1
|
Yao Q, Gao J, Liu L, Shi J, Zafar H, Khan MI, Zhu J, Raza F, Zhu Y. Short peptide hydrogel with angular structure for hydrophobic antitumor drug delivery and controlled release. Colloids Surf B Biointerfaces 2025; 254:114793. [PMID: 40381291 DOI: 10.1016/j.colsurfb.2025.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025]
Abstract
Although hydrophobic anti-tumor drugs such as paclitaxel (PTX) have been used to treat various cancers, their clinical application is limited due to their poor water solubility, low bioavailability and adverse drug reactions. Peptide hydrogels are being increasingly used for antitumor drug delivery due to their diverse synthesis and function and excellent biocompatibility. From the perspective of economic and clinical benefits, it is essential to design peptide hydrogels for anti-tumor drug delivery that can achieve tumor microenvironment responsiveness with short sequences. We designed a short peptide, KK (KIKIDPPIKIK), consisting of 10 amino acids with a corner structure. The angular structure of KK is conducive to forming a network structure under neutral conditions for PTX inclusion. The drug-loaded short peptide hydrogel delivered PTX to the tumor site by injection and continuously released the drug under slight acidic stimulation of the tumor. The short peptide was synthesized by solid-phase peptide synthesis and verified by in vitro release experiments as a carrier for the delivery of hydrophobic antitumor drugs. Electron transmission microscopy was used to observe the microstructure differences of the short peptides under neutral and acidic conditions. Circular dichroism revealed the difference of secondary structure of the peptide under neutral and acidic conditions. The injectability of the short peptide hydrogel was verified by rheological experiments. The cytotoxicity in vitro and anti-tumor effect in vivo showed that the drug-loaded short peptide hydrogel could improve the anti-tumor effect. The biological safety of the short peptide hydrogel was confirmed by cell biocompatibility in vitro and in vivo. In summary, the pH-sensitive peptide can form a stable drug-loaded hydrogel in vitro, enabling sustained release of PTX upon injection into tumor tissue, thereby achieving long-term therapeutic efficacy with reduced toxic side effects. Moreover, it is noteworthy that the functional properties of this peptide can be achieved with just 10 amino acids, resulting in decreased synthetic costs and difficulties while maximizing clinical benefits.
Collapse
Affiliation(s)
- Qingqing Yao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jie Gao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Linsheng Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jinfang Shi
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ijaz Khan
- Department of Pharmacy, University of Swabi, Swabi, Anbar 23561, Pakistan
| | - Jianguo Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ying Zhu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
2
|
Kostevšek N. Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics. BIOMATERIALS ADVANCES 2025; 170:214234. [PMID: 39961269 DOI: 10.1016/j.bioadv.2025.214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
This systematic review aims to summarize the development of erythrocyte membrane vesicles (EMVs) as drug delivery carriers, with a focus on elucidating their fate in terms of biodistribution and pharmacokinetics in preclinical studies. The PubMed database was systematically reviewed to search for original peer-reviewed published studies on the use of EMVs for drug delivery to summarize the preclinical findings, following the PRISMA guidelines. A total of 142 articles matched the selection criteria and were included in the review. For each study, the following parameters were extracted: type of active pharmaceutical ingredient (API) encapsulated into EMVs, EMVs-API formulation method and final particle size, EMVs surface modifications for active targeting, cell lines and animal models used in the study, crucial treatment data, biodistribution data and finally, where applicable, data about the EMVs circulation time and blood half-life. EMVs size did not vary significantly among the different formulation methods. A complete list of cell lines and animal models used is provided. Circulation times and data for blood half-life were grouped per animal type. For the most commonly used animal type, BALB/c mice, the average half-life of EMV-API was calculated to be 10.4 h, and in all cases, up to a 10-fold increase was observed compared with that of free API. Surface modifications did not drastically change the circulation time but did improve target tissue accumulation. The most critical weaknesses in the analysed studies were identified. Key points for future studies are provided to fill the current knowledge gaps and improve the quality of publications.
