1
|
Ding Q, Rha H, Yoon C, Kim Y, Hong SJ, Kim HJ, Li Y, Lee MH, Kim JS. Regulated cell death mechanisms in mitochondria-targeted phototherapy. J Control Release 2025; 382:113720. [PMID: 40228665 DOI: 10.1016/j.jconrel.2025.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Phototherapy, comprising photodynamic therapy (PDT) and photothermal therapy (PTT), was first introduced over a century ago and has since evolved into a versatile cancer treatment modality. While numerous studies have explored regulated cell death (RCD) mechanisms induced by phototherapy, a comprehensive synthesis centered on mitochondria-targeted phototherapeutic strategies and agents as mediators of RCD is still lacking. This review provides a systematic and in-depth analysis of recent advances in mitochondria-centered mechanisms driving phototherapy-induced death pathways, including apoptosis, autophagy, pyroptosis, immunogenic cell death, ferroptosis, and cuproptosis. We highlight the critical role of mitochondria as central regulators of these death pathways in response to phototherapeutic interventions. Moreover, we discuss fundamental design strategies for developing precision-targeted phototherapeutic materials to enhance efficacy and minimize off-target effects. Finally, we identify prevailing challenges and propose future research directions to address these hurdles, paving the way for next-generation mitochondria-targeted phototherapy as a highly effective strategy for cancer management.
Collapse
Affiliation(s)
- Qihang Ding
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Changyu Yoon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - So Jin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hui Ju Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yang Li
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Min Hee Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Yu K, Fu L, Chao Y, Zeng X, Zhang Y, Chen Y, Gao J, Lu B, Zhu H, Gu L, Xiong X, Hu Z, Hong X, Xiao Y. Deep Learning Enhanced Near Infrared-II Imaging and Image-Guided Small Interfering Ribonucleic Acid Therapy of Ischemic Stroke. ACS NANO 2025; 19:10323-10336. [PMID: 40042964 DOI: 10.1021/acsnano.4c18035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Small interfering RNA (siRNA) targeting the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has emerged as a promising therapeutic strategy to mitigate infarct volume and brain injury following ischemic stroke. However, the clinical translation of siRNA-based therapies is significantly hampered by the formidable blood-brain barrier (BBB), which restricts drug penetration into the central nervous system. To address this challenge, we have developed an innovative long-circulating near-infrared II (NIR-II) nanoparticle platform YWFC NPs, which is meticulously engineered to enhance BBB transcytosis and enable efficient delivery of siRNA targeting NLRP3 (siNLRP3@YWFC NPs) in preclinical models of ischemic stroke. Furthermore, we integrated advanced deep learning neural network algorithms to optimize in vivo NIR-II imaging of the cerebral infarct penumbra, achieving an improved signal-to-background ratio at 72 h poststroke. In vivo studies employing middle cerebral artery occlusion (MCAO) mouse models demonstrated that image-guided therapy with siNLRP3@YWFC NPs, guided by prolonged NIR-II imaging, resulted in significant therapeutic benefits.
