1
|
Yang J, Zeng Z, Liu Y, Li Y, Xu X. Developing bioinspired delivery systems for enhanced tumor penetration of macromolecular drugs. J Control Release 2025; 383:113845. [PMID: 40379215 DOI: 10.1016/j.jconrel.2025.113845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Macromolecular drugs, such as proteins and nucleic acids, play a pivotal role in treating refractory diseases and hold significant promise in the growing pharmaceutical market. However, without efficient delivery systems, macromolecular drugs are highly susceptible to rapid biodegradation or systemic clearance, underscoring the need for advanced delivery strategies for clinical translation. A major challenge lies in their limited tissue penetration due to large molecular weight and size, which has recently garnered significant attention as it often leads to therapeutic failure or the emergence of resistance. In this review, we first outline the biological barriers limiting macromolecular tissue penetration, then explore the inherent permeation mechanisms of biomacromolecules in biological systems. We then highlight delivery strategies aimed at enhancing the tissue penetration of macromolecular therapeutics, with a particular focus on tissue-adaptive and tissue-remodeling delivery platforms. Finally, we provide a concise perspective on future research directions in deep tissue penetration for biomacromolecules. This review offers a comprehensive summary of recent advancements and presents critical insights into optimizing the therapeutic efficacy of macromolecular drugs.
Collapse
Affiliation(s)
- Jin Yang
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, Hunan 410082, China
| | - Zenan Zeng
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yiming Liu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yachao Li
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, Hunan 410082, China
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, China; State Key Laboratory of Chemo and Biosensing, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
2
|
Han Z, Wang Y, Zang X, Liu H, Su J, Zhou Y. FePt/MnO 2@PEG Nanoparticles as Multifunctional Radiosensitizers for Enhancing Ferroptosis and Alleviating Hypoxia in Osteosarcoma Therapy. IEEE Trans Nanobioscience 2025; 24:180-190. [PMID: 39392735 DOI: 10.1109/tnb.2024.3475051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Radiotherapy (RT) is a widely used cancer treatment, and the use of metal-based nanoradiotherapy sensitizers has demonstrated promise in enhancing its efficacy. However, achieving effective accumulation of these sensitizers within tumors and overcoming resistance induced by the hypoxic tumor microenvironment remain challenging issues. In this study, we developed FePt/MnO2@PEG nanoparticles with multiple radiosensitizing mechanisms, including high-atomic-number element-mediated radiation capture, catalase-mimicking oxygenation, and GSH depletion-induced ferroptosis. Both in vitro and in vivo experiments were conducted to validate the radiosensitizing mechanisms and therapeutic efficacy of FePt/MnO2@PEG. In conclusion, this study presents a novel and clinically relevant strategy and establishes a safe and effective combination radiotherapy approach for cancer treatment. These findings hold significant potential for improving radiotherapy outcomes and advancing the field of nanomedicine in cancer therapy.
Collapse
|
3
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025; 219:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
4
|
Ren L, Cao S, Guo L, Li J, Jiao K, Wang L. Recent advances in nucleic acid-functionalized metallic nanoparticles. Chem Commun (Camb) 2025; 61:4904-4923. [PMID: 40047804 DOI: 10.1039/d5cc00359h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nucleic acid-functionalized metallic nanoparticles (N-MNPs) precisely integrate the advantageous characteristics of nucleic acids and metallic nanomaterials, offering various abilities such as resistance to enzymatic degradation, penetration of physiological barriers, controllable mobility, biomolecular recognition, programmable self-assembly, and dynamic structure-function transformation. These properties demonstrate significant potential in the field of biomedical diagnostics and therapeutics. In this review, we examine recent advancements in the construction and theranostic applications of N-MNPs. We briefly summarize the methodologies employed in the conjugation of nucleic acids with metallic nanoparticles and the formation of their superstructural assemblies. We highlight recent representative applications of N-MNPs in biomolecular diagnosis, imaging, and smart delivery of theranostic agents. We also discuss challenges currently faced in this field and provide an outlook on future development directions and application prospects.
