1
|
Chen J, Xu G, Shen R, Xu J, Lu C, Li X, Feng Q, Li Q. Communications Among Neurocytes in Parkinson's Disease Regulated by Differential Metabolism and Blood-Brain Barrier Traversing of Chiral Gold Cluster-MOF Integrated Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500026. [PMID: 40365769 DOI: 10.1002/advs.202500026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/19/2025] [Indexed: 05/15/2025]
Abstract
This study have previously reported that ZIF-based chiral nanomedicines achieve Parkinson's disease (PD) therapy through differential metabolism and relief of neuroinflammation. However, lack of overall chirality and anti-inflammatory capacity of nanomedicines limit the further effective solution to the nanobiological effects research in PD. Here, it dexterously loaded chiral gold nanoclusters (AuNCs) onto the inner and outer surfaces of ZIF to achieve the purpose of simultaneously improving the overall chirality and anti-inflammatory activity of the composite nanoparticles (NPs). There are significant differences in the composition of protein corona between different chiral NPs, which elucidates the mechanism of chiral-mediated discrepancies in metabolism and the blood-brain barrier (BBB) traversing. Multi-omics and biochemical techniques further reveal that chiral NPs interfere with the chemokine axis (CX3CL1/CX3CR1)-NF-κB-NLRP3 and PI3K-AKT signaling pathways, regulate communications between neurons, neural stem cells and microglia ("the three-body problem"), and induce anti-inflammatory efficacy of microglia mitochondrial energy metabolic reprogramming in PD. The research uncovers the biodistribution, metabolic variances, and therapeutic mechanism of chiral NPs, providing deep insights into the nanobiological effects of chiral anti-inflammatory nanomedicines in PD therapy for future clinical transformation.
Collapse
Affiliation(s)
- Junyang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Gaoxiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Runpu Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianzhong Xu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Congcong Lu
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Qi Feng
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
He J, Wang G, Zhou Y, Li B, Shang P. Recent advances in polydopamine-coated metal-organic frameworks for cancer therapy. Front Bioeng Biotechnol 2025; 13:1553653. [PMID: 40291560 PMCID: PMC12023280 DOI: 10.3389/fbioe.2025.1553653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
The creation and development of classical multifunctional nanomaterials are crucial for the advancement of nanotherapeutic treatments for tumors. Currently, metal-organic frameworks (MOFs) modified with polydopamine (PDA) are at the forefront of nanomedicine research, particularly in tumor diagnostics and therapy, owing to their exceptional biocompatibility, expansive specific surface area, multifaceted functionalities, and superior photothermal properties, which led to significant advancements in anti-tumor research. Consequently, a range of anti-cancer strategies has been devised by leveraging the exceptional capabilities of MOFs, including intelligent drug delivery systems, photodynamic therapy, and photothermal therapy, which are particularly tailored for the tumor microenvironment. In order to gain deeper insight into the role of MOFs@PDA in cancer diagnosis and treatment, it is essential to conduct a comprehensive review of existing research outcomes and promptly analyze the challenges associated with their biological applications. This will provide valuable perspectives on the potential of MOFs@PDA in clinical settings.
Collapse
Affiliation(s)
- Jingchao He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Key Laboratory of the Jiangsu Higher Education Institutions for Nucleic Acid and Cell Fate Regulation, Yangzhou University, Yangzhou, China
| | - Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yongfang Zhou
- Department of Oncology, Jining Cancer Hospital, Jining, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Pan Shang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
3
|
Zhang D, Wang T, Zhang X, Xu Y, Ming J, Wang X, Liu Z, Li J, Su X. Synchronously Delivering Melittin and Evoking Ferroptosis via Tumor Microenvironment-Triggered Self-Destructive Metal-Organic Frameworks to Boost Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2500003. [PMID: 39989111 DOI: 10.1002/adhm.202500003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/13/2025] [Indexed: 02/25/2025]
Abstract
