polymers, mimic nature's components such as trees and nerves. Hyperbranched polyglycerol (HPG) is a hyperbranched polyether with outstanding physicochemical properties, including high water-solubility and functionality, biocompatibility, and an antifouling feature. HPG has attracted great interest in the modification of different objects, in particular carbon-based nanomaterials. In this review, recent advances in the synthesis and application of HPG to modify carbon-based nanomaterials, including graphene, carbon nanotubes, fullerene, nanodiamonds, carbon dots, and carbon fibers, are reviewed.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Department of Chemistry, Malayer University Malayer Iran
| | - Sakineh Omidi
- Shahid Beheshti University of Medical Sciences Tehran Iran +98-9181438542
| |
Collapse
|
17
|
Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discov Today 2021; 27:436-455. [PMID: 34624510 DOI: 10.1016/j.drudis.2021.09.020] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022]
Abstract
P-glycoprotein (P-gp) is a drug efflux transporter that triggers doxorubicin (DOX) resistance. In this review, we highlight the molecular avenues regulating P-gp, such as Nrf2, HIF-1α, miRNAs, and long noncoding (lnc)RNAs, to reveal their participation in DOX resistance. These antitumor compounds and genetic tools synergistically reduce P-gp expression. Furthermore, ATP depletion impairs P-gp activity to enhance the antitumor activity of DOX. Nanoarchitectures, including liposomes, micelles, polymeric nanoparticles (NPs), and solid lipid nanocarriers, have been developed for the co-delivery of DOX with anticancer compounds and genes enhancing DOX cytotoxicity. Surface modification of nanocarriers, for instance with hyaluronic acid (HA), can promote selectivity toward cancer cells. We discuss these aspects with a focus on P-gp expression and activity.
Collapse
|
18
|
Mirzaei S, Abadi AJ, Gholami MH, Hashemi F, Zabolian A, Hushmandi K, Zarrabi A, Entezari M, Aref AR, Khan H, Ashrafizadeh M, Samarghandian S. The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. Eur J Pharmacol 2021; 908:174344. [PMID: 34270987 DOI: 10.1016/j.ejphar.2021.174344] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
Considering the fact that cancer cells can switch among various molecular pathways and mechanisms to ensure their progression, chemotherapy is no longer effective enough in cancer therapy. As an anti-tumor agent, doxorubicin (DOX) is derived from Streptomyces peucetius and can induce cytotoxicity by binding to topoisomerase enzymes to suppress DNA replication, leading to apoptosis and cell cycle arrest. However, efficacy of DOX in suppressing cancer progression is restricted by development of drug resistance. Cancer cells elevate their metastasis in triggering DOX resistance. The epithelial-to-mesenchymal transition (EMT) mechanism participates in transforming epithelial cells into mesenchymal cells that have fibroblast-like features. The EMT diminishes intercellular adhesion and enhances migration of cells that are necessary for carcinogenesis. Various oncogenic molecular pathways stimulate EMT in cancer. EMT can induce DOX resistance, and in this way, upstream mediators such as ZEB proteins, microRNAs, Twist1 and TGF-β play a significant role. Identification of molecular pathways involved in EMT regulation and DOX resistance has resulted in using gene therapy such as microRNA transfection and siRNA in overcoming chemoresistance. Furthermore, curcumin and formononetin, owing to their cytotoxicity against cancer cells, can suppress EMT in mediating DOX sensitivity. For promoting efficacy in DOX sensitivity, nanoparticles have been developed for boosting ability in EMT inhibition.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS NANO 2021; 15:12567-12603. [PMID: 34339170 DOI: 10.1021/acsnano.1c02103] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Jiangkang Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Na Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review provides an overview of recent updates in understanding the mechanisms by which glioblastoma cells interact with their cellular and molecular partners within the microenvironment. RECENT FINDINGS We have now a better knowledge of the cell populations involved in Glioblastoma (GBM) invasion. Recent works discovered the role of new molecular players in GBM invasion, and, most importantly, better models are emerging which better recapitulate GBM invasion. SUMMARY Invasive properties of glioblastoma make complete surgical resection impossible and highly invasive cells are responsible for tumor recurrence. In this review, we focus on recent updates describing how invasive cells progress in the surrounding tissue along brain structures. We also provide an overview of the current knowledge on key cells and molecular players within the microenvironment that contribute to the invasive process. VIDEO ABSTRACT.