Collapse
MESH Headings
- Animals
- Mice
- RNA, Small Interfering/therapeutic use
- RNA, Small Interfering/genetics
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/administration & dosage
- Ischemic Stroke/diagnostic imaging
- Ischemic Stroke/therapy
- Ischemic Stroke/drug therapy
- Deep Learning
- Nanoparticles/chemistry
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Blood-Brain Barrier/metabolism
- Mice, Inbred C57BL
- Male
- Disease Models, Animal
- Infrared Rays
- Infarction, Middle Cerebral Artery
Collapse
Affiliation(s)
- Kai Yu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lidan Fu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xiaodong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yonggang Zhang
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Chen
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Jialu Gao
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Binchun Lu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Hua Zhu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lijuan Gu
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- National Key Laboratory of Kidney Diseases, Beijing 100853, China
| | - Xuechuan Hong
- Department of Neurosurgery, Central Laboratory, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
4
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
5
|
Zan Q, Fan L, Lu W, Zhang Y, Huang Y, Yu X, Han Y, Zhang R, Dong C, Shuang S. Early Diagnosis of Liver Injury and Real-Time Evaluation of Photothermal Therapy Efficacy with a Viscosity-Responsive NIR-II Smart Molecule. Adv Healthc Mater 2025; 14:e2402614. [PMID: 39440592 DOI: 10.1002/adhm.202402614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The early diagnosis of liver injury and in situ real-time monitoring of tumor therapy efficacy are important for the enhancement of personalized precision therapy but remain challenging due to the lack of reliable in vivo visualization tools with integrated diagnostic, therapeutic, and efficacy monitoring functions. Herein, a smart second near-infrared window (NIR-II) molecule (BITX-OH) is rationally designed for diagnosis and therapy by vinyl-bridging hydroxyl diphenyl xanthine unit and benzo[cd]indolium skeleton. BITX-OH exhibits high selectivity and sensitivity toward viscosity, exhibiting a significant enhancement (1167-fold) in NIR-II fluorescence at 962 nm. With the assistance of BITX-OH and NIR-II fluorescence imaging, early diagnosis and therapeutic evaluation of non-alcoholic fatty liver (NAFL), as well as in-site real-time monitoring of hepatic fibrosis (HF) in live mice have been successfully achieved, which is at least several hours earlier than the typical clinical test. Notably, BITX-OH displays excellent photothermal conversion efficiency when exposed to an 808 nm laser, which can induce tumor ablation and increase viscosity, thereby enhancing NIR-II fluorescence for the real-time evaluation of photothermal therapy (PTT). This viscosity-based "self-monitoring" strategy provides a convenient and reliable platform for timely obtaining therapeutic feedback to avoid over- or under-treatment, thus enabling personalized precision therapy.
Collapse
Affiliation(s)
- Qi Zan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Li Fan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan, 030032, China
| | - Ruiping Zhang
- Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
6
|
Li H, Li P, Zhang J, Lin Z, Bai L, Shen H. Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment. NANOSCALE 2024; 16:21697-21730. [PMID: 39508492 DOI: 10.1039/d4nr03058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Achieving accurate and efficient tumor imaging is crucial in the field of tumor treatment, as it facilitates early detection and precise localization of tumor tissues, thereby informing therapeutic strategies and surgical interventions. The optical imaging technology within the second near-infrared (NIR-II) window has garnered significant interest for its remarkable benefits, such as enhanced tissue penetration depth, superior signal-to-background ratio (SBR), minimal tissue autofluorescence, reduced photon attenuation, and lower tissue scattering. This review explained the design and optimization strategies of nano-agents responsive to the NIR-II window, such as single-walled carbon nanotubes, quantum dots, lanthanum-based nanomaterials, and noble metal nanomaterials. These nano-agents enable non-invasive, deep-tissue imaging with high spatial resolution in the NIR-II window, and their superior optical properties significantly improve the accuracy, efficiency, and versatility of imaging-guided tumor treatments. And we discussed the characteristics and advantages of fluorescence imaging (FL)/photoacoustic imaging (PA) in NIR-II window, providing a comprehensive overview of the latest research progress of different nano-agents in FL/PA imaging-guided tumor therapy. Furthermore, we exhaustively reviewed the latest applications of multifunctional nano-phototherapy technologies carried out by NIR-II light including photothermal therapy (PTT), photodynamic therapy (PDT), and combined modalities like photothermal-chemodynamic therapy (PTT-CDT), photothermal-chemotherapy (PTT-CT), and photothermal- immunotherapy (PTT-IO). These imaging-guided integrated tumor therapy approaches within the NIR-II window have gradually matured over the past decade and are expected to become a safe and effective non-invasive tumor treatment. Finally, we outlined the prospects and challenges of development and innovation of the NIR-II integrated diagnosis and therapy nanoplatform. This review aims to provide insightful perspectives for future advancements in NIR-II optical tumor diagnosis and integrated treatment platforms.