Collapse
Affiliation(s)
- Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Puri N, Sahane P, Phatale V, Khairnar P, Shukla S, Priyadarshinee A, Jain A, Srivastava S. Nano-chameleons: A review on cluster of differentiation-driven immune cell-engineered nanoarchitectonics for non-small cell lung cancer. Int J Biol Macromol 2025; 310:143440. [PMID: 40280523 DOI: 10.1016/j.ijbiomac.2025.143440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Cancer, being one of the most outrageous diseases, contributed to 48 % of the mortality in 2022, with lung cancer leading the race with a 12.4 % incidence rate. Conventional treatment modalities like radio-, chemo-, photo-, and immunotherapy employing nanocarriers often face several setbacks, such as non-specific delivery, off-site toxicity, rapid opsonization via the host immune system, and greater tumor recurrence rates. Moreover, the heterogeneous variability in the tumor microenvironment is responsible for existing therapy failure. With the advent of biomimetic nanoparticles as a novel and intriguing platform, researchers have exploited the inherent functionalities of the Cluster of Differentiation proteins (CD) as cell surface biomarkers and imparted the nanocarriers with enhanced homologous tumor targetability, immune evasion capability, and stealth properties, paving the way for improved therapy and diagnosis. This article explores pathogenesis and the multifaceted role of immune cells in non-small cell lung cancer. Moreover, the agenda of this article is to shed light on biomimetic nanoarchitectonics with respect to their fabrication, evaluation, and applications unraveling their synergistic effect with conventional therapies. Further discussion mentions the hurdles in clinical translation with viable solutions. The regulatory bottlenecks underscore the need for a regulatory roadmap with respect to commercialization. We believe that biomimetic nanoarchitectonics will be a beacon of hope in warfare against lung cancer.
Collapse
Affiliation(s)
- Niharika Puri
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Prajakta Sahane
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Shalini Shukla
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Abhipsa Priyadarshinee
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Akshita Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
5
|
Liu H, Jin X, Liu S, Liu X, Pei X, Sun K, Li M, Wang P, Chang Y, Wang T, Wang B, Yu XA. Recent advances in self-targeting natural product-based nanomedicines. J Nanobiotechnology 2025; 23:31. [PMID: 39833846 PMCID: PMC11749302 DOI: 10.1186/s12951-025-03092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
Natural products, recognized for their potential in disease prevention and treatment, have been integrated with advanced nano-delivery systems to create natural product-based nanomedicines, offering innovative approaches for various diseases. Natural products derived from traditional Chinese medicine have their own targeting effect and remarkable therapeutic effect on many diseases, but there are some shortcomings such as poor physical and chemical properties. The construction of nanomedicines using the active ingredients of natural products has become a key step in the modernization research process, which could be used to make up for the defects of natural products such as low solubility, large dosage, poor bioavailability and poor targeting. Nanotechnology enhances the safety, selectivity, and efficacy of natural products, positioning natural product-based nanomedicines as promising candidates in medicine. This review outlines the current status of development, the application in different diseases, and safety evaluation of natural product-based nanomedicines, providing essential insights for further exploration of the synergy between natural products and nano-delivery systems in disease treatment.
Collapse
Affiliation(s)
- Haifan Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xingyue Jin
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinyue Liu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao Pei
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Kunhui Sun
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Meifang Li
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Ping Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China
| | - Yanxu Chang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tiejie Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Bing Wang
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xie-An Yu
- NMPA Key Laboratory for Bioequivalence Research of Generic Drug Evaluation, NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, 518057, China.
| |
Collapse
|
6
|
He Y, Zhang S, She Y, Liu Z, Zhu Y, Cheng Q, Ji X. Innovative utilization of cell membrane-coated nanoparticles in precision cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230164. [PMID: 39713200 PMCID: PMC11655310 DOI: 10.1002/exp.20230164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 12/24/2024]
Abstract
Cell membrane-coated nanoparticles (CMNPs) have recently emerged as a promising platform for cancer therapy. By encapsulating therapeutic agents within a cell membrane-derived coating, these nanoparticles combine the advantages of synthetic nanoparticles and natural cell membranes. This review provides a comprehensive overview of the recent advancements in utilizing CMNPs as effective drug delivery vehicles for cancer therapy. The synthesis and fabrication methods of CMNPs are comprehensively discussed. Various techniques, such as extrusion, sonication, and self-assembly, are employed to coat synthetic nanoparticles with cell membranes derived from different cell types. The cell membrane coating enables biocompatibility, reducing the risk of an immune response and enhancing the stability of the nanoparticles in the bloodstream. Moreover, functionalization strategies for CMNPs, primarily chemical modification, genetic engineering, and external stimuli, are highlighted. The presence of specific cell surface markers on the coated membrane allows targeted drug delivery to cancer cells and maximizes therapeutic efficacy. Preclinical studies utilizing CMNPs for cancer therapy demonstrated the successful delivery of various therapeutic agents, such as chemotherapeutic drugs, nucleic acids, and immunotherapeutic agents, using CMNPs. Furthermore, the article explores the future directions and challenges of this technology while offering insights into its clinical potential.
