1
|
Li Y, Xing L, Zhu M, Li X, Wei F, Sun W, Jia Y. HPMA Copolymers: A Versatile Platform for Targeted Peptide Drug Delivery. Biomolecules 2025; 15:596. [PMID: 40305357 PMCID: PMC12024580 DOI: 10.3390/biom15040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Peptide drugs have been broadly applied in cancer treatment and diagnosis due to their ability to accurately identify biomarkers with good biocompatibility. However, their clinical application is limited by protease degradation, which induces short circulation half-life, low bioavailability, and high renal clearance. In recent years, delivery systems based on nanomaterial technology have become an important strategy to break through the bottleneck of peptide drug delivery. Among them, N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers have attracted much attention due to their good biocompatibility, hydrophilicity, and low immunogenicity. The high molecular weight of HPMA copolymer-peptide can circumvent renal clearance, significantly prolong the circulation time in the body, and achieve drug accumulation and microenvironment-triggered release synergistically with EPR effects and active targeting. This review introduces the basic properties of HPMA copolymers, including solubility, biocompatibility, and tunable chemical structure. The important applications of HPMA copolymer-peptide in tumor diagnosis and treatment are discussed. This review deepens our understanding of the future development of HPMA copolymers and will provide more references for improving peptides by simple copolymers.
Collapse
Affiliation(s)
- Ya Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Liangda Xing
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Mingliang Zhu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Xian Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Fangfang Wei
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Wenyan Sun
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
| | - Yinnong Jia
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (Y.L.); (L.X.); (M.Z.); (X.L.); (F.W.); (W.S.)
- College of Modern Biomedical Industry, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
2
|
Aiyama E, Kato N. Differences in Lipid Order and Dynamics in Plasma Membranes Assessed by Nonlinear Optical Microscopy. J Phys Chem B 2024; 128:1680-1688. [PMID: 38347710 DOI: 10.1021/acs.jpcb.3c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
When amphiphilic polar dyes were added to the cells, they intercalated predominantly in the outer leaf of the plasma membrane, making them active for second harmonic generation (SHG). The fluorescence of the dye enabled simultaneous 3D imaging of SHG and two-photon excited fluorescence (TPF). Because SHG intensity is sensitive to the alignment of the dyes, which reflects lipid ordering in the plasma membrane, we assessed the difference in lipid ordering by comparing the SHG intensity normalized to the TPF intensity. Together with an enzyme release assay that detects pore formation in the plasma membrane, our SHG assay revealed how polycations affect lipid ordering at low concentrations, where membrane damage has not yet been examined. By scaling the results of the assays with the charge concentration of the two polycations, polyethylenimine (PEI) and poly-l-lysine (PLL), we found that PEI reduced the lipid order more than PLL, and PLL formed more pores than PEI. A comparison of the SHG and TPF images of the wounded cells revealed that one of the lipid dynamics (flip-flop) was significantly enhanced in the bleb membrane. Moreover, the SHG assay indicated that the biocompatible polymer, poly(N-(2-hydroxypropyl)methacrylamide), did not affect the lipid order. Thus, our technique allows the assessment of the plasma membrane structure at the molecular level.
Collapse
Affiliation(s)
- Eriko Aiyama
- Graduate School of Science and Technology, Meiji University, Kawasaki 215-8571, Japan
| | - Noritaka Kato
- Graduate School of Science and Technology, Meiji University, Kawasaki 215-8571, Japan
| |
Collapse
|
3
|
Kudláčová J, Kužílková D, Bárta F, Brdičková N, Vávrová A, Kostka L, Hovorka O, Kalina T, Etrych T. Hybrid Macromolecular Constructs as a Platform for Spectral Nanoprobes for Advanced Cellular Barcoding in Flow Cytometry. Macromol Biosci 2024; 24:e2300306. [PMID: 37691533 DOI: 10.1002/mabi.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Herein, an advanced bioconjugation technique to synthesize hybrid polymer-antibody nanoprobes tailored for fluorescent cell barcoding in flow cytometry-based immunophenotyping of leukocytes is applied. A novel approach of attachment combining two fluorescent dyes on the copolymer precursor and its conjugation to antibody is employed to synthesize barcoded nanoprobes of antibody polymer dyes allowing up to six nanoprobes to be resolved in two-dimensional cytometry analysis. The major advantage of these nanoprobes is the construct design in which the selected antibody is labeled with an advanced copolymer bearing two types of fluorophores in different molar ratios. The cells after antibody recognition and binding to the target antigen have a characteristic double fluorescence signal for each nanoprobe providing a unique position on the dot plot, thus allowing antibody-based barcoding of cellular samples in flow cytometry assays. This technique is valuable for cellular assays that require low intersample variability and is demonstrated by the live cell barcoding of clinical samples with B cell abnormalities. In total, the samples from six various donors were successfully barcoded using only two detection channels. This barcoding of clinical samples enables sample preparation and measurement in a single tube.