The primary goal of treating malignant tumors is to efficiently eliminate the primary tumor and prevent metastasis and recurrence. Unfortunately, the immunosuppressive tumor microenvironment (TME) is a significant obstacle to effective oncotherapy. Herein, a therapeutic strategy based on melittin (MLT) encapsulated in hyaluronic acid-modified metal-organic frameworks (MOFs) is pioneered, focusing on the safe delivery and TME-responsive release of MLT to reshaping the immunosuppressive TME and simultaneously activating the immune system to eradicate cancerous cells. Iron-based MOFs respond to glutathione and pH, degrade within a moderately acidic TME, and achieve tumor-specific release of MLT. Additionally, the iron-mediated Fenton reaction produces reactive oxygen species that augment oxidative stress, ultimately leading to tumor-specific ferroptosis, whereas MLT-induced membrane disruption promotes immunogenic cell death to activate the immune system. In combination with the immune checkpoint inhibitor anti-PD-L1, this nanodrug elicits potent antitumor immune responses, facilitating the infiltration of effector T cells and enhancing systemic antitumor T cell immunity to suppress both primary and distant tumors. This study demonstrates the tremendous potential of nanoscale self-destructive MOFs for the targeted transport and controlled release of MLT and reveals the promoting effect of combined MLT and ferroptosis delivery on cancer immunotherapy.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tingting Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xun Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361102, China
| | - Xiaoxiao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhenfeng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jingchao Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
4
|
Gao W, Han X, Li L, Xu Y, Xu M, Gao Z, Wang C. Functionalized ZIF-8 as a versatile platform for drug delivery and cancer therapy: strategies, challenges and prospects. J Mater Chem B 2025; 13:3758-3785. [PMID: 40019146 DOI: 10.1039/d4tb02289k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
This review discusses the functionalization strategies of ZIF-8 and challenges and future developments in ZIF-8-based platforms for drug delivery and cancer therapy. We systematically evaluate a series of innovative ZIF-8 functionalization methods, including atomic doping, introduction of targeting molecules, and biomimetic mineralization technology, to achieve precise drug release. These functionalization strategies significantly enhance the targeted delivery and controlled release properties of ZIF-8, broaden the diversity of drug delivery systems, maximize therapeutic effects, and minimize systemic toxicity. In addition, this review explores the important role of ZIF-8 in tumor therapy. Its ability to encapsulate multiple therapeutic agents and its responsiveness to the tumor microenvironment significantly improve the therapeutic effect and reduce the side effects of traditional treatments. By integrating multiple therapeutic agents and performing surface modification, ZIF-8-based platforms may provide personalized and efficient treatment options for drug-resistant or recurrent cancers. This review also comprehensively discusses the synthesis methods, drug loading capacity, and potential clinical applications of ZIF-8, emphasizing the need to optimize its large-scale production and reproducibility. In addition, further studies on the long-term biocompatibility and biodegradability of ZIF-8-based systems are essential to ensure their safety in long-term treatment. In summary, this review highlights the structural advantages and significant therapeutic potential of ZIF-8 and calls for the transition of ZIF-8 from laboratory research to clinical application to provide more targeted, efficient, and friendly cancer treatment options.
Collapse
Affiliation(s)
- Wenyue Gao
- School of Chemistry & School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Xinping Han
- School of Chemistry & School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Ling Li
- School of Chemistry & School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Yan Xu
- School of Chemistry & School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Min Xu
- Chengdu Third People's Hospital, Chengdu 610031, China
| | - Zhu Gao
- School of Chemistry & School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Cuijuan Wang
- School of Chemistry & School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
5
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
6
|
Zhao C, Song W, Wang J, Tang X, Jiang Z. Immunoadjuvant-functionalized metal-organic frameworks: synthesis and applications in tumor immune modulation. Chem Commun (Camb) 2025; 61:1962-1977. [PMID: 39774558 DOI: 10.1039/d4cc06510g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy, which leverages the body's immune system to recognize and attack cancer cells, has made significant progress, particularly in the treatment of metastatic tumors. However, challenges such as drug stability and off-target effects still limit its clinical success. To address these issues, metal-organic frameworks (MOFs) have emerged as promising nanocarriers in cancer immunotherapy. MOFs have unique porous structure, excellent drug loading capacity, and tunable surface modification properties. MOFs not only enhance drug delivery efficiency but also allow for precise control of drug release. They