1
|
Ljubimov VA, Sun T, Wang J, Li L, Wang PZ, Ljubimov AV, Holler E, Black KL, Kopeček J, Ljubimova JY, Yang J. Blood-brain barrier crossing biopolymer targeting c-Myc and anti-PD-1 activate primary brain lymphoma immunity: Artificial intelligence analysis. J Control Release 2025; 381:113611. [PMID: 40088978 DOI: 10.1016/j.jconrel.2025.113611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Primary Central Nervous System Lymphoma is an aggressive central nervous system neoplasm with poor response to pharmacological treatment, partially due to insufficient drug delivery across blood-brain barrier. In this study, we developed a novel therapy for this lymphoma by combining a targeted nanopolymer treatment with an immune checkpoint inhibitor antibody (anti-PD-1). A N-(2-hydroxypropyl)methacrylamide copolymer-based nanoconjugate was designed to block tumor cell c-Myc oncogene expression by antisense oligonucleotide. Angiopep-2 peptide was conjugated to the copolymer to facilitate nanodrug crossing of the blood-brain barrier. Systemically administered polymeric nanodrug, alone or in combination with immune checkpoint inhibitor antibody anti-PD-1, was tested in syngeneic mouse model of A20 intracranial brain lymphoma. There was no significant survival difference between saline- and free anti-PD-1-treated groups. However, significant survival advantage vs. saline was observed upon treatment with nanodrug bearing Angiopep-2, H6 (6 histidines for endosome escape), and c-Myc antisense alone and especially when it was combined with anti-PD-1 antibody. Animal survival after combined treatment was also significantly increased vs. free anti-PD-1. Artificial Intelligence-assisted analysis of gene expression database after RNA-seq of tumors was used to find novel immune pathways, molecular targets and the most effective multifunctional drugs together with future drug prediction for brain lymphoma in vivo model. Spectral flow cytometry and RNA-seq analysis revealed a robust activation of tumor infiltrating T lymphocytes with enhanced interferon γ signaling and polarization to M1-type macrophages in treated tumors, which was confirmed by immunofluorescence staining. In summary, a new effective blood-brain barrier crossing nano immuno therapeutic system was developed that effectively blocked tumor c-Myc acting in combination with immune checkpoint inhibitor anti-PD-1 to treat primary brain lymphoma. The treatment improved survival of tumor-bearing animals through activation of both the adaptive and innate immune responses.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States
| | - Jiawei Wang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Lian Li
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States
| | - Paul Z Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Alexander V Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States; Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States; Institut für Biophysik und Physikalische Biochemie Universität Regensburg, D-93040 Regensburg, Germany
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, United States; Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Jindřich Kopeček
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Julia Y Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, United States.
| | - Jiyuan Yang
- Department of Molecular Pharmaceutics/CCCD, University of Utah, 20 S 2030 E, Salt Lake City, UT 84112, United States.
| |
Collapse
|
2
|
Li J, Al Faruque H, Li S, Sima M, Sborov D, Hu-Lieskovan S, Werner T, Kopeček J, Yang J. PD-L1 targeted antibody-polymer-Epirubicin conjugate prolongs survival in a preclinical murine model of advanced ovarian cancer. J Control Release 2025; 382:113682. [PMID: 40185333 DOI: 10.1016/j.jconrel.2025.113682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Following successful design of polymer enhanced rituximab-epirubicin (EPI) conjugates targeted to non-Hodgkin lymphoma (Zhang et al. 2017), we developed U6244-051 that consists of anti-PD-L1 antibody (αPD-L1) and semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-epirubicin (EPI) conjugates (ST-P-EPI); the latter is attached to αPD-L1 via Cu-free azide/alkyne cycloaddition. This new polymer-enhanced antibody-drug conjugate (pADC) not only exhibits a high drug-to-antibody ratio (DAR ∼ 30-40) but also integrates immune checkpoint blockade with long-lasting immunogenic anticancer chemotherapy, providing an innovative chemo-immuno combination modality. The biological properties of U6244-051 were evaluated using ID8-Luc murine ovarian cancer cells in vitro and in vivo. In vitro, U6244-051 treatment induced immunomodulatory changes, including upregulation of calreticulin, PD-L1, and MHC I, suggesting enhanced tumor cell visibility to the immune system. In vivo efficacy was assessed in a syngeneic murine model (C57BL/6J mice inoculated with 5 × 106 ID8-Luc cells/mouse). U6244-051 treatment resulted in 100 % survival at day 100, despite initiation at an advanced disease stage. Treatment modulated the tumor immune microenvironment by reducing immunosuppressive populations (TAMs and MDSCs) and enhancing T cell recruitment and activation. A decrease in PD-L1 expression and upregulation of MHC I correlated with enhanced immune-mediated tumor clearance. Additionally, reduced Treg levels and increased CD8+ T cell activation contributed to a more effective antitumor response. Repeated dosing amplified immunomodulatory effects, leading to durable immunity. These results highlight U6244-051 as a next-generation pADC with high translational potential, offering enhanced efficacy and reduced on-target, off-tumor toxicity.