Collapse
Affiliation(s)
- Júlia Kudláčová
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Daniela Kužílková
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - František Bárta
- R&D division, I.T.A.-Intertact s.r.o, Černokostelecká 143, Prague, 108 00, Czech Republic
| | - Naděžda Brdičková
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Adéla Vávrová
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Libor Kostka
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Ondřej Hovorka
- R&D division, I.T.A.-Intertact s.r.o, Černokostelecká 143, Prague, 108 00, Czech Republic
| | - Tomáš Kalina
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Tomáš Etrych
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| |
Collapse
|
4
|
Geyik G, Güncüm E, Işıklan N. Design and development of pH-responsive alginate-based nanogel carriers for etoposide delivery. Int J Biol Macromol 2023; 250:126242. [PMID: 37562484 DOI: 10.1016/j.ijbiomac.2023.126242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Recently, pH-responsive nanogels are playing progressively important roles in cancer treatment. The present study focuses on designing and developing pH-responsive alginate-based nanogels to achieve a controlled release of etoposide (Et) while enhancing its hydrophilicity. Alginate (ALG) is grafted with 2-hydroxypropyl methacrylamide (HPMA) through a microwave-supported method, and the chemical structure of the graft copolymer (ALG-g-PHPMA) was verified by 1H/13C NMR and FTIR techniques. The ALG-g-PHPMA and anticancer drug-loaded ALG-g-PHPMA@Et nanogels were obtained using an emulsion method, and their structures were characterized through FTIR, TG/DSC, AFM/TEM, BET, and DLS analyses. The ALG-g-PHPMA nanogels demonstrated a good drug encapsulation efficiency (79.60 %), displaying a pH-dependent release profile and an in vitro accelerated release of Et compared to the ALG nanogels. Thermal and BET analyses revealed enhanced stability, surface area, and porosity volume of the alginate nanogels. The grafting of PHPMA chains onto alginate altered the surface topology of the ALG nanogels, resulting in lower surface roughness. Furthermore, cytotoxicity tests showed the high biocompatibility of the ALG-g-PHPMA copolymer and its nanogels. The ALG-g-PHPMA@Et nanogels exhibited a higher anticancer effect on lung cancer (H1299) cells than free etoposide. These results suggest that the ALG-g-PHPMA nanogels can be applied as a pH-dependent nanoplatform for delivering anticancer drugs.
Collapse
Affiliation(s)
- Gülcan Geyik
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey; Alaca Avni Çelik Vocational School, Hitit University, Çorum, Turkey
| | - Enes Güncüm
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, 71450 Yahşihan, Kırıkkale, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450 Kırıkkale, Turkey.
| |
Collapse
|
5
|
Polymer-Antimicrobial Peptide Constructs with Tailored Drug-Release Behavior. Pharmaceutics 2023; 15:pharmaceutics15020406. [PMID: 36839728 PMCID: PMC9960778 DOI: 10.3390/pharmaceutics15020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Microbial resistance is one of the main problems of modern medicine. Recently, antimicrobial peptides have been recognized as a novel approach to overcome the microbial resistance issue, nevertheless, their low stability, toxicity, and potential immunogenic response in biological systems have limited their clinical application. Herein, we present the design, synthesis, and preliminary biological evaluation of polymer-antibacterial peptide constructs. The antimicrobial GKWMKLLKKILK-NH2 oligopeptide (PEP) derived from halictine, honey bee venom, was bound to a polymer carrier via various biodegradable spacers employing the pH-sensitive or enzymatically-driven release and reactivation of the PEP's antimicrobial activity. The antibacterial properties of the polymer-PEP constructs were assessed by a determination of the minimum inhibitory concentrations, followed by fluorescence and transmission electron microscopy. The PEP exerted antibacterial activity against both, gram-positive and negative bacteria, via disruption of the bacterial cell wall mechanism. Importantly, PEP partly retained its antibacterial efficacy against Staphylococcus epidermidis, Escherichia coli, and Acinetobacter baumanii even though it was bound to the polymer carrier. Indeed, to observe antibacterial activity similar to the free PEP, the peptide has to be released from the polymer carrier in response to a pH decrease. Enzymatically-driven release and reactivation of the PEP antimicrobial activity were recognized as less effective when compared to the pH-sensitive release of PEP.