reduce off-target effects and significantly improve targeting and therapy efficacy. As research deepens, MOFs' effectiveness as drug carriers has been refined. When combined with immunoadjuvants or anticancer drugs, MOFs further stimulate the immune response. This improves the specificity of immune attacks on tumors. This review provides a comprehensive overview of the applications of MOFs in cancer immunotherapy. It focuses on synthesis, drug loading strategies, and surface modifications. It also analyzes their role in enhancing immunotherapy effectiveness. By integrating current research, we aim to provide insights for the future development of immunoadjuvant-functionalized MOFs, accelerating their clinical application for safer and more effective cancer treatments.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Jianing Wang
- School of Medical Technology, the Qiushi College, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Howlett TS, Kumari S, Ehrman RN, Masson J, Izzo L, Wang T, Gull H, Trashi I, Tang W, Trashi O, Satish N, Wijesundara YH, Herbert FC, Izzo AA, Gassensmith JJ. Mn and Zn-Doped Multivariate Metal-Organic Framework as a Metalloimmunological Adjuvant to Promote Protection Against Tuberculosis Infection. Adv Healthc Mater 2024:e2402358. [PMID: 39648542 DOI: 10.1002/adhm.202402358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/22/2024] [Indexed: 12/10/2024]
Abstract
A first-in-class vaccine adjuvant delivery system, Mn-ZIF, is developed by incorporating manganese (Mn) into the zinc-containing zeolitic-imidazolate framework-8 (ZIF-8). The mixed metal approach, which allowed for tunable Mn doping, is made possible by including a mild reducing agent in the reaction mixture. This approach allows up to 50% Mn, with the remaining 50% Zn within the ZIF. This multivariate approach exhibits significantly decreased cytotoxicity compared to ZIF-8. The porous structure of Mn-ZIF enables the co-delivery of the STING agonist cyclic di-adenosine monophosphate (CDA) through post-synthetic loading, forming CDA@Mn-ZIF. The composite demonstrated enhanced cellular uptake and synergistic activation of the cGAS-STING pathway, producing proinflammatory cytokines and activating antigen-presenting cells (APCs). In a preclinical Mycobacterium tuberculosis (Mtb) model, CDA@Mn-ZIF formulates with the CysVac2 fusion protein elicited a potent antigen-specific T-cell response and significantly reduced the mycobacterial burden in the lungs of infected mice. These findings highlight the potential of CDA@Mn-ZIF as a promising adjuvant for subunit vaccines, offering a novel approach to enhancing vaccine efficacy and protection against infectious diseases such as tuberculosis.
Collapse
Affiliation(s)
- Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Jesse Masson
- Centenary Institute/University of Sydney, Royal Prince Alfred Hospital, Building 93, Missenden Road, Camperdown, New South Wales, 2050, Australia
| | - Linda Izzo
- Centenary Institute/University of Sydney, Royal Prince Alfred Hospital, Building 93, Missenden Road, Camperdown, New South Wales, 2050, Australia
| | - Trixie Wang
- Centenary Institute/University of Sydney, Royal Prince Alfred Hospital, Building 93, Missenden Road, Camperdown, New South Wales, 2050, Australia
| | - Humera Gull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Wendy Tang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Neha Satish
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
| | - Angelo A Izzo
- Centenary Institute/University of Sydney, Royal Prince Alfred Hospital, Building 93, Missenden Road, Camperdown, New South Wales, 2050, Australia
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| |
Collapse
|
8
|
Yuan K, Zhang C, Pan X, Hu B, Zhang J, Yang G. Immunomodulatory metal-based biomaterials for cancer immunotherapy. J Control Release 2024; 375:249-268. [PMID: 39260573 DOI: 10.1016/j.jconrel.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Cancer immunotherapy, as an emerging cancer treatment approach, harnesses the patient's own immune system to effectively prevent tumor recurrence or metastasis. However, its clinical application has been significantly hindered by relatively low immune response rates. In recent years, metal-based biomaterials have been extensively studied as effective immunomodulators and potential tools for enhancing anti-tumor immune responses, enabling the reversal of immune suppression without inducing toxic side effects. This review introduces the classification of bioactive metal elements and summarizes their immune regulatory mechanisms. In addition, we discuss the immunomodulatory roles of biomaterials constructed from various metals, including aluminum, manganese, gold, calcium, zinc, iron, magnesium, and copper. More importantly, a systematic overview of their applications in enhancing immunotherapy is provided. Finally, the prospects and challenges of metal-based biomaterials with immunomodulatory functions in cancer immunotherapy are outlined.