Collapse
Affiliation(s)
- Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lintao Bai
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Wei Q, Jia H, Zhao H, Tang W, Duan X. A novel water-soluble NIR-II cyanine dye for fast targeted through-skull fluorescence imaging of orthotopic glioma. Chem Commun (Camb) 2024. [PMID: 39552234 DOI: 10.1039/d4cc05176a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A novel NIR-II cyanine dye denoted as Sulfo-1100 was designed and synthesized to realize high-fidelity in vivo imaging of orthotopic glioma. The dye in FBS (10%) and PBS showed NIR-I absorptions (866 nm and 776 nm, respectively) and NIR-II fluorescence emissions (1114 nm and 1120 nm). To realize specific imaging for orthotopic glioma in vivo, Sulfo-1100 was assembled with holo-Tf to form hT-Sulfo-1100 nanoparticles (NPs). They showed excellent targeting and through-skull imaging ability in as soon as 10 min. More importantly, hT-Sulfo-1100 NPs and free Sulfo-1100 could be excreted through the renal clearance pathway within 12 h and were retained neither in the liver nor spleen, avoiding a long-term toxicity risk. This novel water-soluble NIR-II fluorescent dye offers a tool for deep-tissue through-skull in situ imaging to detect tumors with high optical resolution and good biocompatibility.
Collapse
Affiliation(s)
- Qian Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Huixian Jia
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Haoyuan Zhao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Wei Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| | - Xinrui Duan
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province and School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Chang'an Street, Xi'an, Shaanxi 710119, People's Republic of China.
| |
Collapse
|
8
|
Gao J, Yu K, Luo Q, Deng M, Hou X, Wang W, Zeng X, Xiong X, He Y, Hong X, Xiao Y. Near-Infrared II Fluorescence Imaging and Image-Guided siRNA Therapy of Atherosclerosis. J Med Chem 2024; 67:12428-12438. [PMID: 38996002 DOI: 10.1021/acs.jmedchem.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Targeting Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages using RNAi nanotechnology represents an innovative and promising strategy in the diagnosis and treatment of atherosclerosis. Nevertheless, it remains elusive because of the current challenges associated with the systemic delivery of siRNA nanoparticle (NP) to atheromatous plaques and the complexity of atherosclerotic plaques. Here, we demonstrate the potential of a thienothiadiazole-based near-infrared-II (NIR-II) organic aggregation-induced emission (AIE) platform encapsulated with the Camk2g siRNA to effectively target CaMKIIγ in macrophages for dynamic imaging and image-guided gene therapy of atherosclerosis. The nanoparticles effectively decreased CaMKIIγ expression and increased the expression of the efferocytosis receptor MerTK in plaque macrophages, leading to a reduction in the necrotic core area of the lesion in an aortic plaque model. Our theranostic approach highlights the substantial promise of near-infrared II (NIR-II) AIEgens for imaging and image-guided therapy of atherosclerosis.
Collapse
Affiliation(s)
- Jialu Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Kai Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiusi Luo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Mingbo Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaowen Hou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Wumei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Xiaodong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Xuechuan Hong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
9
|
Zangoli M, Monti F, Zanelli A, Marinelli M, Flammini S, Spallacci N, Zakrzewska A, Lanzi M, Salatelli E, Pierini F, Di Maria F. Multifunctional Photoelectroactive Materials for Optoelectronic Applications Based on Thieno[3,4-b]pyrazines and Thieno[1,2,5]thiadiazoles. Chemistry 2024; 30:e202303590. [PMID: 37983681 DOI: 10.1002/chem.202303590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
In this study, we introduce a novel family of symmetrical thiophene-based small molecules with a Donor-Acceptor-Donor structure. These compounds feature three different acceptor units: benzo[c][1,2,5]thiadiazole (Bz), thieno[3,4-b]pyrazine (Pz), and thieno[1,2,5]thiadiazole (Tz), coupled with electron donor units based on a carbazole-thiophene derivative. Using Density Functional Theory (DFT), we investigate how the molecular geometry and strength of the central acceptor unit impact the redox and spectroscopic properties. Notably, the incorporation of Pz and Tz moieties induces a significant redshift in the absorption and emission spectra, which extend into the near-infrared (NIR) region, simultaneously reducing their energy gaps (~1.4-1.6 eV). This shift is attributed to the increased coplanarity of the oligomeric inner core, both in the ground (S0 ) and excited (S1 ) states, due to the enhanced quinoidal character as supported by bond-length alternation (BLA) analysis. These structural changes promote better π-electron delocalization and facilitate photoinduced charge transfer processes in optoelectronic devices. Notably, we show that Pz- and Tz-containing molecules exhibit NIR electrochromic behavior and present ambivalent character in bulk heterojunction (BHJ) solar cells. Finally, theoretical calculations suggest that these molecules could serve as effective two-photon absorption (2PA) probes, further expanding their potential in optoelectronic applications.