Collapse
|
6
|
Ko JH, Forsythe NL, Gelb MB, Messina KMM, Lau UY, Bhattacharya A, Olafsen T, Lee JT, Kelly KA, Maynard HD. Safety and Biodistribution Profile of Poly(styrenyl acetal trehalose) and Its Granulocyte Colony Stimulating Factor Conjugate. Biomacromolecules 2022; 23:3383-3395. [PMID: 35767465 DOI: 10.1021/acs.biomac.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(styrenyl acetal trehalose) (pSAT), composed of trehalose side chains linked to a polystyrene backbone via acetals, stabilizes a variety of proteins and enzymes against fluctuations in temperature. A promising application of pSAT is conjugation of the polymer to therapeutic proteins to reduce renal clearance. To explore this possibility, the safety of the polymer was first studied. Investigation of acute toxicity of pSAT in mice showed that there were no adverse effects of the polymer at a high (10 mg/kg) concentration. The immune response (antipolymer antibody and cytokine production) in mice was also studied. No significant antipolymer IgG was detected for pSAT, and only a transient and low level of IgM was elicited. pSAT was also safe in terms of cytokine response. The polymer was then conjugated to a granulocyte colony stimulating factor (GCSF), a therapeutic protein that is approved by the Federal Drug Administration, in order to study the biodistribution of a pSAT conjugate. A site-selective, two-step synthesis approach was developed for efficient conjugate preparation for the biodistribution study resulting in 90% conjugation efficiency. The organ distribution of GCSF-pSAT was measured by positron emission tomography and compared to controls GCSF and GCSF-poly(ethylene glycol), which confirmed that the trehalose polymer conjugate improved the in vivo half-life of the protein by reducing renal clearance. These findings suggest that trehalose styrenyl polymers are promising for use in therapeutic protein-polymer conjugates for reduced renal clearance of the biomolecule.
Collapse
Affiliation(s)
- Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Neil L Forsythe
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Madeline B Gelb
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Kathryn M M Messina
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Uland Y Lau
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jason T Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kathleen A Kelly
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Tavares MR, Pechar M, Chytil P, Etrych T. Polymer-Based Drug-Free Therapeutics for Anticancer, Anti-Inflammatory, and Antibacterial Treatment. Macromol Biosci 2021; 21:e2100135. [PMID: 34008348 DOI: 10.1002/mabi.202100135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/05/2021] [Indexed: 01/09/2023]
Abstract
This paper summarizes the area of biomedicinal polymers, which serve as nanomedicines even though they do not contain any anticancer or antiinflammatory drugs. These polymer nanomedicines with unique design are in the literature highlighted as a novel class of therapeutics called "drug-free macromolecular therapeutics." Their therapeutic efficacy is based on the tailored multiple presentations of biologically active vectors, i.e., peptides, oligopeptides, or oligosaccharides. Thus, they enable, for example, to directly induce the apoptosis of malignant cells by the crosslinking of surface slowly internalizing receptors, or to deplete the efficacy of tumor-associated proteins. The precise biorecognition of natural binding motifs by multiple vectors on the polymer construct remains the crucial part in the designing of these drug-free nanomedicines. Here, the rationales, designs, synthetic approaches, and therapeutic potential of drug-free macromolecular therapeutics consisting of various active vectors are described in detail. Recent developments and achievements for namely B-cell lymphoma treatment, Gal-3-positive tumors, inflammative liver injury, and bacterial treatment are reviewed and highlighted. Finally, a possible future prospect within this highly exciting new field of nanomedicine research is presented.