Collapse
Affiliation(s)
- Yiling He
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Shuquan Zhang
- Department of OrthopedicsIntegrated Chinese and Western Medicine HospitalTianjin UniversityTianjinChina
- Department of OrthopedicsTianjin Nankai HospitalTianjinChina
- Department of OrthopedicsTianjin Hospital of Integrated Chinese and Western MedicineTianjinChina
| | - Yaoguang She
- Department of General SurgeryFirst Medical CenterChinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Zhaoshan Liu
- Laboratory of Immune Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yalan Zhu
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Qinzhen Cheng
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjinChina
| |
Collapse
|
7
|
Zhang Y, Zhang Q, Li C, Zhou Z, Lei H, Liu M, Zhang D. Advances in cell membrane-based biomimetic nanodelivery systems for natural products. Drug Deliv 2024; 31:2361169. [PMID: 38828914 PMCID: PMC11149581 DOI: 10.1080/10717544.2024.2361169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Active components of natural products, which include paclitaxel, curcumin, gambogic acid, resveratrol, triptolide and celastrol, have promising anti-inflammatory, antitumor, anti-oxidant, and other pharmacological activities. However, their clinical application is limited due to low solubility, instability, low bioavailability, rapid metabolism, short half-life, and strong off-target toxicity. To overcome these drawbacks, cell membrane-based biomimetic nanosystems have emerged that avoid clearance by the immune system, enhance targeting, and prolong drug circulation, while also improving drug solubility and bioavailability, enhancing drug efficacy, and reducing side effects. This review summarizes recent advances in the preparation and coating of cell membrane-coated biomimetic nanosystems and in their applications to disease for targeted natural products delivery. Current challenges, limitations, and prospects in this field are also discussed, providing a research basis for the development of multifunctional biomimetic nanosystems for natural products.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Qian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Chunhong Li
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Ziyun Zhou
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, P. R. China
| |
Collapse
|
8
|
Mizuta R, Kanao E, Ukyo K, Kuwada S, Sawada SI, Ishihama Y, Akiyoshi K, Sasaki Y. A Direct Approach for Living Biomembrane Printing on a Nanoparticle. NANO LETTERS 2024. [PMID: 39377259 DOI: 10.1021/acs.nanolett.4c03293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Biomembrane coating technologies have been developed to equip synthetic nanomaterials with natural biointerfaces. We report a one-step method for nondestructively coating the biomembranes of "living" cells onto nanoparticle surfaces. By using simple centrifugation, nanoparticles pass through a concentrated layer of living cells. This process mimics exosome release via endocytosis and exocytosis, preserving the membrane integrity of the source cells. The resulting silica nanoparticles were efficiently coated with membrane components from Raw264.7 cells. Nanoflow-liquid chromatography-tandem mass spectrometry confirmed that the proteins composing the membrane originated from the source cells. Additionally, the biomembrane coating suppressed the phagocytosis of silica nanoparticles by Raw264.7 cells while enhancing their uptake by HeLa cells. Our simple and efficient method for living biomembrane coating holds promise for the development of nanoparticles for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Eisuke Kanao
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Keigo Ukyo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shusuke Kuwada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasushi Ishihama
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Hou W, Zou Y, Li J, Jiang H, Li J, Wu J, Zhu S, Ding Y, Xu H, Jia F, Li X. Synergistic Therapy of Melanoma by Co-Delivery of Dacarbazine and Ferroptosis-Inducing Ursolic Acid Using Biomimetic Nanoparticles. ACS OMEGA 2024; 9:41532-41543. [PMID: 39398166 PMCID: PMC11465262 DOI: 10.1021/acsomega.4c05209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Melanoma is one of the most aggressive types of cancer and is prone to metastasis, making current clinical treatment quite difficult. The usage of the first-line medication dacarbazine (DTIC) for melanoma is limited due to harsh side effects, limited water solubility, and a short half-life. To tackle these disadvantages, polylactic acid-hydroxyacetic acid copolymer nanoparticles (NPs) loaded with dacarbazine and ursolic acid (NPs) were fabricated, which were further encapsulated with a red blood cell membrane (RNPs). MTT, apoptosis assay, wound healing assay, colony formation assay, and immunohistochemistry were used to assess the antitumor effect of NPs and RNPs. Ferroptosis evaluation was implemented using GSH detection and the malondialdehyde assay. We found that RNPs exhibited stability and biosafety in vitro and in vivo and achieved superior anticancer ability against xenograft tumors compared with single agents and NPs, which indicated the synergistic and biomimetic efficacy. Furthermore, ferroptotic activity was observed in RNPs-treated tumor cells, and ferroptosis inhibition could partially rescue melanoma cells from RNPs-induced cell death. Collectively, this study evaluated the potential of RNPs as a novel biomimetic nanomedicine for synergistic melanoma therapy by eliciting ferroptosis in tumor cells with both anticancer activity and biosafety.