Collapse
Affiliation(s)
- Mattia Zangoli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, 40129, Bologna, Italy
| | - Filippo Monti
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Alberto Zanelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Martina Marinelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Soraia Flammini
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- RCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Nicol Spallacci
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
| | - Anna Zakrzewska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106, Warsaw, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106, Warsaw, Poland
| | - Francesca Di Maria
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129, Bologna, Italy
- CLAN-Center for Light Activated Nanostructures, Istituto ISOF-CNR, 40129, Bologna, Italy
| |
Collapse
|
10
|
Su P, Sun W, Wang G, Xu H, Bao B, Wang L. Size transformable organic nanotheranostic agents for NIR-II imaging-guided oncotherapy. J Colloid Interface Sci 2024; 654:740-752. [PMID: 37866046 DOI: 10.1016/j.jcis.2023.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Nanotheranostic agents combined the second near-infrared (NIR-II, 1000-1700 nm) fluorescence imaging with phototherapy strategy have attracted tremendous interest. However, the actual efficacy of NIR-II probes could be weakened by their limited accumulation and penetration in tumor tissues. Herein, a size-transformable NIR-II nanotheranostic agent (BBT-HASS@FPMPL NPs) is employed for simultaneously enhanced penetration and retention in deep tumor tissue to realize precise image and effective PTT therapy. BBT-HASS@FPMPL NPs were first formed by using hyaluronic acid (HA) chains and disulfide bonds as stimuli-responsive "lock" to efficiently load conjugated oligomer (BBTN+), and then folic acid (FA) modified polylysine (FPMPL) shell was stacked at the surface by electrostatic interaction. Dual targeting with HA and FA is expected to lead to more selective targeting and better accumulation of BBT-HASS@FPMPL NPs in tumor sites. Simultaneously, obvious particle size reduction and charge reversal can be triggered in acidic tumor microenvironment to achieve deep intratumor filtration through transcytosis. Following tumor penetration, size change was further initiated by overexpressed hyaluronidase and GSH in tumor. Free BBTN+ can be subsequently released from nanoparticles to promote specific intratumor retention, which synergistically enhance photothermal therapeutic efficacy. Owing to sufficient tumor accumulation and deep penetration, the NIR-II emission of BBTN+ could further be used for precise monitoring of subcutaneous tumor progression in mice for 6 days with just one dose injection. We expect that such nanotheranostic platform that combined the high resolution of NIR-II fluorescence with deep tumor penetration and long intratumor retention could be useful for real-time monitoring of tumor process, precise diagnosis, and enhanced phototherapy.
Collapse
Affiliation(s)
- Peng Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wenjun Sun
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guoqin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hongpan Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Biqing Bao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
11
|
Zeng X, Liao Y, Qiao X, Liang K, Luo Q, Deng M, Liu Y, Zhang W, Hong X, Xiao Y. Novel NIR-II fluorescent probes for biliary atresia imaging. Acta Pharm Sin B 2023; 13:4578-4590. [PMID: 37969732 PMCID: PMC10638547 DOI: 10.1016/j.apsb.2023.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/26/2023] [Accepted: 06/27/2023] [Indexed: 11/17/2023] Open
Abstract
Biliary atresia is a rare infant disease that predisposes patients to liver transplantation and death if not treated in time. However, early diagnosis is challenging because the clinical manifestations and laboratory tests of biliary atresia overlap with other cholestatic diseases. Therefore, it is very important to develop a simple, safe and reliable method for the early diagnosis of biliary atresia. Herein, a novel NIR-II fluorescence probe, HZL2, with high quantum yield, excellent biocompatibility, low cytotoxicity and rapid excretion through the liver and gallbladder was developed based on the oil/water partition coefficient and permeability. A simple fecal sample after injection of HZL2 can be used to efficiently identify the success of the mouse model of biliary atresia for the first time, allowing for an early diagnosis of the disease. This study not only developed a simple and safe method for the early diagnosis of biliary atresia with great potential in clinical translation but also provides a research tool for the development of pathogenesis and therapeutic medicines for biliary atresia.