Collapse
Affiliation(s)
- Marina Rodrigues Tavares
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Petr Chytil
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague, 6, 162 06, Czechia
| |
Collapse
|
8
|
Lei M, Chen G, Zhang M, Lei J, Li T, Li D, Zheng H. A pH-sensitive drug delivery system based on hyaluronic acid co-deliver doxorubicin and aminoferrocene for the combined application of chemotherapy and chemodynamic therapy. Colloids Surf B Biointerfaces 2021; 203:111750. [PMID: 33862573 DOI: 10.1016/j.colsurfb.2021.111750] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/14/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
Doxorubicin is a broad-spectrum antineoplastic drug used in tumor therapy, its clinical application is limited by side effects on normal tissues. In this article, a pH-responsive drug delivery system (NPs(DOX/AFc)) with co-delivers doxorubicin (DOX) and aminoferrocene (AFc) was prepared by a two-step synthesis method including the oxidation of hyaluronic acid and Schiff base reaction. NPs(DOX/AFc) can be used in combination therapy of chemodynamic therapy (CDT) and chemotherapy (CT), thus the dosage of the chemotherapeutic drug DOX was reduced. The drug release behavior of NPs(DOX/AFc) in vitro showed that acid-responsive drug releases under the endosomal/lysosomal environment were 56.5 % of DOX and 61.8 % of AFc. In vitro toxicity experiments showed that DOX and AFc had synergistic effects (CI = 0.878). The results of intracellular ROS measurement and the mitochondrial membrane potential analysis showed that in tumor cells NPs(DOX4/AFc) induced more production of reactive oxygen species and more loss of the mitochondrial membrane potential. In short, this co-delivery system based on polymer prodrugs provides a new idea for the combined application of CT and CDT.
Collapse
Affiliation(s)
- Mengheng Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Gang Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Mengyao Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiaqing Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Tingting Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Hua Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
9
|
Chytil P, Kostka L, Etrych T. HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. J Pers Med 2021; 11:115. [PMID: 33578756 PMCID: PMC7916469 DOI: 10.3390/jpm11020115] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
Collapse
Affiliation(s)
| | | | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky Sq. 2, 162 06 Prague, Czech Republic; (P.C.); (L.K.)
| |
Collapse
|
10
|
Liu J, Kotrchová L, Lécuyer T, Corvis Y, Seguin J, Mignet N, Etrych T, Scherman D, Randárová E, Richard C. Coating Persistent Luminescence Nanoparticles With Hydrophilic Polymers for in vivo Imaging. Front Chem 2020; 8:584114. [PMID: 33195077 PMCID: PMC7542242 DOI: 10.3389/fchem.2020.584114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Persistent luminescence nanoparticles (PLNPs) are innovative nanomaterials highly useful for bioimaging applications. Indeed, due to their particular optical properties, i.e., the ability to store the excitation energy before slowly releasing it for a prolonged period of time, they allow in vivo imaging without auto-fluorescence and with a high target to background ratio. However, as for most nanoparticles (NPs), without any special surface coating, they are rapidly opsonized and captured by the liver after systemic injection into small animals. To overcome this issue and prolong nanoparticle circulation in the bloodstream, a new stealth strategy was developed by covering their surface with poly(N-2-hydroxypropyl)methacrylamide (pHPMA), a highly hydrophilic polymer widely used in nanomedicine. Preliminary in vivo imaging results demonstrated the possibility of pHPMA as an alternative strategy to cover ZnGa2O4:Cr NPs to delay their capture by the liver, thereby providing a new perspective for the formulation of stealth NPs.
Collapse
Affiliation(s)
- Jianhua Liu
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, Université de Paris, Paris, France
| | - Lenka Kotrchová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Thomas Lécuyer
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, Université de Paris, Paris, France
| | - Yohann Corvis
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, Université de Paris, Paris, France
| | - Johanne Seguin
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, Université de Paris, Paris, France
| | - Nathalie Mignet
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, Université de Paris, Paris, France
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Daniel Scherman
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, Université de Paris, Paris, France
| | - Eva Randárová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czechia
| | - Cyrille Richard
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS UMR8258, Inserm U1267, Université de Paris, Paris, France
| |
Collapse
|