1
|
Cao X, Li K, Wang J, Xie X, Sun L. PBPK model of pegylated liposomal doxorubicin to simultaneously predict the concentration-time profile of encapsulated and free doxorubicin in tissues. Drug Deliv Transl Res 2025; 15:1342-1362. [PMID: 39103592 DOI: 10.1007/s13346-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/07/2024]
Abstract
The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model to predict the concentrations of encapsulated and free doxorubicin in plasma and tissues in mice after intravenous injection of PEGylated liposomes (Doxil®). The PBPK model used in this study contains liposomes and free doxorubicin disposition components. The free doxorubicin disposition component was used to simulate the disposition of free doxorubicin produced by mononuclear phagocyte system (MPS)-degrading liposomes. The liver, spleen, kidneys, and lungs contain an additional MPS subcompartment. These compartments are interconnected through blood and lymphatic circulation. The model was validated strictly by four doses of external observed plasma and tissue concentration-time profiles. The fold error (FE) values were almost all within threefold. The sensitivity analysis revealed that the MPS-related parameters greatly influenced the model. The predicted in vivo distribution characteristics of the doxorubicin liposomes and doxorubicin solution were consistent with the observed values. The PBPK model was established based on the physiological mechanism and parameters of practical significance that can be measured in vitro. Thus, it can be used to study the pharmacokinetic properties of liposomes. This study also provides a reference for the establishment of liposome PBPK model.
Collapse
Affiliation(s)
- Xuewei Cao
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Kejun Li
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Jingyu Wang
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Xiaoqian Xie
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Le Sun
- Department of Pharmaceutics, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
2
|
Cheung TH, Shoichet MS. The Interplay of Endosomal Escape and RNA Release from Polymeric Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7174-7190. [PMID: 40080875 DOI: 10.1021/acs.langmuir.4c05176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Ribonucleic acid (RNA) nanocarriers, specifically lipid nanoparticles and polymeric nanoparticles, enable RNA transfection both in vitro and in vivo; however, only a small percentage of RNA endocytosed by a cell is delivered to the cytosolic machinery, minimizing its effect. RNA nanocarriers face two major obstacles after endocytosis: endosomal escape and RNA release. Overcoming both obstacles simultaneously is challenging because endosomal escape is usually achieved by using high positive charge to disrupt the endosomal membrane. However, this high positive charge typically also inhibits RNA release because anionic RNA is strongly bound to the nanocarrier by electrostatic interactions. Many nanocarriers address one over the other despite a growing body of evidence demonstrating that both are crucial for RNA transfection. In this review, we survey the various strategies that have been employed to accomplish both endosomal escape and RNA release with a focus on polymeric nanomaterials. We first consider the various requirements a nanocarrier must achieve for RNA delivery including protection from degradation, cellular internalization, endosomal escape, and RNA release. We then discuss current polymers used for RNA delivery and examine the strategies for achieving both endosomal escape and RNA release. Finally, we review various stimuli-responsive strategies for RNA release. While RNA release continues to be a challenge in achieving efficient RNA transfection, many new innovations in polymeric materials have elucidated promising strategies.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
3
|
Zhou J, Rao R, Shapiro ME, Tania N, Herron C, Musante CJ, Hughes JH. Model-Informed Drug Development Applications and Opportunities in mRNA-LNP Therapeutics. Clin Pharmacol Ther 2025. [PMID: 40083288 DOI: 10.1002/cpt.3641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The utilization of lipid nanoparticles (LNP) for encapsulating mRNA has revolutionized the field of therapeutics, enabling the rapid development of COVID-19 vaccines and cancer vaccines. However, the clinical development of mRNA-LNP therapeutics faces numerous challenges due to their complex mechanisms of action and limited clinical experience. To overcome these hurdles, Model-Informed Drug Development (MIDD) emerges as a valuable tool that can be applied to mRNA-LNP therapeutics, facilitating the evaluation of their safety and efficacy through the integration of data from all stages into appropriate modeling and simulation techniques. In this review, we provide an overview of current MIDD applications in mRNA-LNP therapeutics clinical development using in vivo data. A variety of modeling methods are reviewed, including quantitative system pharmacology (QSP), physiologically based pharmacokinetics (PBPK), mechanistic pharmacokinetics/pharmacodynamics (PK/PD), population PK/PD, and model-based meta-analysis (MBMA). Additionally, we compare the differences between mRNA-based therapeutics, small interfering RNA, and adeno-associated virus-based gene therapies in terms of their clinical pharmacology, and discuss the potential for mutual sharing of MIDD knowledge between these therapeutics. Furthermore, we highlight the promising future opportunities for applying MIDD approaches in the development of mRNA-LNP drugs. By emphasizing the importance of applying MIDD knowledge throughout mRNA-LNP therapeutics development, this review aims to encourage stakeholders to recognize the value of MIDD and its potential to enhance the safety and efficacy evaluation of mRNA-LNP therapeutics.