Collapse
Affiliation(s)
- Xiaodong Zeng
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqin Liao
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xue Qiao
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Ke Liang
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Qiusi Luo
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Mingbo Deng
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Yishen Liu
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Weijing Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China
- Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Yuling Xiao
- State Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
12
|
Feng Z, Li Y, Chen S, Li J, Wu T, Ying Y, Zheng J, Zhang Y, Zhang J, Fan X, Yu X, Zhang D, Tang BZ, Qian J. Engineered NIR-II fluorophores with ultralong-distance molecular packing for high-contrast deep lesion identification. Nat Commun 2023; 14:5017. [PMID: 37596326 PMCID: PMC10439134 DOI: 10.1038/s41467-023-40728-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/07/2023] [Indexed: 08/20/2023] Open
Abstract
The limited signal of long-wavelength near-infrared-II (NIR-II, 900-1880 nm) fluorophores and the strong background caused by the diffused photons make high-contrast fluorescence imaging in vivo with deep tissue disturbed still challenging. Here, we develop NIR-II fluorescent small molecules with aggregation-induced emission properties, high brightness, and maximal emission beyond 1200 nm by enhancing electron-donating ability and reducing the donor-acceptor (D-A) distance, to complement the scarce bright long-wavelength emissive organic dyes. The convincing single-crystal evidence of D-A-D molecular structure reveals the strong inhibition of the π-π stacking with ultralong molecular packing distance exceeding 8 Å. The delicately-designed nanofluorophores with bright fluorescent signals extending to 1900 nm match the background-suppressed imaging window, enabling the signal-to-background ratio of the tissue image to reach over 100 with the tissue thickness of ~4-6 mm. In addition, the intraluminal lesions with strong negatively stained can be identified with almost zero background. This method can provide new avenues for future long-wavelength NIR-II molecular design and biomedical imaging of deep and highly scattering tissues.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Siyi Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jin Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Tianxiang Wu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Junyan Zheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Jianquan Zhang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Li J, Ji A, Lei M, Xuan L, Song R, Feng X, Lin H, Chen H. Hypsochromic Shift Donor-Acceptor NIR-II Dye for High-Efficiency Tumor Imaging. J Med Chem 2023. [PMID: 37294925 DOI: 10.1021/acs.jmedchem.3c00253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, second near-infrared window (NIR-II) dyes' development focuses on pursuing a longer absorption/emission wavelength and higher quantum yield, which usually means an extended π conjugation system, resulting in an enormous molecular weight and poor druggability. Most researchers thought that the reduced π conjugation system would bring on a blueshift spectrum that causes dim imaging qualities. Little efforts have been made to study smaller NIR-II dyes with a reduced π conjugation system. Herein, we synthesized a reduced π conjugation system donor-acceptor (D-A) probe TQ-1006 (Em = 1006 nm). Compared with its counterpart donor-acceptor-donor (D-A-D) structure TQT-1048 (Em = 1048 nm), TQ-1006 exhibited comparable excellent blood vessels, lymphatic drainage imaging performance, and a higher tumor-to-normal tissue (T/N) ratio. An RGD conjugated probe TQ-RGD showed an extra high contrast tumor imaging (T/N ≥ 10), further proving D-A dyes' excellent NIR-II biomedical imaging applications. Overall, the D-A framework provides a promising approach to designing next-generation NIR-II fluorophores.