Collapse
Affiliation(s)
- Wenjun Hou
- Department
of Dermatology, Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing 210008, China
| | - Yifan Zou
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Department
of General Surgery, The First Affiliated
Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jie Li
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Hui Jiang
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jinyu Li
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jie Wu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Senlin Zhu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Yan Ding
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Huae Xu
- Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Feng Jia
- Department
of Neurosurgery, Yancheng No. 1 People’s Hospital, The Affiliated Yancheng First Hospital of Nanjing
University Medical School, 66 Renmin South Road, Yancheng 224008, China
| | - Xiaolin Li
- Department
of Geriatric Gastroenterology, The First
Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
10
|
Meng Z, Ouyang H, Hu Y, Chen B, Dong X, Wang T, Wu M, Yu N, Lou X, Wang S, Xia F, Dai J. Surface-engineered erythrocyte membrane-camouflage fluorescent bioprobe for precision ovarian cancer surgery. Eur J Nucl Med Mol Imaging 2024; 51:3532-3544. [PMID: 38867107 DOI: 10.1007/s00259-024-06793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.
Collapse
Affiliation(s)
- Zijuan Meng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hanzhi Ouyang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Tingting Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
11
|
Jiang Y, Yan C, Li M, Chen S, Chen Z, Yang L, Luo K. Delivery of natural products via polysaccharide-based nanocarriers for cancer therapy: A review on recent advances and future challenges. Int J Biol Macromol 2024; 278:135072. [PMID: 39191341 DOI: 10.1016/j.ijbiomac.2024.135072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Cancer, caused by uncontrolled proliferation of abnormal cells, has long been a global public health issue. For decades, natural products have been proven to be an essential source for novel anticancer drug discovery. But their instability, low solubility and bioavailability, poor targeting impede therapeutic efficacy. With the development of nanotechnology, nanomedicine delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. However, constructing suitable nanocarrier is still a major challenge. Polysaccharides are extensively employed as carrier materials in nanomedicine delivery systems, owing to their unique physicochemical properties, biocompatibility and low immunogenicity. Polysaccharide-based nanomedicine delivery systems show high drug delivery efficiency, controlled drug release, and precise tumor targeting. This paper reviews influencing factors in the construction of polysaccharide-based nanocarriers and the application of polysaccharide-based nanocarriers for the delivery of natural products in treating various cancers. It focuses on their in vitro and in vivo anticancer efficacy and mechanisms. Furthermore, the review contrasts the capabilities and limitations of polysaccharide-based nanocarriers with traditional delivery methods, underlining their potential to enable targeted, reduced toxicity and excellent cancer treatment modalities. Finally, we discuss the current research limitations and future prospects in this emerging field.
Collapse
Affiliation(s)
- Yingjie Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Minghao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Siying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhimin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmaceutics of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Gu Y, Du L, Wu Y, Qin J, Gu X, Guo Z, Li Y. Biomembrane-Modified Biomimetic Nanodrug Delivery Systems: Frontier Platforms for Cardiovascular Disease Treatment. Biomolecules 2024; 14:960. [PMID: 39199348 PMCID: PMC11352341 DOI: 10.3390/biom14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of death worldwide. Despite significant advances in current drug therapies, issues such as poor drug targeting and severe side effects persist. In recent years, nanomedicine has been extensively applied in the research and treatment of CVDs. Among these, biomembrane-modified biomimetic nanodrug delivery systems (BNDSs) have emerged as a research focus due to their unique biocompatibility and efficient drug delivery capabilities. By modifying with biological membranes, BNDSs can effectively reduce recognition and clearance by the immune system, enhance biocompatibility and circulation time in vivo, and improve drug targeting. This review first provides an overview of the classification and pathological mechanisms of CVDs, then systematically summarizes the research progress of BNDSs in the treatment of CVDs, discussing their design principles, functional characteristics, and clinical application potential. Finally, it highlights the issues and challenges faced in the clinical translation of BNDSs.