Collapse
Affiliation(s)
- Kangzhi Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinlu Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Meng X, Zhao N, Zhao D, Zhao H, Wang M, Zhao T, Man S, Dai Y, Zhao Y. Mitigating the skin phototoxicity of sonodynamic therapy via singlet oxygen-consuming metal-organic frameworks. J Control Release 2024; 376:303-317. [PMID: 39413848 DOI: 10.1016/j.jconrel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Sonodynamic anti-cancer therapy relies on the highly active singlet oxygen to induce potent cell death. However, the non-specific biodistribution of sonosensitizers post systemic administration results in a significant accumulation in the skin, and hence the daylight-induced phototoxicity. Here, we report a smart metal-organic framework-based nanocarrier with titanium dioxide (TiO2) as the sonosensitizer for reduced phototoxicity in the skin. The organic ligand bears the imidazole moiety that can facilely consume singlet oxygen in the skin without compromising the anti-cancer efficacy. The reaction between imidazole moiety and singlet oxygen was confirmed by the density functional theory (DFT). Upon light irradiation, the nanocarrier can significantly reduce the phototoxicity post light irradiation in a range of normal cells in vitro and in a mouse model in vivo. Meanwhile, the ligand contains a disulfide moiety that can deplete glutathione and orchestrate the singlet oxygen-induced toxicity in the CT-26 colon cancer cells. As a result, the nanocarrier showed superior in vivo antitumor efficacy in a CT-26 tumor-bearing mice model, leading to significant suppression of tumor growth and improved animal survival rates. The current work provides a tailored nanoscale particle engineering approach to simultaneously minimize phototoxicity in the skin and sensitize sonodynamic anti-cancer therapy.
Collapse
Affiliation(s)
- Xuan Meng
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Ning Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Delong Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Huanyu Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Mengjiao Wang
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Tianyang Zhao
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Shuli Man
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yujie Dai
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Deng Y, Guo M, Zhou L, Huang Y, Srivastava S, Kumar A, Liu JQ. Prospects, advances and biological applications of MOF-based platform for the treatment of lung cancer. Biomater Sci 2024; 12:3725-3744. [PMID: 38958409 DOI: 10.1039/d4bm00488d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nowadays in our society, lung cancer is exhibiting a high mortality rate and threat to human health. Conventional diagnostic techniques used in the field of lung cancer often necessitate the use of extensive instrumentation, exhibit a tendency for false positives, and are not suitable for widespread early screening purposes. Conventional approaches to treat lung cancer primarily involve surgery, chemotherapy, and radiotherapy. However, these broad-spectrum treatments suffer from drawbacks such as imprecise targeting and significant side effects, which restrict their widespread use. Metal-organic frameworks (MOFs) have attracted significant attention in the diagnosis and treatment of lung cancer owing to their tunable electronic properties and structures and potential applications. These porous nanomaterials are formed through the intricate assembly of metal centers and organic ligands, resulting in highly versatile frameworks. Compared to traditional diagnostic and therapeutic modalities, MOFs can improve the sensitivity of lung cancer biomarker detection in the diagnosis of lung cancer. In terms of treatment, they can significantly reduce side effects and improve therapeutic efficacy. Hence, this perspective provides an overview concerning the advancements made in the field of MOFs as potent biosensors for lung cancer biomarkers. It also delves into the latest research dealing with the use of MOFs as carriers for drug delivery. Additionally, it explores the applications of MOFs in various therapeutic approaches, including chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy. Furthermore, this review comprehensively analyses potential applications of MOFs as biosensors in the field of lung cancer diagnosis and combines different therapeutic approaches aiming for enhanced therapeutic efficacy. It also presents a concise overview of the existing obstacles, aiming to pave the way for future advancements in lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yijun Deng
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Manli Guo
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Yong Huang
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| | - Shreya Srivastava
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Abhinav Kumar
- Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India.