Collapse
Affiliation(s)
- Jiafeng Li
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Aiyan Ji
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Meiling Lei
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Liwen Xuan
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Ruihu Song
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
| | - Xin Feng
- College of Veterinary Medicine, Jilin University, Changchun 130062, P.R. China
| | - Haixia Lin
- College of Science, Shanghai University, Shanghai 200444, P.R. China
| | - Hao Chen
- Molecular Imaging Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P.R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
14
|
Roy S, Bag N, Bardhan S, Hasan I, Guo B. Recent Progress in NIR-II Fluorescence Imaging-guided Drug Delivery for Cancer Theranostics. Adv Drug Deliv Rev 2023; 197:114821. [PMID: 37037263 DOI: 10.1016/j.addr.2023.114821] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Fluorescence imaging in the second near-infrared window (NIR-II) has become a prevalent choice owing to its appealing advantages like deep penetration depth, low autofluorescence, decent spatiotemporal resolution, and a high signal-to-background ratio. This would expedite the innovation of NIR-II imaging-guided drug delivery (IGDD) paradigms for the improvement of the prognosis of patients with tumors. This work systematically reviews the recent progress of such NIR-II IGDD-mediated cancer therapeutics and collectively brings its essence to the readers. Special care has been taken to assess their performances based on their design approach, such as enhancing their drug loading and triggering release, designing intrinsic and extrinsic fluorophores, and/ or overcoming biological barriers. Besides, the state-of-the-art NIR-II IGDD platforms for different therapies like chemo-, photodynamic, photothermal, chemodynamic, immuno-, ion channel, gas-therapies, and multiple functions such as stimulus-responsive imaging and therapy, and monitoring of drug release and therapeutic response, have been updated. In addition, for boosting theranostic outcomes and clinical translation, the innovation directions of NIR-II IGDD platforms are summarized, including renal-clearable, biodegradable, sub-cellular targeting, and/or afterglow, chemiluminescence, X-ray excitable NIR-IGDD, and even cell therapy. This review will propel new directions for safe and efficient NIR-II fluorescence-mediated anticancer drug delivery.
Collapse
Affiliation(s)
- Shubham Roy
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China
| | - Neelanjana Bag
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata-700032, India
| | - Ikram Hasan
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen-518055, China.
| |
Collapse
|
15
|
He S, Xie F, Su W, Luo H, Chen D, Cai J, Hong X. Anti-Inflammatory Salidroside Delivery from Chitin Hydrogels for NIR-II Image-Guided Therapy of Atopic Dermatitis. J Funct Biomater 2023; 14:jfb14030150. [PMID: 36976074 PMCID: PMC10058600 DOI: 10.3390/jfb14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Atopic dermatitis (AD) is the most common heterogeneous skin disease. Currently, effective primary prevention approaches that hamper the occurrence of mild to moderate AD have not been reported. In this work, the quaternized β-chitin dextran (QCOD) hydrogel was adopted as a topical carrier system for topical and transdermal delivery of salidroside for the first time. The cumulative release value of salidroside reached ~82% after 72 h at pH 7.4, while in vitro drug release experiments proved that QCOD@Sal (QCOD@Salidroside) has a good, sustained release effect, and the effect of QCOD@Sal on atopic dermatitis mice was further investigated. QCOD@Sal could promote skin repair or AD by modulating inflammatory factors TNF-α and IL-6 without skin irritation. The present study also evaluated NIR-II image-guided therapy (NIR-II, 1000–1700 nm) of AD using QCOD@Sal. The treatment process of AD was monitored in real-time, and the extent of skin lesions and immune factors were correlated with the NIR-II fluorescence signals. These attractive results provide a new perspective for designing NIR-II probes for NIR-II imaging and image-guided therapy with QCOD@Sal.
Collapse
Affiliation(s)
- Shengnan He
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Fang Xie
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wuyue Su
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (J.C.); (X.H.)