Collapse
Affiliation(s)
- Yunan Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Yuxin Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Juan Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Xiang Gu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.G.); (L.D.); (Y.W.); (J.Q.); (X.G.)
| |
Collapse
|
13
|
Wu X, Xin Y, Zhang H, Quan L, Ao Q. Biopolymer-Based Nanomedicine for Cancer Therapy: Opportunities and Challenges. Int J Nanomedicine 2024; 19:7415-7471. [PMID: 39071502 PMCID: PMC11278852 DOI: 10.2147/ijn.s460047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/18/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer, as the foremost challenge among human diseases, has plagued medical professionals for many years. While there have been numerous treatment approaches in clinical practice, they often cause additional harm to patients. The emergence of nanotechnology has brought new directions for cancer treatment, which can deliver anticancer drugs specifically to tumor areas. This article first introduces the application scenarios of nanotherapies and treatment strategies of nanomedicine. Then, the noteworthy characteristics exhibited by biopolymer materials were described, which make biopolymers stand out in polymeric nanomedicine delivery. Next, we focus on summarizing the state-of-art studies of five categories of proteins (Albumin, Gelatin, Silk fibroin, Zein, Ferritin), nine varieties of polysaccharides (Chitosan, Starch, Hyaluronic acid, Dextran, cellulose, Fucoidan, Carrageenan, Lignin, Pectin) and liposomes in the field of anticancer drug delivery. Finally, we also provide a summary of the advantages and limitations of these biopolymers, discuss the prevailing impediments to their application, and discuss in detail the prospective research directions. This review not only helps readers understand the current development status of nano anticancer drug delivery systems based on biopolymers, but also is helpful for readers to understand the properties of various biopolymers and find suitable solutions in this field through comparative reading.
Collapse
Affiliation(s)
- Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| | - Qiang Ao
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, & Institute of Regulatory Science for Medical Device, & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People’s Republic of China
| |
Collapse
|
14
|
Chi M, Liu J, Li L, Zhang Y, Xie M. CeO 2 In Situ Growth on Red Blood Cell Membranes: CQD Coating and Multipathway Alzheimer's Disease Therapy under NIR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35898-35911. [PMID: 38954799 DOI: 10.1021/acsami.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) has a complex etiology and diverse pathological processes. The therapeutic effect of single-target drugs is limited, so simultaneous intervention of multiple targets is gradually becoming a new research trend. Critical stages in AD progression involve amyloid-β (Aβ) self-aggregation, metal-ion-triggered fibril formation, and elevated reactive oxygen species (ROS). Herein, red blood cell membranes (RBC) are used as templates for the in situ growth of cerium oxide (CeO2) nanocrystals. Then, carbon quantum dots (CQDs) are encapsulated to form nanocomposites (CQD-Ce-RBC). This strategy is combined with photothermal therapy (PTT) for AD therapy. The application of RBC enhances the materials' biocompatibility and improves immune evasion. RBC-grown CeO2, the first application in the field of AD, demonstrates outstanding antioxidant properties. CQD acts as a chelating agent for copper ions, which prevents the aggregation of Aβ. In addition, the thermal effect induced by near-infrared laser-induced CQD can break down Aβ fibers and improve the permeability of the blood-brain barrier. In vivo experiments on APP/PS1 mice demonstrate that CQD-Ce-RBC combined with PTT effectively clears cerebral amyloid deposits and significantly enhances learning and cognitive abilities, thereby retarding disease progression. This innovative multipathway approach under light-induced conditions holds promise for AD treatment.
Collapse
Affiliation(s)
- Mingyuan Chi
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jichun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lianxin Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuewen Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
15
|
Jia G, Wang J, Wang H, Hu X, Long F, Yuan C, Liang C, Wang F. New insights into red blood cells in tumor precision diagnosis and treatment. NANOSCALE 2024; 16:11863-11878. [PMID: 38841898 DOI: 10.1039/d4nr01454e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Red blood cells (RBCs), which function as material transporters in organisms, are rich in materials that are exchanged with metabolically active tumor cells. Recent studies have demonstrated that tumor cells can regulate biological changes in RBCs, including influencing differentiation, maturation, and morphology. RBCs play an important role in tumor development and immune regulation. Notably, the novel scientific finding that RBCs absorb fragments of tumor-carrying DNA overturns the conventional wisdom that RBCs do not contain nucleic acids. RBC membranes are excellent biomimetic materials with significant advantages in terms of their biocompatibility, non-immunogenicity, non-specific adsorption resistance, and biodegradability. Therefore, RBCs provide a new research perspective for the development of tumor liquid biopsies, molecular imaging, drug delivery, and other tumor precision diagnosis and treatment technologies.