| | - Jian-Qiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
11
|
Zheng W, Meng Z, Zhu Z, Wang X, Xu X, Zhang Y, Luo Y, Liu Y, Pei X. Metal-Organic Framework-Based Nanomaterials for Regulation of the Osteogenic Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310622. [PMID: 38377299 DOI: 10.1002/smll.202310622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Indexed: 02/22/2024]
Abstract
As the global population ages, bone diseases have become increasingly prevalent in clinical settings. These conditions often involve detrimental factors such as infection, inflammation, and oxidative stress that disrupt bone homeostasis. Addressing these disorders requires exogenous strategies to regulate the osteogenic microenvironment (OME). The exogenous regulation of OME can be divided into four processes: induction, modulation, protection, and support, each serving a specific purpose. To this end, metal-organic frameworks (MOFs) are an emerging focus in nanomedicine, which show tremendous potential due to their superior delivery capability. MOFs play numerous roles in OME regulation such as metal ion donors, drug carriers, nanozymes, and photosensitizers, which have been extensively explored in recent studies. This review presents a comprehensive introduction to the exogenous regulation of OME by MOF-based nanomaterials. By discussing various functional MOF composites, this work aims to inspire and guide the creation of sophisticated and efficient nanomaterials for bone disease management.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
12
|
Li Q, Ding X, Chang Z, Fan X, Pan J, Yang Y, Li X, Jiang W, Fan K. Metal-Organic Framework Based Nanozyme System for NLRP3 Inflammasome-Mediated Neuroinflammatory Regulation in Parkinson's Disease. Adv Healthc Mater 2024; 13:e2303454. [PMID: 38031989 DOI: 10.1002/adhm.202303454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Neuroinflammation is associated with a series of pathological symptoms in Parkinson's disease (PD), including α-synuclein aggregation and dopaminergic neuronal death. The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation at the lesion site and is a promising target for PD treatment. In this study, a nanoscale metal-organic framework (Zr-FeP MOF) based nanozyme is fabricated using Fe-5,10,15,20-tetra (4-carboxyphenyl) porphyrin (Fe-TCPP) and Zr6 cluster as ligands. The Zr-FeP MOF is subsequently encapsulated with mannitol (Man)-liposome, resulting in the formation of Zr-FeP MOF@Man liposome (MOF@Man Liposome) nanozyme system. The in vitro studies show that this nanozyme system is effective in relieving the formation of NLRP3 inflammasome and mitochondrial dysfunction. In mouse models of PD, the nanozyme system demonstrates a significant blood-brain barrier-crossing capability attributed to the Man-mediated brain targeting. Additionally, transcriptomic and biochemical studies show that the nanozyme system effectively inhibits the formation and assembly of inflammasome components, mitigating the activation of glial cells and neuroinflammatory response, and ultimately regulating the pathological symptoms of PD effectively.
Collapse
Affiliation(s)
- Qing Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Ding
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohui Chang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaowan Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiangpeng Pan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Ying Yang
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Xin Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Jiang
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Kelong Fan
- Nanozyme Medical Center, School of Basic Medical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
13
|
Ma Y, Wu M, Mo F, Chen Z, Lu J, Sun D. Enhanced Electrochemical Characterization of the Immune Checkpoint Protein PD-L1 using Aptamer-Functionalized Magnetic Metal-Organic Frameworks. Adv Healthc Mater 2024; 13:e2303103. [PMID: 38164814 DOI: 10.1002/adhm.202303103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Programmed death ligand 1 (PD-L1) is highly expressed in cancer cells and participates in the immune escape process of tumor cells. However, as one of the most promising biomarkers for cancer immunotherapy monitoring, the key problem ahead of practical usage is how to effectively improve the detection sensitivity of PD-L1. Herein, an electrochemical aptasensor for the evaluation of tumor immunotherapy is developed based on the immune checkpoint protein PD-L1. The fundamental principle of this method involves the utilization of DNA nanotetrahedron (NTH)-based capture probes and aptamer-modified magnetic metal-organic framework nanocomposites as signaling probes. A synergistic enhancement is observed in the electrocatalytic effect between Fe3O4 and UiO-66 porous shells in Fe3O4@UiO-66 nanocomposites. Therefore, the integration of aptamer-modified Fe3O4@UiO-66@Au with NTH-assisted target immobilization as an electrochemical sensing platform can significantly enhance sensitivity and specificity for target detection. This method enables the detection of targets at concentrations as low as 7.76 pg mL-1 over a wide linear range (0.01 to 1000 ng mL-1). The authors have successfully employed this sensor for in situ characterization of PD-L1 on the cell surface and for monitoring changes in PD-L1 expression during drug therapy, providing a cost-effective yet robust alternative to highly expensive and expertise-dependent flow cytometry.