Collapse
Affiliation(s)
| | - Rohit Rao
- Pfizer Inc, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
4
|
Pan J, Wang Y, Chen Y, Zhang C, Deng H, Lu J, Chen W. Emerging strategies against accelerated blood clearance phenomenon of nanocarrier drug delivery systems. J Nanobiotechnology 2025; 23:138. [PMID: 40001108 PMCID: PMC11853785 DOI: 10.1186/s12951-025-03209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Nanocarrier drug delivery systems (NDDS) have gained momentum in the field of anticancer or nucleic acid drug delivery due to their capacity to aggrandize the targeting efficacy and therapeutic outcomes of encapsulated drugs. A disadvantage of NDDS is that repeated administrations often encounter an obstacle known as the "accelerated blood clearance (ABC) phenomenon". This phenomenon results in the rapid clearance of the secondary dose from the bloodstream and markedly augmented liver accumulation, which substantially undermines the accurate delivery of drugs and the therapeutic effect of NDDS. Nevertheless, the underlying mechanism of this phenomenon has not been elucidated and there is currently no effective method for its eradication. In light of the above, the aim of this review is to provide a comprehensive summary of the underlying mechanism and potential countermeasures of the ABC phenomenon, with a view to rejuvenating both the slow-release property and expectation of NDDS in the clinic. In this paper, we innovatively introduce the pharmacokinetic mechanism of ABC phenomenon to further elucidate its occurrence mechanism after discussing its immunological mechanism, which provides a new direction for expanding the mechanistic study of ABC phenomenon. Whereafter, we conducted a critical conclusion of potential strategies for the suppression or prevention of the ABC phenomenon in terms of the physical and structural properties, PEG-lipid derivatives, dosage regimen and encapsulated substances of nanoformulations, particularly covering some novel high-performance nanomaterials and mixed modification methods. Alternatively, we innovatively propose a promising strategy of applying the characteristics of ABC phenomenon, as the significantly elevated hepatic accumulation and activated CYP3A1 profile associated with the ABC phenomenon are proved to be conducive to enhancing the efficacy of NDDS in the treatment of hepatocellular carcinoma. Collectively, this review is instructive for surmounting or wielding the ABC phenomenon and advancing the clinical applications and translations of NDDS.
Collapse
Affiliation(s)
- Jianquan Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yunna Chen
- Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Cheng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Huiya Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jinyuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China.
| |
Collapse
|
5
|
Zhang X, Yang Y, Wang M, Qi H, Li C, Zhao L. Application of Physiologically Based Pharmacokinetic Model to Compare the Biodistribution of Liposomal Amphotericin B With Conventional Amphotericin B Deoxycholate in Humans. Biopharm Drug Dispos 2024; 45:208-219. [PMID: 39722430 DOI: 10.1002/bdd.2406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
Amphotericin B (AmB) has been a cornerstone in the treatment of invasive fungal infections for over 6 decades. Compared with conventional amphotericin B deoxycholate (AmB-DOC), liposomal amphotericin B has comparable efficacy but less nephrotoxicity. The main purpose of this study was to investigate the reason why liposomal amphotericin B has similar therapeutic effects but lower toxicity and the differences of distribution in humans between liposomal amphotericin B and AmB-DOC. To compare the distribution of liposomal amphotericin B and AmB-DOC in humans, the physiologically based pharmacokinetic (PBPK) model was established by bottom-up stepwise method. A rat PBPK model was established firstly, then verified in mouse level in consideration of interspecies differences in physiological- and drug-specific parameters, and finally the PBPK model was extrapolated to humans. Based on preclinical and clinical pharmacokinetic (PK) studies, the AmB-DOC and liposomal amphotericin B PBPK model were established, respectively. The simulated results of human PBPK model showed that the liposomal formulation changed the pharmacokinetic characteristics of AmB. Compared with AmB-DOC, the plasma exposure of liposomal formulation was higher, but the renal exposure was significantly reduced.