Collapse
|
21
|
Yang Z, Du J, Zhu J, Rong Y, Chen S, Yu L, Deng X, Zhang X, Sheng H, Yang L, Lu X, Li D, Yin B, Lin J. Allicin Inhibits Proliferation by Decreasing IL-6 and IFN-β in HCMV-Infected Glioma Cells. Cancer Manag Res 2020; 12:7305-7317. [PMID: 32884345 PMCID: PMC7443012 DOI: 10.2147/cmar.s259677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Allicin, an extract of garlic, has antitumor effects in multiple tumor types. However, the efficacy of allicin for treating glioblastoma has not yet been examined. This study examined the antitumor effect of allicin on human cytomegalovirus (HCMV)-infected glioblastoma multiforme (GBM) and its role in cytokine signaling. MATERIALS AND METHODS HCMV-infected glioblastoma was modeled by transfection of U87MG glioblastoma cells with HMCV proteins. MTT assay was used to assess the effect of allicin on the proliferation of glioma cells. Western blot analysis was used to detect the effect of allicin on the expression of intermediate-early gene 2 (IE2) and p53. Reverse transcription-quantitative polymerase chain reaction was used to assess and the levels of interleukin (IL)-6 and interferon (IFN)-β. Single cell gel electrophoresis was used to analyze changes in radiotherapy-induced DNA damage. RESULTS Transfection of the IE2 protein led to decreased p53 expression and increased glioblastoma cell proliferation. Allicin inhibited this proliferation in a dose- and time-dependent manner. An inhibitory effect on cytokine release was observed in GBM cells treated with allicin. After treatment with allicin, p53 levels increased significantly, whereas expression of the inflammatory factors such as IL-6 and IFN-β decreased. U87MG cells treated with allicin and 10 Gy irradiation had increased intracellular DNA damage compared to either treatment alone. CONCLUSION Allicin inhibited proliferation of glioblastoma cells in vitro. Allicin also inhibited cytokine release, upregulated p53 activity, and increased the sensitivity of glioblastoma to radiotherapy. These results suggest that allicin is effective against HCMV-infected glioblastomas.
Collapse
Affiliation(s)
- Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jizao Du
- Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jinjin Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Lisheng Yu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Xiangqi Lu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Dandong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China,Correspondence: Jian Lin The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, People’s Republic of ChinaTel +86 577 8800 2502Fax +86 577 8883 2693 Email
| |
Collapse
|
22
|
Zhang H, Zhou Y, Cui B, Liu Z, Shen H. Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126:110086. [PMID: 32172060 DOI: 10.1016/j.biopha.2020.110086] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) continues to be the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the microenvironment surrounding tumor cells. Astrocytes, the main component of the GBM microenvironment, play several fundamental physiological roles in the central nervous system. During the development of GBM, tumor-associated astrocytes (TAAs) directly contact GBM cells, which activate astrocytes to form reactive astrocytes, facilitating tumor progression, proliferation and migration through multiple well-understood signaling pathways. Notably, TAAs also influence GBM cell behaviors via suppressing immune responses and enhancing the chemoradiotherapy resistance of tumor cells. These new activities are closely linked with the treatment and prognosis of GBM. In this review, we discuss recent advances regarding new functions of reactive astrocytes, including TAA-cancer cell interactions, mechanisms involved in immunosuppressive regulation, and chemoradiotherapy resistance. It is expected that these updated experimental or clinical studies of TAAs may provide a promising approach for GBM treatment in the near future.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yulai Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Biqi Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|