Collapse
Affiliation(s)
- Gaihua Jia
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
| | - Hu Wang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
16
|
Song M, Tian J, Wang L, Dong S, Fu K, Chen S, Liu C. Efficient Delivery of Lomitapide using Hybrid Membrane-Coated Tetrahedral DNA Nanostructures for Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311760. [PMID: 38569065 DOI: 10.1002/adma.202311760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and prevalent primary malignant tumor of the central nervous system. Traditional chemotherapy has poor therapeutic effects and significant side effects due to drug resistance, the natural blood-brain barrier (BBB), and nonspecific distribution, leading to a lack of clinically effective therapeutic drugs. Here, 1430 small molecule compounds are screened based on a high-throughput drug screening platform and a novel anti-GBM drug, lomitapide (LMP) is obtained. Furthermore, a bionic nanodrug delivery system (RFA NPs) actively targeting GBM is constructed, which mainly consists of tetrahedral DNA nanocages (tFNA NPs) loaded with LMP as the core and a folate-modified erythrocyte-cancer cell-macrophage hybrid membrane (FRUR) as the shell. FRUR camouflage conferred unique features on tFNA NPs, including excellent biocompatibility, improved pharmacokinetic profile, efficient BBB permeability, and tumor targeting ability. The results show that the LMP RFA NPs exhibited superior and specific anti-GBM activities, reduced off-target drug delivery, prolonged lifespan, and has negligible side effects in tumor-bearing mice. This study combines high-throughput drug screening with biomimetic nanodrug delivery system technology to provide a theoretical and practical basis for drug development and the optimization of clinical treatment strategies for GBM treatment.
Collapse
Affiliation(s)
- Mingming Song
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiameng Tian
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuqi Dong
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Kun Fu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyu Chen
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
17
|
Xu Y, Lv L, Wang Q, Yao Q, Kou L, Zhang H. Emerging application of nanomedicine-based therapy in acute respiratory distress syndrome. Colloids Surf B Biointerfaces 2024; 237:113869. [PMID: 38522285 DOI: 10.1016/j.colsurfb.2024.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious lung injuries caused by various factors, leading to increased permeability of the alveolar-capillary barrier, reduced stability of the alveoli, inflammatory response, and hypoxemia. Despite several decades of research since ARDS was first formally described in 1967, reliable clinical treatment options are still lacking. Currently, supportive therapy and mechanical ventilation are prioritized, and there is no medication that can be completely effective in clinical treatment. In recent years, nanomedicine has developed rapidly and has exciting preclinical treatment capabilities. Using a drug delivery system based on nanobiotechnology, local drugs can be continuously released in lung tissue at therapeutic levels, reducing the frequency of administration and improving patient compliance. Furthermore, this novel drug delivery system can target specific sites and reduce systemic side effects. Currently, many nanomedicine treatment options for ARDS have demonstrated efficacy. This review briefly introduces the pathophysiology of ARDS, discusses various research progress on using nanomedicine to treat ARDS, and anticipates future developments in related fields.
Collapse
Affiliation(s)
- Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Leyao Lv
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
18
|
Jiang A, He W, Yao Y. Editorial: Overcoming obstacles of cancer immunotherapy: the important role of emerging nanomedicine. Front Oncol 2024; 14:1406244. [PMID: 38646437 PMCID: PMC11026582 DOI: 10.3389/fonc.2024.1406244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024] Open
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
19
|
Zhang J, Yu H, Li G. Engineered cell membrane-coated nanoparticles based cancer therapy: A robust weapon against the lethal and challenging hepatocellular carcinoma. Biointerphases 2024; 19:020801. [PMID: 38607255 DOI: 10.1116/6.0003204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/05/2024] [Indexed: 04/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) has become an important public health problem, and there are still challenges to overcome in clinical treatment. The nanodrug delivery system (NDDS) has developed tremendously in recent years, and many researchers have explored NDDS for the treatment of HCC. Engineered cell membrane-coated nanoparticles (ECNPs) have emerged, combining the unique functions of cell membranes with the engineering versatility of synthetic nanoparticles (NPs) to effectively deliver therapeutic drugs. It is designed to have the capabilities: specific active targeting, immune evasion, prolonging the circulation blood time, controlled drug release delivery, and reducing drugs systematic toxicity. Thus, ECNPs are a promising bionic tool in the treatment of HCC and have operability to achieve combination and integrated therapy. This review focuses on the mechanism and strategy of ECNPs for the treatment of HCC and summarizes its research progress in the treatment of HCC in recent years.