Collapse
Affiliation(s)
- Ying Ma
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Maoqiang Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Fayin Mo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Zuanguang Chen
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Lu
- National and Local United Engineering Lab of Druggability and New Drugs Evaluation School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Duanping Sun
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| |
Collapse
|
14
|
Tai Y, Chen Z, Luo T, Luo B, Deng C, Lu Z, Wen S, Wang J. MOF@COF Nanocapsules Enhance Soft Tissue Sarcoma Treatment: Synergistic Effects of Photodynamic Therapy and PARP Inhibition on Tumor Growth Suppression and Immune Response Activation. Adv Healthc Mater 2024; 13:e2303911. [PMID: 38215731 DOI: 10.1002/adhm.202303911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/07/2024] [Indexed: 01/14/2024]
Abstract
Soft tissue sarcomas (STS) are highly malignant tumors with limited treatment options owing to their heterogeneity and resistance to conventional therapies. Photodynamic therapy (PDT) and poly-ADP-ribose polymerase (PARP) inhibitors (PARPi) have shown potential for STS treatment, with PDT being effective for sarcomas located on the extremities and body surface and PARPi targeting defects in homologous recombination repair. To address the limitations of PDT and harness the potential of PARPi, herein, a novel therapeutic approach for STS treatment combining nanocapsules bearing integrated metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), i.e., MOF@COF, with PDT and PARPi is proposed. Nanocapsules are designed, referred to as ZTN@COF@poloxamer, which contain a Zr-based MOF and tetrakis (4-carbethoxyphenyl) porphyrin as a photosensitizer, are coated with a COF to improve the sensitizing properties, and are loaded with niraparib to inhibit DNA repair. Experiments demonstrate that this new nanocapsules treatment significantly inhibits STS growth, promotes tumor cell apoptosis, exhibits high antitumor activity with minimal side effects, activates the immune response of the tumor, and inhibits lung metastasis in vivo. Therefore, MOF@COF nanocapsules combined with PARPi offer a promising approach for STS treatment, with the potential to enhance the efficacy of PDT and prevent tumor recurrence.
Collapse
Affiliation(s)
- Yi Tai
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Zhihao Chen
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Tianqi Luo
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Chuangzhong Deng
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Zhenhai Lu
- Department of Colorectal Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| | - Jin Wang
- Department of Musculoskeletal Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, P. R. China
| |
Collapse
|
15
|
Wijesundara YH, Howlett TS, Kumari S, Gassensmith JJ. The Promise and Potential of Metal-Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem Rev 2024; 124:3013-3036. [PMID: 38408451 DOI: 10.1021/acs.chemrev.3c00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
16
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
17
|
Ma D, Wang G, Lu J, Zeng X, Cheng Y, Zhang Z, Lin N, Chen Q. Multifunctional nano MOF drug delivery platform in combination therapy. Eur J Med Chem 2023; 261:115884. [PMID: 37862817 DOI: 10.1016/j.ejmech.2023.115884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Recent preclinical and clinical studies have demonstrated that for cancer treatment, combination therapies are more effective than monotherapies in reducing drug-related toxicity, decreasing drug resistance, and improving therapeutic efficacy. With the rapid development of nanotechnology, the combination of metal-organic frameworks (MOFs) and multi-mode therapy offers a realistic possibility to further improve the shortcomings of cancer treatment. This article focuses on the latest developments, achievements, and treatment strategies of representative multifunctional MOF combination therapies for cancer treatment in recent years, which include not only bimodal combination therapies, but also multi-modal synergistic therapies, further demonstrating the effectiveness and superiority of the MOF drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
- Dongwei Ma
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Gang Wang
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Jingsheng Lu
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Xiaoxuan Zeng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Yanwei Cheng
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Zhenwei Zhang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China
| | - Ning Lin
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| | - Qing Chen
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Nanning, 530200, China.
| |
Collapse
|
18
|
Yao L, Chen B, Wu H, Cui Y, Qian G. Rational design of copper(I)-doped metal-organic frameworks as dual-functional nanocarriers for combined chemo-chemodynamic therapy. J Mater Chem B 2023; 11:10632-10639. [PMID: 37910388 DOI: 10.1039/d3tb01869e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Combination therapies are an increasingly important part of the antitumor medicine armamentarium. However, developing desirable nanomaterials for combination therapies is still a great challenge. Herein, a biocompatible Cu(I)-doped metal-organic framework (MOF) (denoted as CuZn-ZIF) is designed as a novel dual-functional nanocarrier. Doxorubicin molecules are covalently bound to the surface of the CuZn-ZIF and released by the cleavage of chemical bonds in an acidic environment, demonstrating the capacity of controlled drug release. More importantly, CuZn-ZIF nanocarriers can simultaneously play the role of nanocatalysts, capable of catalyzing H2O2 into a highly reactive intracellular toxic hydroxyl radical (˙OH). An in vivo study reveals that nanoparticles exhibit high antitumor efficacy through the combined performance of DOX and Cu(I), proving the great potential of this copper(I)-based MOF for combined chemo-chemotherapy to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Lijia Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bingquan Chen