Collapse
Affiliation(s)
- Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hasan Al Faruque
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Shannuo Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Monika Sima
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Siwen Hu-Lieskovan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Theresa Werner
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Liu Y, Zhang J, Lai C, Wang W, Huang Y, Bao X, Yan H, Sun X, Liu Q, Chen D, Dai X, Qian X, Zhao P. Injectable celastrol-loading emulsion hydrogel for immunotherapy of low-immunogenic cancer. J Nanobiotechnology 2025; 23:183. [PMID: 40050985 PMCID: PMC11887069 DOI: 10.1186/s12951-025-03154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
Immunotherapy, exemplified by immune checkpoint blockade (ICB), has been extensively employed in antitumor treatments. Nevertheless, its efficacy in addressing low-immunogenic tumors has not yielded satisfactory results, primarily due to the depletion and inadequate infiltration of effector T cells within the tumor microenvironment (TME). Here, we construct an injectable water-in-oil emulsion hydrogel to load clinically used Celastrol (Gel@Cel), which addresses the limitations of Cel's hydrophobicity. Cel can both inhibit tumor cell proliferation and promote tumor cell apoptosis, while simultaneously inducing immunogenic cell death, through activation of the AKT and MAPK pathways. In a model of clinically refractory hepatocellular carcinoma with malignant ascites, intraperitoneal administration of Gel@Cel significantly inhibits tumor progression and activates antitumor immune effects through lipase-controlled release of Cel, as compared to free Cel. Intriguingly, the Gel@Cel induces the activation of dendritic cells, resulting in the infiltration of cytotoxic T cells in the TME of ascites. Furthermore, the administration of Cel increases the expression of programmed cell death protein ligand-1 (PD-L1) in tumor cells. Moreover, combining the PD-1 antibody (αPD-1) with Gel@Cel further enhances the antitumor effect and amplifies the immune activation. In conclusion, Gel@Cel exhibits promising therapeutic potential in the treatment of low-immunogenic tumors, especially when combined with ICB therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Jia Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
- College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Wenjun Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yangyue Huang
- Department of Hepatobiliary Pancreatic Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Haimeng Yan
- College of Medicine, Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China
| | - Xuqi Sun
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China
| | - Qiqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Xinyu Qian
- Department of Medical Oncology, Hangzhou Cancer Hospital, Hangzhou, 310002, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, #79 Qingchun Road, Hangzhou, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Kopeček J. Hydrophilic biomaterials: From crosslinked and self-assembled hydrogels to polymer-drug conjugates and drug-free macromolecular therapeutics. J Control Release 2024; 373:1-22. [PMID: 38734315 PMCID: PMC11384549 DOI: 10.1016/j.jconrel.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
This "Magnum Opus" accentuates my lifelong belief that the future of science is in the interdisciplinary approach to hypotheses formulation and problem solving. Inspired by the invention of hydrogels and soft contact lenses by my mentors, my six decades of research have continuously proceeded from the synthesis of biocompatible hydrogels to the development of polymer-drug conjugates, then generation of drug-free macromolecular therapeutics (DFMT) and finally to multi-antigen T cell hybridizers (MATCH). This interdisciplinary journey was inspiring; the lifetime feeling that one is a beginner in some aspects of the research is a driving force that keeps the enthusiasm high. Also, I wanted to illustrate that systematic research in one wide area can be a life-time effort without the need to jump to areas that are temporarily en-vogue. In addition to generating general scientific knowledge, hydrogels from my laboratory have been transferred to the clinic, polymer-drug conjugates to clinical trials, and drug-free macromolecular systems have an excellent potential for personalizing patient therapies. There is a limit to life but no limit to imagination. I anticipate that systematic basic research will contribute to the expansion of our knowledge and create a foundation for the design of new paradigms based on the comprehension of mechanisms of physiological processes. The emerging novel platform technologies in biomaterial-based devices and implants as well as in personalized nanomedicines will ultimately impact clinical practice.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Center for Controlled Chemical Delivery, Department of Molecular Pharmaceutics, Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
5
|