Collapse
Affiliation(s)
- Jiachen Zhang
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Hongjuan Yu
- Shanghai Pudong New Area Caolu Community Health Service Center, Shanghai 201209, China
| | - Gang Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
20
|
Jiang A, Zheng X, Yan S, Yan J, Yao Y, He W. Advancing the Boundaries of Immunotherapy in Lung Adenocarcinoma with Idiopathic Pulmonary Fibrosis by a Biomimetic Proteinoid Enabling Selective Endocytosis. ACS NANO 2024. [PMID: 38319028 PMCID: PMC10883119 DOI: 10.1021/acsnano.3c09852] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The coexistence of lung adenocarcinoma (LUAD) with idiopathic pulmonary fibrosis (IPF), which has been extensively documented as a prominent risk factor for checkpoint inhibitor-related pneumonitis (CIP) in patients undergoing immunotherapy, has long been considered a restricted domain for the use of immune checkpoint inhibitors (ICIs). To overcome it, an approach was employed herein to specifically target PD-L1 within the cellular interior, surpassing the conventional focus solely on the cytomembrane, thereby facilitating the development of ICIs capable of distinguishing between LUAD cells and noncancerous cells based on their distinctive endocytic propensities. By exploiting the aurophilicity-driven self-assembly of a PD-L1 binding peptide (PDBP) and subsequently encapsulating it within erythrocyte membranes (EM), the resulting biomimetic ICIs protein EMS-PDBP exhibited extraordinary selectivity in internalizing LUAD cells, effectively targeting PD-L1 within cancer cells while hindering its membrane translocation. The EMS-PDBP treatment not only reactivated the antitumor immune response in the LUAD orthotopic allograft mouse model but also demonstrated a favorable safety profile by effectively eliminating any immune-related adverse events (irAEs). Most significantly, EMS-PDBP successfully and safely restored the antitumor immune response in a mouse model of LUAD with coexistent IPF, thus shattering the confines of ICIs immunotherapy. The reported EMS-PDBP collectively offers a potential strategy for immune reactivation to overcome the limitations of immunotherapy in LUAD coexisting with IPF.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China
| |
Collapse
|
21
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
22
|
Kang C, Wang J, Li R, Gong J, Wang K, Wang Y, Wang Z, He R, Li F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023; 28:5955. [PMID: 37630208 PMCID: PMC10459615 DOI: 10.3390/molecules28165955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
As a therapeutic tool inherited for thousands of years, traditional Chinese medicine (TCM) exhibits superiority in tumor therapy. The antitumor active components of TCM not only have multi-target treatment modes but can also synergistically interfere with tumor growth compared to traditional chemotherapeutics. However, most antitumor active components of TCM have the characteristics of poor solubility, high toxicity, and side effects, which are often limited in clinical application. In recent years, delivering the antitumor active components of TCM by nanosystems has been a promising field. The advantages of nano-delivery systems include improved water solubility, targeting efficiency, enhanced stability in vivo, and controlled release drugs, which can achieve higher drug-delivery efficiency and bioavailability. According to the method of drug loading on nanocarriers, nano-delivery systems can be categorized into two types, including physically encapsulated nanoplatforms and chemically coupled drug-delivery platforms. In this review, two nano-delivery approaches are considered, namely physical encapsulation and chemical coupling, both commonly used to deliver antitumor active components of TCM, and we summarized the advantages and limitations of different types of nano-delivery systems. Meanwhile, the clinical applications and potential toxicity of nano-delivery systems and the future development and challenges of these nano-delivery systems are also discussed, aiming to lay the foundation for the development and practical application of nano-delivery systems of TCM in clinical settings.