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
- Correspondence: (J.C.); (X.H.)
| |
Collapse
|
16
|
Cao R, Li R, Shi H, Liu H, Cheng Z. Novel HER2-Targeted Peptide for NIR-II Imaging of Tumor. Mol Pharm 2023; 20:1394-1403. [PMID: 36668683 DOI: 10.1021/acs.molpharmaceut.2c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular targets serve a crucial role in drug development. Herein, we discovered a novel peptide that can specifically target the human epidermal growth factor receptor 2 (HER2) and thus named it Herceptide. In our study, Herceptide was conjugated to the near-infrared fluorescent dye indocyanine green (ICG) to obtain a probe, ICG-Herceptide. Importantly, specific binding to HER2 was revealed by molecular docking, surface plasmon resonance analysis, and competition assays. The probe showed high binding affinity (KD = 1.03 nM) and fast binding property (kon = 0.44 min-1). In vivo near-infrared window two (NIR-II, 1000-1700 nm) imaging in HER2-overexpressed SKOV3 tumor-bearing mice demonstrated a high tumor-to-normal tissue signal ratio (T/N = 7.3) at 8 h postinjection. In the blocking study, ICG-Herceptide coinjected with Herceptide only showed a weak tumor signal. In other HER2 high-expression tumors, such as non-small-cell lung cancer A549 and gastric cancer MKN45, the tumor-to-normal tissue signal ratios (T/N) were 4.1 and 4.7, respectively. In contrast, HER2 low-expression tumor MDAMB231 shows no imaging contrast between the tumor and normal tissues. Furthermore, tumor resection was successfully performed under the guidance of the ICG-Herceptide-based NIR-II imaging in subcutaneous SKOV3 mice models. The biocompatibility study indicated that the probe had no observable toxicity to cells and tissues. Overall, these results demonstrate that ICG-Herceptide is a promising optical probe for the diagnosis and localization of HER2-overexpressing tumors. Moreover, Herceptide is a novel HER2-targeting peptide and can be further used for developing theranostic agents.
Collapse
Affiliation(s)
- Rui Cao
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang110167, China
| | - Renda Li
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang110167, China
| | - Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China
| | - Hongguang Liu
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang110167, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai264117, Shandong, China
| |
Collapse
|
17
|
Li C, Jiang G, Yu J, Ji W, Liu L, Zhang P, Du J, Zhan C, Wang J, Tang BZ. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208229. [PMID: 36300808 DOI: 10.1002/adma.202208229] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Phototheranostics with second near-infrared (NIR-II) imaging and photothermal effect have become a burgeoning biotechnology for tumor diagnosis and precise treatment. As important parameters of phototheranostic agents (PTAs), fluorescence quantum yield (QY) and photothermal conversion efficiency (PCE) are usually considered as a pair of contradictions that is difficult to be simultaneously enhanced. Herein, a fluorination strategy for designing A-D-A type PTAs with synchronously improved QY and PCE is proposed. Experimental results show that the molar extinction coefficient (ε), NIR-II QY, and PCE of all fluorinated PTAs nanoparticles (NPs) are definitely improved compared with the chlorinated counterparts. Theoretical calculation results demonstrate that fluorination can maximize the electrostatic potential difference by virtue of the high electronegativity of fluorine, which may increase intra/intermolecular D-A interactions, tighten molecule packing, and further promote the increase of ε, ultimately leading to simultaneously enhanced QY and PCE. In these PTA NPs, FY6-NPs display NIR-II emission extended to 1400 nm with the highest NIR-II QY (4.2%) and PCE (80%). These features make FY6-NPs perform well in high-resolution imaging of vasculature and NIR-II imaging-guided photothermal therapy (PTT) of tumors. This study develops a valuable guideline for constructing NIR-II organic PTAs with high performance.