Zhou M, Liu C, Li B, Li J, Zhang P, Huang Y, Li L. Cell surface patching via CXCR4-targeted nanothreads for cancer metastasis inhibition. Nat Commun 2024; 15:2763. [PMID: 38553476 PMCID: PMC10980815 DOI: 10.1038/s41467-024-47111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
The binding of therapeutic antagonists to their receptors often fail to translate into adequate manipulation of downstream pathways. To fix this 'bug', here we report a strategy that stitches cell surface 'patches' to promote receptor clustering, thereby synchronizing subsequent mechano-transduction. The "patches" are sewn with two interactable nanothreads. In sequence, Nanothread-1 strings together adjacent receptors while presenting decoy receptors. Nanothread-2 then targets these decoys multivalently, intertwining with Nanothread-1 into a coiled-coil supramolecular network. This stepwise actuation clusters an extensive vicinity of receptors, integrating mechano-transduction to disrupt signal transmission. When applied to antagonize chemokine receptors CXCR4 expressed in metastatic breast cancer of female mice, this strategy elicits and consolidates multiple events, including interception of metastatic cascade, reversal of immunosuppression, and potentiation of photodynamic immunotherapy, reducing the metastatic burden. Collectively, our work provides a generalizable tool to spatially rearrange cell-surface receptors to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Minglu Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Hu J, Mao Z, Lu Y, Chen Q, Xia J, Deng H, Chen H. PD-L1 exosomes electrochemical sensor based on coordination of AgNCs and Zr 4+: Multivalent peptide enhancing target capture efficiency and antifouling performance. Biosens Bioelectron 2023; 235:115379. [PMID: 37207581 DOI: 10.1016/j.bios.2023.115379] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Programmed death ligand 1 (PD-L1) exosomes are important biomarkers of immune activation in the initial stages of treatment and can predict clinical responses to PD-1 blockade in various cancer patients. However, traditional PD-L1 exosome bioassays face challenges such as high interface fouling in complex detection environments, limited detection specificity, and poor clinical serum applicability. Inspired by the multi-branched structure of trees, a biomimetic tree-like multifunctional antifouling peptide (TMAP)-assisted electrochemical sensor was developed for high-sensitivity exosomes detection. Multivalent interaction of TMAP significantly enhances the binding affinity of PD-L1 exosomes, thanks to the designed branch antifouling sequence, TMAPs antifouling performance is further improved. The addition of Zr4+ forms coordination bonds with the exosome's lipid bilayer phosphate groups to achieve highly selective and stable binding without interference from protein activity. The specific coordination between AgNCs and Zr4+ contributes to a dramatic change in the electrochemical signals, and lowing detection limit. The designed electrochemical sensor exhibited excellent selectivity and a wide dynamic response within the PD-L1 exosome concentration range from 78 to 7.8 × 107 particles/mL. Overall, the multivalent binding ability of TMAP and the signal amplification characteristics of AgNCs have a certain driving role in achieving clinical detection of exosomes.
Collapse
Affiliation(s)
- Junjie Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yongkai Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Junjie Xia
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hui Deng
- Department of Dermatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
7
|
Peritumoral scaffold neutralizes tumor pH for chemotherapy sensitization and metastasis inhibition. J Control Release 2022; 352:747-758. [PMID: 36356942 DOI: 10.1016/j.jconrel.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/10/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
The abnormal metabolism of rapidly growing tumors can create an acidic tumor microenvironment (TME) that renders cancer cells resistant to chemotherapy and further facilitates endothelial-to-mesenchymal transition (EMT) progress to promote metastasis. Here, we developed a combination strategy consisting of (1) peritumorally injected scaffold that alleviates TME acidosis, and (2) intravenously injected nanoparticles that delivers anti-cancer agents to tumor. Concurrent treatment with these two drug delivery systems profoundly delayed the growth of primary tumor and reduced the spontaneous metastasis to lung in an orthotopic breast cancer mouse model. Mechanism studies both in vitro and in vivo further revealed that neutralization of TME pH by the hydrogel scaffold sensitized cancer cells to nanoparticle-based chemotherapy, thereby strengthening the cytotoxicity against tumor growth; In parallel, reversal of tumor acidity downregulated various pro-metastatic proteins intratumorally to block the EMT progress, thereby reducing the metastatic potential of cancer cells. This work provided proof-of-concept demonstration that chemotherapy sensitization and EMT suppression could be synchronized by the modulation of TME pH, which may be potentially beneficial for simultaneous inhibition of tumor growth and cancer metastasis.