- Department of Anaesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hailong Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
19
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Chiang MR, Shen WT, Huang PX, Wang KL, Weng WH, Chang CW, Chiang WH, Liu YC, Chang SJ, Hu SH. Programmed T cells infiltration into lung metastases with harnessing dendritic cells in cancer immunotherapies by catalytic antigen-capture sponges. J Control Release 2023; 360:260-273. [PMID: 37364798 DOI: 10.1016/j.jconrel.2023.06.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
T lymphocytes served as immune surveillance to suppress metastases by physically interacting with cancer cells. Whereas tumor immune privilege and heterogeneity protect immune attack, it limits immune cell infiltration into tumors, especially in invasive metastatic clusters. Here, a catalytic antigen-capture sponge (CAS) containing the catechol-functionalized copper-based metal organic framework (MOF) and chloroquine (CQ) for programming T cells infiltration is reported. The intravenously injected CAS accumulates at the tumor via the folic acid-mediated target and margination effect. In metastases, Fenton-like reaction induced by copper ions of CAS disrupts the intracellular redox potential, i.e., chemodynamic therapy (CDT), thereby reducing glutathione (GSH) levels. Furthermore, CQ helps inhibit autophagy by inducing lysosomal deacidification during CDT. This process leads to the breakdown of self-defense mechanisms, which exacerbates cytotoxicity. The therapies promote the liberation of tumor-associated antigens, such as neoantigens and damage-associated molecular patterns (DAMPs). Subsequently, the catechol groups present on CAS perform as antigen reservoirs and transport the autologous tumor-associated antigens to dendritic cells, resulting in prolonged immune activation. The CAS, which is capable of forming in-situ, serves as an antigen reservoir in CDT-mediated lung metastasis and leads to the accumulation of immune cells in metastatic clusters, thus hindering metastatic tumors.
Collapse
Affiliation(s)
- Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wei-Ting Shen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; Department of Nanoengineering, University of California, San Diego, CA 92093, USA
| | - Pin-Xuan Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Kang-Li Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu 300, Taiwan; Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
21
|
Zuo Q, Li T, Huang L, Liu Z, Xue W. Macro-microporous ZIF-8 MOF complexed with lysosomal pH-adjusting hexadecylsulfonylfluoride as tumor vaccine delivery systems for improving anti-tumor cellular immunity. Biomater Sci 2023. [PMID: 37335287 DOI: 10.1039/d3bm00306j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Tumor vaccine therapy, which can induce tumor antigen-specific cellular immune responses to directly kill tumor cells, is considered to be one of the most promising tumor immunotherapies. How to elicit effective tumor antigen-specific cellular immunity is the key for the development of tumor vaccines. However, current tumor vaccines with conventional antigen delivery systems mainly induce humoral immunity but not effective cellular immunity. In this study, based on pH-sensitive, ordered macro-microporous zeolitic imidazolate framework-8 (SOM-ZIF-8) and hexadecylsulfonylfluoride (HDSF), an intelligent tumor vaccine delivery system SOM-ZIF-8/HDSF was developed to elicit potent cellular immunity. Results demonstrated that the SOM-ZIF-8 particles could efficiently encapsulate antigen into the macropores, promote antigen uptake by antigen-presenting cells, facilitate lysosomal escape, and enhance antigen cross-presentation and cellular immunity. In addition, the introduction of HDSF could up-regulate the lysosomal pH to protect antigens from acid degradation, which further promoted antigen cross-presentation and cellular immunity. The immunization tests showed that the tumor vaccines based on the delivery system improved antigen-specific cellular immune response. Moreover, the tumor vaccines significantly inhibited tumor growth in B16 melanoma-bearing C57BL/6 mice. These results indicate that SOM-ZIF-8/HDSF as an intelligent vaccine delivery system could be used for the development of novel tumor vaccines.
Collapse
Affiliation(s)
- Qinhua Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Tiantian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Linghong Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China, 510632.
| |
Collapse
|
22
|
Fernandes PD, Magalhães FD, Pereira RF, Pinto AM. Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers (Basel) 2023; 15:polym15061490. [PMID: 36987269 PMCID: PMC10053741 DOI: 10.3390/polym15061490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Conventional cancer therapies, such as radiotherapy and chemotherapy, can have long-term side effects. Phototherapy has significant potential as a non-invasive alternative treatment with excellent selectivity. Nevertheless, its applicability is restricted by the availability of effective photosensitizers and photothermal agents, and its low efficacy when it comes to avoiding metastasis and tumor recurrence. Immunotherapy can promote systemic antitumoral immune responses, acting against metastasis and recurrence; however, it lacks the selectivity displayed by phototherapy, sometimes leading to adverse immune events. The use of metal-organic frameworks (MOFs) in the biomedical field has grown significantly in recent years. Due to their distinct properties, including their porous structure, large surface area, and inherent photo-responsive properties, MOFs can be particularly useful in the fields of cancer phototherapy and immunotherapy. MOF nanoplatforms have successfully demonstrated their ability to address several drawbacks associated with cancer phototherapy and immunotherapy, enabling an effective and low-side-effect combinatorial synergistical treatment for cancer. In the coming years, new advancements in MOFs, particularly regarding the development of highly stable multi-function MOF nanocomposites, may revolutionize the field of oncology.
