1
|
Asoudeh M, Nguyen N, Raith M, Denman DS, Anozie UC, Mokhtarnejad M, Khomami B, Skotty KM, Isaac S, Gebhart T, Vaigneur L, Gelgie A, Dego OK, Freeman T, Beever J, Dalhaimer P. PEGylated nanoparticles interact with macrophages independently of immune response factors and trigger a non-phagocytic, low-inflammatory response. J Control Release 2024; 366:282-296. [PMID: 38123071 PMCID: PMC10922886 DOI: 10.1016/j.jconrel.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Poly-ethylene-glycol (PEG)-based nanoparticles (NPs) - including cylindrical micelles (CNPs), spherical micelles (SNPs), and PEGylated liposomes (PLs) - are hypothesized to be cleared in vivo by opsonization followed by liver macrophage phagocytosis. This hypothesis has been used to explain the rapid and significant localization of NPs to the liver after administration into the mammalian vasculature. Here, we show that the opsonization-phagocytosis nexus is not the major factor driving PEG-NP - macrophage interactions. First, mouse and human blood proteins had insignificant affinity for PEG-NPs. Second, PEG-NPs bound macrophages in the absence of serum proteins. Third, lipoproteins blocked PEG-NP binding to macrophages. Because of these findings, we tested the postulate that PEG-NPs bind (apo)lipoprotein receptors. Indeed, PEG-NPs triggered an in vitro macrophage transcription program that was similar to that triggered by lipoproteins and different from that triggered by lipopolysaccharide (LPS) and group A Streptococcus. Unlike LPS and pathogens, PLs did not increase transcripts involved in phagocytosis or inflammation. High-density lipoprotein (HDL) and SNPs triggered remarkably similar mouse bone-marrow-derived macrophage transcription programs. Unlike opsonized pathogens, CNPs, SNPs, and PLs lowered macrophage autophagosome levels and either reduced or did not increase the secretion of key macrophage pro-inflammatory cytokines and chemokines. Thus, the sequential opsonization and phagocytosis process is likely a minor aspect of PEG-NP - macrophage interactions. Instead, PEG-NP interactions with (apo)lipoprotein and scavenger receptors appear to be a strong driving force for PEG-NP - macrophage binding, entry, and downstream effects. We hypothesize that the high presence of these receptors on liver macrophages and on liver sinusoidal endothelial cells is the reason PEG-NPs localize rapidly and strongly to the liver.
Collapse
Affiliation(s)
- Monireh Asoudeh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicole Nguyen
- School of Medical Laboratory Science, University of Tennessee Medical Center, Knoxville, TN 37996, USA
| | - Mitch Raith
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Desiree S Denman
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Uche C Anozie
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Mahshid Mokhtarnejad
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Kaitlyn M Skotty
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Sami Isaac
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Aga Gelgie
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Trevor Freeman
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Jon Beever
- Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
2
|
Dong Q, Han D, Li B, Yang Y, Ren L, Xiao T, Zhang J, Li Z, Yang H, Liu H. Bionic lipoprotein loaded with chloroquine-mediated blocking immune escape improves antitumor immunotherapy. Int J Biol Macromol 2023; 240:124342. [PMID: 37030459 DOI: 10.1016/j.ijbiomac.2023.124342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
Tumor immunotherapy hold great promise for eradicating tumors. However, immune escape and the immunosuppressive microenvironment of tumor usually limit the efficiency of tumor immunotherapy. Therefore, simultaneously blocking immune escape and improving immunosuppressive microenvironment are the current problems to be solved urgently. Among them, CD47 on cancer cells membrane could bind to signal regulatory protein α (SIRPα) on macrophages membrane and sent out "don't eat me" signal, which was an important pathway of immune escape. The large number of M2-type macrophages in tumor microenvironment was a significant factor contributing to the immunosuppressive microenvironment. Here, we present a drug loading system for enhancing cancer immunotherapy, comprising CD47 antibody (aCD47) and chloroquine (CQ) with Bionic lipoprotein (BLP) carrier (BLP-CQ-aCD47). On the one hand, as drug delivery carrier, BLP could allow CQ to be preferentially taken up by M2-type macrophages, thereby efficiently polarized M2-type tumor-promoting cells into M1-type anti-tumor cells. On the other hand, blocking CD47 from binding to SIRPα could block the "don't eat me" signal, and improve the phagocytosis of macrophages to tumor cells. Taken together, BLP-CQ-aCD47 could block immune escape, improve immunosuppressive microenvironment of tumor, and induce a strong immune response without substantial systemic toxicity. Therefore, it provides a new idea for tumor immunotherapy.
Collapse
Affiliation(s)
- Qing Dong
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Dandan Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Baoku Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| | - Yang Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Lili Ren
- Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Guangdong 510515, China
| | - Hua Yang
- Affiliated Hospital of Hebei University, Baoding 071000, China.