Collapse
|
8
|
Li J, Yan Y, Zhang P, Ding J, Huang Y, Jin Y, Li L. A cell-laden hydrogel as prophylactic vaccine and anti-PD-L1 amplifier against autologous tumors. J Control Release 2022; 351:231-244. [PMID: 36122899 DOI: 10.1016/j.jconrel.2022.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Immune checkpoint blockade (ICB) can elicit anti-cancer response against tumors growing at normal organs while sparing adjacent tissues. However, many orthotopic tumors respond poorly to ICB therapy due to the lack of pre-existing immune effector cells. Here, we describe a vaccine strategy that induces protective immunity and benefits ICB therapy. An injectable hydrogel platform that forms scaffold subcutaneously was applied to deliver autologous cancer cells undergoing oncolysis (ACCO) as immunogenic antigen source and toll-like receptor 9 agonists (CpG) as additional adjuvant. When administered as a prophylactic, the hydrogel-based vaccine, denoted as (ACCO+CpG)@Gel, successfully built a durable and tumor antigen-specific immune memory against subsequent challenges with orthotopic engraftment of autologous tumors including melanoma, colon carcinoma, and lung carcinoma. Although the vaccination did not completely prevent tumor occurrence, tumors orthotopically established in vaccinated mice acquired significant enhancement in tumor-infiltrating CD8+ T cells and intratumoral PD-L1 expression, which ameliorated the immune status and rendered the originally irresponsive tumors responsible to anti-PD-L1 therapy. Further treatment with PD-L1 blockade therapy efficiently delayed the tumor growth and prolonged the survival of these orthotopic cancer models. Thus, without the need for precisely delivering immunoactivatory agents to tumor or locally remodeling tumor microenvironment, "priming" intractable or inaccessible tumors for subsequent ICB therapy could be achieved by prophylactic vaccination with (ACCO+CpG)@Gel. These findings highlighted (ACCO+CpG)@Gel as a generalized framework of protective vaccine strategy that could be broadly applicable to potentiate ICB therapy against multiple types of orthotopic tumors growing in different regions.
Collapse
Affiliation(s)
- Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junzhou Ding
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yun Jin
- Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu 610072, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Li J, Zhang P, Zhou M, Liu C, Huang Y, Li L. Trauma-Responsive Scaffold Synchronizing Oncolysis Immunization and Inflammation Alleviation for Post-Operative Suppression of Cancer Metastasis. ACS NANO 2022; 16:6064-6079. [PMID: 35344338 DOI: 10.1021/acsnano.1c11562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor surgery can create an inflammatory trauma to aggravate residual tumor "seed" to colonize pre-metastatic niches (PMNs) "soil" at secondary sites, thereby promoting post-operative metastasis. However, two-pronged strategies for post-surgical elimination of asynchronous "seeds" and "soil" at different regions are currently lacking. Here, we have designed a hydrogel that can be injected into a resection cavity, where it immediately forms a scaffold and gradually degrades responding to enriched reactive oxygen species at adjacent trauma for local delivery and on-demand release of autologous cancer cells succumbing to oncolysis (ACCO) and anti-inflammatory agent. The autologous cell source self-provides a whole array of tumor-associated antigens, and the oncolysis orchestration of a subcellular cascade confers a self-adjuvanting property, together guaranteeing high immunogenicity of the ACCO vaccine that enables specific antitumor immunization. In parallel, inflammation alleviation exerted bidirectional functions to reshape the local immune landscape and resuscitate ACCO, leading to the eradication of residual tumor "seeds" while simultaneously intercepting the "seed-soil" crosstalk to normalize distant lung leading to regression of pre-existing PMN "soil". As a result, regional and metastatic recurrence were completely thwarted. Together, this framework synchronizing oncolysis immunization and inflammation alleviation provides an effective option for post-operative suppression of metastasis.
Collapse
Affiliation(s)
- Junlin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ping Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Minglu Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|