Collapse
Affiliation(s)
- Xueyuan Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Yingying Yang
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Manman Wang
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Huanhuan Qi
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Chunlei Li
- Department of Clinical Pharmacology, CSPC Zhongqi Pharmaceutical Technology (SJZ) Co., Ltd., Shijiazhuang, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Cui J, Wen Z, Huang H, Qin S, Luo Y, Zhang W, Wu W. The Pharmacokinetics and Liver-Targeting Evaluation of Silybin Liposomes Mediated by the NTCP/OCTN2 Dual Receptors. Mol Pharm 2024; 21:4912-4923. [PMID: 39370820 DOI: 10.1021/acs.molpharmaceut.3c01245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The disadvantage of a traditional dosage regimen is the inability to deliver a sufficient drug concentration to the lesion site, which can result in adverse side effects due to nonspecific drug delivery. Actively targeting hepatic cells is a promising therapeutic strategy for liver disease. In this study, l-carnitine and a targeting peptide derived from the hepatitis B virus large envelope protein were used to modify liposomes for drug delivery to the liver through the sodium taurocholate cotransporting polypeptide (NTCP) and the organic cation/carnitine transporter 2 (OCTN2) receptors. Silybin was selected as the model drug. The solubility of silybin can reach 0.3 mg/mL after encapsulation in liposomes. The NTCP-specific and OCTN2-accelerated Myrcludex B and l-carnitine dual-modified liposomes were validated in vitro. The uptake of coumarin-6 in dual ligand-modified liposomes by hepatocytes was up to 2.36 μg/mg compared with unmodified liposomes (1.05 μg/mg). The pharmacokinetics and targeting abilities of various liposome formulations were evaluated in Kunming mice. Targeted liposomes increased the concentration of silybin and prolonged the drug's retention time in the liver. The area under the liver's pharmacokinetic curve of targeted liposomes was twice that of silybin injection, suggesting the promising application potential of silybin-loaded hepatotropic nanovesicles.
Collapse
Affiliation(s)
- Jian Cui
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Zhiwei Wen
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Huajie Huang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shuilin Qin
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Yanjie Luo
- Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi 541002, China
| | - Wei Zhang
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi 541199, China
| |
Collapse
|
7
|
Otulakowski Ł, Kasprow M, Gadzinowski M, Slomkowski S, Makowski T, Basinska T, Forys A, Godzierz M, Trzebicka B. Influence of hydrophilic block length on the aggregation properties of polyglycidol-polystyrene-polyglycidol copolymers. SOFT MATTER 2024; 20:546-557. [PMID: 38126407 DOI: 10.1039/d3sm01194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Amphiphilic triblock copolymers, polyglycidol-polystyrene-polyglycidol (PGL-PS-PGL), were synthesised via anionic polymerization starting from the synthesis of a polystyrene macroinitiator with 60 styrene units in the block terminated by ethylene oxide. Poly(ethoxyethyl glycidyl ether) blocks of different lengths were created on both sides of the macroinitiator. By removing the ethoxyethyl blocking groups, PGL-PS-PGL copolymers containing polyglycidol blocks with DP 11, 23, 44 and 63 were received. Their structures were determined by NMR and FTIR. The hydrophilicity of PLG-PS-PGL films was studied upon exposure to water vapour. To perform the copolymers' aggregation in water, the samples were dialysed from DMF into water. The critical concentration of their micellisation (CMC) was determined by measuring the absorbance of the 1,6-diphenylhexa-1,3,5-triene (DPH) probe and the intensity of light scattered by the copolymers' solution as a function of concentration. CMC values increased with increasing the number of hydrophilic glycidol units in the copolymer chain. The sizes of aggregates formed slightly above the critical concentration were measured by dynamic light scattering (DLS), and particles were imaged by cryo-TEM. Cryo-TEM pictures showed the presence of regular micelles in copolymer dispersions. For copolymers with shorter PGL chains aggregated partices were detected. Moreover, cryo-TEM demonstrated that the copolymers with a polyglycidol block of DP = 63 formed regular spherical micelles that formed 2D ordered organisation on the surface. X-ray measurements showed the formation of a partially crystallised PS core in the micelle's interior. The aggregates of all copolymers were stable. Their sizes did not change after one year of storage. The particles did not disassociate even after diluting their dispersions to a concentration 10 times lower than the critical concentration.