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Raith M, Nguyen N, Kauffman SJ, Kang N, Mays J, Dalhaimer P. Obesity and inflammation influence pharmacokinetic profiles of PEG-based nanoparticles. J Control Release 2023; 355:434-445. [PMID: 36758834 PMCID: PMC10006354 DOI: 10.1016/j.jconrel.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Most patients that will be treated with soft nanoparticles (NPs) will be obese. Yet, NP testing, which begins with pharmacokinetic (PK) and toxicity studies, is carried out almost exclusively in lean rodents having healthy livers and low inflammation. To address this knowledge gap, we determined the PK and toxicity of tail-vein-injected, PEG-based cylindrical nanoparticles (CNPs) and PEGylated liposomes (PLs) as a function of obesity, liver health, and inflammation in leptin-deficient ob/ob and wild-type C57BL/6 J mice. CNPs localized faster to obese livers than to healthy livers within 24 h of injection. PLs localized faster to obese livers than to healthy livers but only 30 min post-injection. Afterwards PL localization to lean livers was higher than localization to obese livers. Overall, PL liver signal peaked ∼6 h post-injection in lean mice, ∼24 h post-injection in heavy mice, and ∼ 48 h post-injection in obese mice. CNPs and PLs were non-toxic to mouse livers as assessed by histology; they reduced many cytokine and chemokine levels that were elevated by obesity. Liver macrophage depletion reduced CNP and PL liver localization as expected; liver sinusoidal endothelial cell (LSEC) depletion reduced PL liver localization but surprisingly increased CNP liver localization. The intensity of RAW264.7 macrophages was higher after CNP incubations than with PL incubations; conversely, the intensity of LSECs was higher after PL incubations than with CNP incubations. This shows the potential for key differences in NP-liver interactions. Triggering inflammation by administering lipopolysaccharide (LPS) to mice increased CNP liver localization but decreased PL liver localization. The results show that obesity and inflammation in a mouse model and in vitro affect soft PEG-based NP interaction with macrophages and LSECs, but also that these NPs can reduce pro-inflammatory pathways increased by obesity.
Collapse
Affiliation(s)
- Mitch Raith
- Department of Chemical and Biomolecular Engineering, Knoxville, TN 37996, United States of America
| | - Nicole Nguyen
- Department of Biochemistry, Cellular, and Molecular Biology, Knoxville, TN 37996, United States of America
| | - Sarah J Kauffman
- Department of Microbiology, Knoxville, TN 37996, United States of America
| | - Namgoo Kang
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Jimmy Mays
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, Knoxville, TN 37996, United States of America; Department of Biochemistry, Cellular, and Molecular Biology, Knoxville, TN 37996, United States of America.
| |
Collapse
|
4
|
Dalhaimer P, Florey B, Isaac S. Interactions of Apolipoproteins with Lipid-Based Nanoparticles. ACS NANO 2023; 17:837-842. [PMID: 36622840 DOI: 10.1021/acsnano.2c10790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Serum proteins bind and form a dynamic protein corona around nanoparticles (NPs) that have been injected into the mammalian vasculature. Several fundamental studies have shown that apolipoproteins are prominent components of the NP corona. Since apolipoproteins control the distribution of lipoproteins, they may also control the distribution of NPs. Indeed, apolipoprotein affinity for NPs has been recently taken advantage of to deliver CRISPR reagents encapsulated in NPs to cells that express particular lipoprotein receptors. In this scenario, an apolipoprotein binds an NP and the resulting apolipoprotein-NP complex binds a cell that expresses the (apo)lipoprotein receptor. But the NP will be diverted from the target cell if it does not express the (apo)lipoprotein receptor. This may hamper NP treatment of diseases. Therefore, we must understand the kinetics of apolipoprotein-NP affinity and how apolipoprotein-NP interactions affect NP biodistribution. In this Perspective, we discuss the evolving topic of apolipoprotein-NP interactions, which is of great interest for all NP-based disease treatments. Many properties of apolipoprotein-NP complexes are yet to be determined and will have a significant impact on NP efficacy for many NP-based treatments in animal models and in the clinic.