Collapse
Affiliation(s)
- Chenglong Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianwen Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Ruotong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Jianing Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Kuanrong Wang
- School of Management, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| | - Zhenghua Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruzhe He
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (C.K.)
| |
Collapse
|
23
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
24
|
Kou Q, Huang Y, Su Y, Lu L, Li X, Jiang H, Huang R, Li J, Nie X. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. NANOSCALE 2023. [PMID: 37161583 DOI: 10.1039/d3nr00542a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A synergistic combination of treatment with immunogenic cell death (ICD) inducers and immunoadjuvants may be a practical way to boost the anticancer response and successfully induce an immune response. The use of HR@UCNPs/CpG-Apt/DOX, new biomimetic drug delivery nanoparticles generated to combat breast cancer, is reported here as a unique strategy to produce immunogenicity and boost cancer immunotherapy. HR@UCNPs/CpG-Apt/DOX (HR-UCAD) consists of two parts. The core is composed of an immunoadjuvant CpG (a toll-like receptor 9 agonist) fused with a dendritic cell-specific aptamer sequence (CpG-Apt) to decorate upconversion nanoparticles (UCNPs) with the successful intercalation of doxorubicin (DOX) into the consecutive base pairs of Apt-CpG to construct an immune nanodrug UCNPs@CpG-Apt/DOX. The targeting molecule hyaluronic acid (HA) was inserted into a red blood cell membrane (RBCm) to form the shell (HR). HR-UCAD possessed a strong capacity to specifically induce ICD. Following DOX-induced ICD of cancer cells, sufficient exposure to tumor antigens and UCNPs@CpG-Apt (UCA) activated the tumor-specific immune response and reversed the immunosuppressive tumor microenvironment. In addition, HR-UCAD has good biocompatibility and increases the active tumor-targeting effect. Furthermore, HR-UCAD exhibits excellent near-infrared upconversion luminescence emission at 804 nm under irradiation with a 980 nm laser, which has great potential in biomedical imaging. Thus, the RBCm-camouflaged drug delivery system is a promising targeted chemotherapy and immunotherapy nanocomplex that could be used for effective targeted breast cancer treatment.
Collapse
Affiliation(s)
- Qinjie Kou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yufen Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yanrong Su
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Lu Lu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha, 410000, Hunan, China.
| |
Collapse
|
25
|
Baldassari S, Balboni A, Drava G, Donghia D, Canepa P, Ailuno G, Caviglioli G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023; 15:1445. [PMID: 37242687 PMCID: PMC10221807 DOI: 10.3390/pharmaceutics15051445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The majority of anticancer agents currently used derive from natural sources: plants, frequently the ones employed in traditional medicines, are an abundant source of mono- and diterpenes, polyphenols, and alkaloids that exert antitumor activity through diverse mechanisms. Unfortunately, many of these molecules are affected by poor pharmacokinetics and limited specificity, shortcomings that may be overcome by incorporating them into nanovehicles. Cell-derived nanovesicles have recently risen to prominence, due to their biocompatibility, low immunogenicity and, above all, targeting properties. However, due to difficult scalability, the industrial production of biologically-derived vesicles and consequent application in clinics is difficult. As an efficient alternative, bioinspired vesicles deriving from the hybridization of cell-derived and artificial membranes have been conceived, revealing high flexibility and appropriate drug delivery ability. In this review, the most recent advances in the application of these vesicles to the targeted delivery of anticancer actives obtained from plants are presented, with specific focus on vehicle manufacture and characterization, and effectiveness evaluation performed through in vitro and in vivo assays. The emerging overall outlook appears promising in terms of efficient drug loading and selective targeting of tumor cells, suggesting further engrossing developments in the future.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Alice Balboni
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Daniela Donghia
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Paolo Canepa
- Department of Physics, University of Genova, 16146 Genova, Italy;
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy; (S.B.); (A.B.); (G.D.); (D.D.)
| |
Collapse
|
26
|
Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics 2022; 14:pharmaceutics14102090. [PMID: 36297527 PMCID: PMC9610396 DOI: 10.3390/pharmaceutics14102090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma can be divided into cutaneous melanoma, uveal melanoma, mucosal melanoma, etc. It is a very aggressive tumor that is prone to metastasis. Patients with metastatic melanoma have a poor prognosis and shorter survival. Although current melanoma treatments have been dramatically improved, there are still many problems such as systemic toxicity and the off-target effects of drugs. The use of nanoparticles may overcome some inadequacies of current melanoma treatments. In this review, we summarize the limitations of current therapies for cutaneous melanoma, uveal melanoma, and mucosal melanoma, as well as the adjunct role of nanoparticles in different treatment modalities. We suggest that nanomaterials may have an effective intervention in melanoma treatment in the future.
Collapse
|