Collapse
Affiliation(s)
- Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Maciej Kasprow
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| |
Collapse
|
8
|
Vasquez PA, Walker B, Bloom K, Kolbin D, Caughman N, Freeman R, Lysy M, Hult C, Newhall KA, Papanikolas M, Edelmaier C, Forest MG. The power of weak, transient interactions across biology: A paradigm of emergent behavior. PHYSICA D. NONLINEAR PHENOMENA 2023; 454:133866. [PMID: 38274029 PMCID: PMC10806540 DOI: 10.1016/j.physd.2023.133866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
A growing list of diverse biological systems and their equally diverse functionalities provides realizations of a paradigm of emergent behavior. In each of these biological systems, pervasive ensembles of weak, short-lived, spatially local interactions act autonomously to convey functionalities at larger spatial and temporal scales. In this article, a range of diverse systems and functionalities are presented in a cursory manner with literature citations for further details. Then two systems and their properties are discussed in more detail: yeast chromosome biology and human respiratory mucus.
Collapse
Affiliation(s)
- Paula A. Vasquez
- Department of Mathematics, University of South Carolina, United States of America
| | - Ben Walker
- Department of Mathematics, University of California at Irvine, United States of America
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, United States of America
| | - Neall Caughman
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Canada
| | - Caitlin Hult
- Department of Mathematics, Gettysburg College, United States of America
| | - Katherine A. Newhall
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| | - Christopher Edelmaier
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
- Center for Computational Biology, Flatiron Institute, United States of America
| | - M. Gregory Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, United States of America
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
9
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
10
|
Chou WC, Chen Q, Yuan L, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J Control Release 2023; 361:53-63. [PMID: 37499908 PMCID: PMC11008607 DOI: 10.1016/j.jconrel.2023.07.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The critical barrier for clinical translation of cancer nanomedicine stems from the inefficient delivery of nanoparticles (NPs) to target solid tumors. Rapid growth of computational power, new machine learning and artificial intelligence (AI) approaches provide new tools to address this challenge. In this study, we established an AI-assisted physiologically based pharmacokinetic (PBPK) model by integrating an AI-based quantitative structure-activity relationship (QSAR) model with a PBPK model to simulate tumor-targeted delivery efficiency (DE) and biodistribution of various NPs. The AI-based QSAR model was developed using machine learning and deep neural network algorithms that were trained with datasets from a published "Nano-Tumor Database" to predict critical input parameters of the PBPK model. The PBPK model with optimized NP cellular uptake kinetic parameters was used to predict the maximum delivery efficiency (DEmax) and DE at 24 (DE24) and 168 h (DE168) of different NPs in the tumor after intravenous injection and achieved a determination coefficient of R2 = 0.83 [root mean squared error (RMSE) = 3.01] for DE24, R2 = 0.56 (RMSE = 2.27) for DE168, and R2 = 0.82 (RMSE = 3.51) for DEmax. The AI-PBPK model predictions correlated well with available experimentally-measured pharmacokinetic profiles of different NPs in tumors after intravenous injection (R2 ≥ 0.70 for 133 out of 288 datasets). This AI-based PBPK model provides an efficient screening tool to rapidly predict delivery efficiency of a NP based on its physicochemical properties without relying on an animal training dataset.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Qiran Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Long Yuan
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Yi-Hsien Cheng
- Institute of Computational Comparative Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chunla He
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA
| | - Nancy A Monteiro-Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, KS 66506, USA; Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC 27606, USA
| | - Jim E Riviere
- Center for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, NC 27606, USA; 1Data Consortium, Kansas State University, Olathe, KS 66061, USA
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
11
|
Sun B, Wu W, Narasipura EA, Ma Y, Yu C, Fenton OS, Song H. Engineering nanoparticle toolkits for mRNA delivery. Adv Drug Deliv Rev 2023; 200:115042. [PMID: 37536506 DOI: 10.1016/j.addr.2023.115042] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The concept of using mRNA to produce its own medicine in situ in the body makes it an ideal drug candidate, holding great potential to revolutionize the way we approach medicine. The unique characteristics of mRNA, as well as its customizable biomedical functions, call for the rational design of delivery systems to protect and transport mRNA molecules. In this review, a nanoparticle toolkit is presented for the development of mRNA-based therapeutics from a drug delivery perspective. Nano-delivery systems derived from either natural systems or chemical synthesis, in the nature of organic or inorganic materials, are summarised. Delivery strategies in controlling the tissue targeting and mRNA release, as well as the role of nanoparticles in building and boosting the activity of mRNA drugs, have also been introduced. In the end, our insights into the clinical and translational development of mRNA nano-drugs are presented.
Collapse
Affiliation(s)
- Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Weixi Wu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|