Collapse
Affiliation(s)
- Paul Dalhaimer
- Department of Chemical and Biomolecular EngineeringUniversity of Tennessee, Knoxville, Tennessee37996, United States
| | - Brice Florey
- Department of Chemical and Biomolecular EngineeringUniversity of Tennessee, Knoxville, Tennessee37996, United States
| | - Sami Isaac
- Department of Chemical and Biomolecular EngineeringUniversity of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
5
|
Dalhaimer P, Blankenship KR. All-Atom Molecular Dynamics Simulations of Polyethylene Glycol (PEG) and LIMP-2 Reveal That PEG Penetrates Deep into the Proposed CD36 Cholesterol-Transport Tunnel. ACS OMEGA 2022; 7:15728-15738. [PMID: 35571795 PMCID: PMC9096817 DOI: 10.1021/acsomega.2c00667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene glycol (PEG) is the most prominent clinically administered synthetic polymer. For example, over 300 million people have been administered PEGylated liposome vaccines for SARS-CoV-2. PEG is used in mammals because it has low affinity for most proteins and vice versa. However, this makes it difficult to study the few interactions with proteins that PEG has. On the atomistic level, there are two PEG-protein structures: (1) PEG-LIMP-2 and (2) PEG-αPEG. In the first structure, two monomers of a 1.5 kDa PEG polymer (PEG2) had electron density deep in the postulated cholesterol transport tunnel of LIMP-2, a lysosomal cholesterol transport protein and member of the CD36 super family of proteins. It is unclear how PEG entered this tunnel. In the second structure, PEG wrapped around a surface-exposed tryptophan on its antibody. Since tryptophan is a rare residue, it is unclear if this PEG-Trp interaction is ubiquitous. To gain deeper mechanistic insight into PEG-protein interactions, we surrounded the LIMP-2 apo structure with 13 PEG chains of 10 monomers each (PEG10), water, and KCl and simulated the system using NAMD. One of the 13 chains penetrated LIMP-2 and came within 3 Å of PEG2. This was possible because of the strong hydrogen bonding between multiple oxygens along PEG10 and Arg192 but, most importantly, the clamping of the tertiary structure on PEG10. Clamping stabilized the movements of PEG10, and the leading oxygen of PEG10 was able to penetrate LIMP-2 and head toward to the position occupied by PEG2. Phe383 appears to act as a gate for objects to move through this cavity, which continues to the basal/membrane side of LIMP-2. Of all residues, PEG10 molecules had the most sustained interactions with lysine and arginine because of their strong hydrogen-bonding capabilities. These results show that the oxygens of PEG bind residues with high hydrogen bonding capabilities. However, the PEG-protein interaction is likely to be transient unless groups of resides can clamp down on PEG or a cavity that at least part of the PEG chain can enter is in close proximity to lower PEG's entropy.
Collapse
Affiliation(s)
- Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, Department of Biochemistry,
Cellular,
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kate R. Blankenship
- Department of Chemical and Biomolecular Engineering, Department of Biochemistry,
Cellular,
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
6
|
Su X, Ramírez-Escudero M, Sun F, van den Dikkenberg JB, van Steenbergen MJ, Pieters RJ, Janssen BJC, van Hasselt PM, Hennink WE, van Nostrum CF. Internalization and Transport of PEGylated Lipid-Based Mixed Micelles across Caco-2 Cells Mediated by Scavenger Receptor B1. Pharmaceutics 2021; 13:2022. [PMID: 34959304 PMCID: PMC8703698 DOI: 10.3390/pharmaceutics13122022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to get insight into the internalization and transport of PEGylat-ed mixed micelles loaded by vitamin K, as mediated by Scavenger Receptor B1 (SR-B1) that is abundantly expressed by intestinal epithelium cells as well as by differentiated Caco-2 cells. Inhibition of SR-B1 reduced endocytosis and transport of vitamin-K-loaded 0%, 30% and 50% PEGylated mixed micelles and decreased colocalization of the micelles with SR-B1. Confocal fluorescence microscopy, fluorescence-activated cell sorting (FACS) analysis, and surface plasmon resonance (SPR) were used to study the interaction between the mixed micelles of different compositions (varying vitamin K loading and PEG content) and SR-B1. Interaction of PEGylated micelles was independent of the vitamin K content, indicating that the PEG shell prevented vitamin K exposure at the surface of the micelles and binding with the receptor and that the PEG took over the micelles' ability to bind to the receptor. Molecular docking calculations corroborated the dual binding of both vita-min K and PEG with the binding domain of SR-B1. In conclusion, the improved colloidal stability of PEGylated mixed micelles did not compromise their cellular uptake and transport due to the affinity of PEG for SR-B1. SR-B1 is able to interact with PEGylated nanoparticles and mediates their subsequent internalization and transport.
Collapse
Affiliation(s)
- Xiangjie Su
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Mercedes Ramírez-Escudero
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.R.-E.); (B.J.C.J.)
| | - Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Joep B. van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Mies J. van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Roland J. Pieters
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands;
| | - Bert J. C. Janssen
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.R.-E.); (B.J.C.J.)
| | - Peter M. van Hasselt
- Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands;
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (X.S.); (F.S.); (J.B.v.d.D.); (M.J.v.S.); (W.E.H.)
| |
Collapse
|