Collapse
Affiliation(s)
- Pedro D. Fernandes
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
23
|
Nanotechnology for next-generation cancer immunotherapy: State of the art and future perspectives. J Control Release 2023; 356:14-25. [PMID: 36805873 DOI: 10.1016/j.jconrel.2023.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Over the past decade, immunotherapy aiming to activate an effective antitumor immune response has ushered in a new era of cancer treatment. However, the efficacy of cancer immunotherapy is limited by low response rates and high systemic toxicity. Nanotechnology is an encouraging platform for the development of next-generation cancer immunotherapy to effectively treat advanced cancer. Nanotechnology-enabled immunotherapy has remarkable advantages, ranging from the increased bioavailability and stability of immunotherapeutic agents to the enhanced activation of immune cells and favorable safety profiles. Nanotechnology-enabled immunotherapy can target solid tumors through reprogramming or stimulating immune cells (i.e., nanovaccines); modulating the immunosuppressive tumor microenvironment; or targeting tumor cells and altering their responses to immune cells to generate effective antitumor immunity. In this Oration, I introduce the advanced strategies currently being pursued by our laboratory and other groups to improve the therapeutic efficacy of cancer immunotherapy and discuss the potential challenges and future directions.
Collapse
|
24
|
Di Palma G, Geels S, Carpenter BP, Talosig RA, Chen C, Marangoni F, Patterson JP. Cyclodextrin metal-organic framework-based protein biocomposites. Biomater Sci 2022; 10:6749-6754. [PMID: 36286095 PMCID: PMC9717710 DOI: 10.1039/d2bm01240e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Materials are needed to increase the stability and half-life of therapeutic proteins during delivery. These materials should be biocompatible and biodegradable. Here, we demonstrate that enzymes and immunoproteins can be encapsulated inside cyclodextrin based metal-organic frameworks using potassium as the metal node. The release profile can be controlled with the solubility of the cyclodextrin linker. The activity of the proteins after release is determined using catalytic and in vitro assays. The results show that cyclodextrin metal-organic framework-based protein biocomposites are a promising class of materials to deliver therapeutic proteins.
Collapse
Affiliation(s)
- Giuseppe Di Palma
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Shannon Geels
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Brooke P Carpenter
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Rain A Talosig
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Charles Chen
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA 92697, USA
- Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA.
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
25
|
Sun J, Cheng M, Ye T, Li B, Wei Y, Zheng H, Zheng H, Zhou M, Piao JG, Li F. Nanocarrier-based delivery of arsenic trioxide for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2022; 17:2037-2054. [PMID: 36789952 DOI: 10.2217/nnm-2022-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meiqi Zhou
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
26
|
Li Q, Feng R, Chang Z, Liu X, Tang H, Bai Q. Hybrid biomimetic assembly enzymes based on ZIF-8 as “intracellular scavenger” mitigating neuronal damage caused by oxidative stress. Front Bioeng Biotechnol 2022; 10:991949. [PMID: 36118586 PMCID: PMC9471668 DOI: 10.3389/fbioe.2022.991949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase (SOD) was immobilized in zeolite imidazolate framework-8 (ZIF-8) through biomimetic mineralization method, namely SOD@ZIF-8, which was then used in the treatment of nerve damage by eliminating reactive oxygen species (ROS). A series of chemical characterization and enzymatic activity researches revealed that SOD was successfully embedded into ZIF-8 without apparent influence on the antioxidant activity of SOD. Cell level experiments showed that SOD@ZIF-8 could be effectively endocytosed by cells. The activity of SOD@ZIF-8 in scavenging ROS played a critical role in protecting SHSY-5Y cells from MPP+-induced cell model and relieving cell apoptosis, indicating that SOD@ZIF-8 could effectively rescue ROS-mediated neurological disorders though removing excessive ROS produced in vitro.
Collapse
Affiliation(s)
- Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Feng
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Chang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Liu
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| | - Qian Bai
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaojun Liu, ; Hao Tang, ; Qian Bai,
| |
Collapse
|