Collapse
Affiliation(s)
- Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jia Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Weiwei Ji
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, P. R. China
| | - Chuanlang Zhan
- Key Laboratory of Advanced Materials Chemistry and Devices (AMC&DLab) of the Department of Education of Inner Mongolia Autonomous Region, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, 010022, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
18
|
Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Shi W, Diao S, Liang T, Zhang X, Guo Z, Liu Y, Zhou W, Xie C, Fan Q. A Renal-Clearable PEGylated Semiconducting Oligomer for the NIR-II Fluorescence Imaging of Tumor. ACS APPLIED BIO MATERIALS 2022; 5:4965-4971. [PMID: 36167499 DOI: 10.1021/acsabm.2c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Second near-infrared window fluorescence imaging (NIR-II FI) has attracted tremendous attention in bioimaging. Until now, most probes for NIR-II FI are nanomaterials that are metabolized via hepatobiliary metabolism. Such a metabolic pathway may take several months, causing long-term toxicity. Herein, we design and synthesize a renal-clearable PEGylated semiconducting oligomer (PSO) for the NIR-II FI of tumor. PSO is composed of a semiconducting oligomer (SO) backbone as an NIR-II fluorescence reporter and four poly(ethylene glycol) (PEG) side chains as water-soluble enhancers. PSO can emit an NIR-II fluorescence signal with the maximum emission at 1000 nm under the excitation of 808 nm light. PSO shows good biocompatibility and can be partially cleared out of body via renal clearance. PSO can be utilized for the NIR-II FI of tumor as it can effectively accumulate into tumor.
Collapse
Affiliation(s)
- Wenheng Shi
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Shanchao Diao
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Tingting Liang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xuheng Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zixin Guo
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yaxin Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Wen Zhou
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
20
|
Li C, Guan X, Zhang X, Zhou D, Son S, Xu Y, Deng M, Guo Z, Sun Y, Kim JS. NIR-II bioimaging of small molecule fluorophores: From basic research to clinical applications. Biosens Bioelectron 2022; 216:114620. [PMID: 36001931 DOI: 10.1016/j.bios.2022.114620] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/15/2022]
Abstract
Due to the low autofluorescence and deep-photo penetration, the second near-infrared region fluorescence imaging technology (NIR-II, 1000-2000 nm) has been widely utilized in basic scientific research and preclinical practice throughout the past decade. The most attractive candidates for clinical translation are organic NIR-II fluorophores with a small-molecule framework, owing to their low toxicity, high synthetic repeatability, and simplicity of chemical modification. In order to enhance the translation of small molecule applications in NIR-II bioimaging, NIR-II fluorescence imaging technology has evolved from its usage in cells to the diagnosis of diseases in large animals and even humans. Although several examples of NIR-II fluorescence imaging have been used in preclinical studies, there are still many challenges that need to be addressed before they can finally be used in clinical settings. In this paper, we reviewed the evolution of the chemical structures and photophysical properties of small-molecule fluorophores, with an emphasis on their biomedical applications ranging from small animals to humans. We also explored the potential of small-molecule fluorophores.
Collapse
Affiliation(s)
- Chonglu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xiaofang Guan
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xian Zhang
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Di Zhou
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Mengtian Deng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
21
|
Zhao X, Zhang F, Lei Z. The pursuit of polymethine fluorophores with NIR-II emission and high brightness for in vivo applications. Chem Sci 2022; 13:11280-11293. [PMID: 36320587 PMCID: PMC9533410 DOI: 10.1039/d2sc03136a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
Polymethine cyanine dyes, as the most important class of organic near-infrared-II (NIR-II) fluorophores, recently received increasing attention due to their high molar extinction coefficients, intensive fluorescence brightness, and flexible wavelength tunability for fluorescent bioimaging applications. Very recently, remarkable advances have been made in the development of NIR-II polymethine fluorophores with improved optical performance, mainly including tunable fluorescence, improved brightness, improved water solubility and stability. In this review, we summarize the recent research advances in molecular tailoring design strategies of NIR-II polymethine fluorophores, and then emphasize the representative bioimaging and biosensing applications. The potential challenges and perspectives of NIR-II polymethine fluorophores in this emerging field are also discussed. This review may provide guidance and reference for further development of high-performance NIR-II polymethine fluorophores to boost their clinical translation in the future. Overview of historical development for polymethine fluorophores with NIR-II emission and high brightness for in vivo applications.![]()
Collapse
Affiliation(s)
- Xuan Zhao
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuhai Lei
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|