Collapse
Affiliation(s)
- Lei Ren
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shuting Cao
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, Zhejiang, China
- Nano-translational Medicine Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Chen Q, Liu Y, Chen Q, Li M, Xu L, Lin B, Tan Y, Liu Z. DNA Nanostructures: Advancing Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405231. [PMID: 39308253 DOI: 10.1002/smll.202405231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Indexed: 12/06/2024]
Abstract
Cancer immunotherapy is a groundbreaking medical revolution and a paradigm shift from traditional cancer treatments, harnessing the power of the immune system to target and destroy cancer cells. In recent years, DNA nanostructures have emerged as prominent players in cancer immunotherapy, exhibiting immense potential due to their controllable structure, surface addressability, and biocompatibility. This review provides an overview of the various applications of DNA nanostructures, including scaffolded DNA, DNA hydrogels, tetrahedral DNA nanostructures, DNA origami, spherical nucleic acids, and other DNA-based nanostructures in cancer immunotherapy. These applications explore their roles in vaccine development, immune checkpoint blockade therapies, adoptive cellular therapies, and immune-combination therapies. Through rational design and optimization, DNA nanostructures significantly bolster the immunogenicity of the tumor microenvironment by facilitating antigen presentation, T-cell activation, tumor infiltration, and precise immune-mediated tumor killing. The integration of DNA nanostructures with cancer therapies ushers in a new era of cancer immunotherapy, offering renewed hope and strength in the battle against this formidable foe of human health.
Collapse
Affiliation(s)
- Qianqian Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Bingyu Lin
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan Province, 410083, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan Province, 410013, P. R. China
| |
Collapse
|
6
|
Wang G, Han S, Lu Y. From Structure to Application: The Evolutionary Trajectory of Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310026. [PMID: 38860348 DOI: 10.1002/smll.202310026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/09/2024] [Indexed: 06/12/2024]
Abstract
Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
Collapse
Affiliation(s)
- Guijia Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Sanyang Han
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Chu Z, Wang W, Zheng W, Fu W, Wang Y, Wang H, Qian H. Biomaterials with cancer cell-specific cytotoxicity: challenges and perspectives. Chem Soc Rev 2024; 53:8847-8877. [PMID: 39092634 DOI: 10.1039/d4cs00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, etc. In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei 230011, P. R. China
| |
Collapse
|
8
|
Liang R, Lu H, Zhu H, Liang G, Zhang J, Gao J, Tian T. Radiation-primed TGF-β trapping by engineered extracellular vesicles for targeted glioblastoma therapy. J Control Release 2024; 370:821-834. [PMID: 38740092 DOI: 10.1016/j.jconrel.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The poor outcome of glioblastoma multiforme (GBM) treated with immunotherapy is attributed to the profound immunosuppressive tumor microenvironment (TME) and the lack of effective delivery across the blood-brain barrier. Radiation therapy (RT) induces an immunogenic antitumor response that is counteracted by evasive mechanisms, among which transforming growth factor-β (TGF-β) activation is the most prominent factor. We report an extracellular vesicle (EV)-based nanotherapeutic that traps TGF-β by expressing the extracellular domain of the TGF-β type II receptor and targets GBM by decorating the EV surface with RGD peptide. We show that short-burst radiation dramatically enhanced the targeting efficiency of RGD peptide-conjugated EVs to GBM, while the displayed TGF-β trap reversed radiation-stimulated TGF-β activation in the TME, offering a synergistic effect in the murine GBM model. The combined therapy significantly increased CD8+ cytotoxic T cells infiltration and M1/M2 macrophage ratio, resulting in the regression of tumor growth and prolongation of overall survival. These results provide an EV-based therapeutic strategy for immune remodeling of the GBM TME and eradication of therapy-resistant tumors, further supporting its clinical translation.
Collapse
Affiliation(s)
- Ruyu Liang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongyu Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China; Department of Neurosurgery, Funing People's Hospital, Funing 224400, Jiangsu, China
| | - Haifeng Zhu
- Department of Neurosurgery, Funing People's Hospital, Funing 224400, Jiangsu, China
| | - Gaofeng Liang
- School of Basic Medicineand Forensic Medicine, Henan University of Science & Technology, Luoyang 471023, Henan, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Jun Gao
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China.
| | - Tian Tian
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
9
|
Li M, Yao H, Yi K, Lao YH, Shao D, Tao Y. Emerging nanoparticle platforms for CpG oligonucleotide delivery. Biomater Sci 2024; 12:2203-2228. [PMID: 38293828 DOI: 10.1039/d3bm01970e] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), which were therapeutic DNA with high immunostimulatory activity, have been applied in widespread applications from basic research to clinics as therapeutic agents for cancer immunotherapy, viral infection, allergic diseases and asthma since their discovery in 1995. The major factors to consider for clinical translation using CpG motifs are the protection of CpG ODNs from DNase degradation and the delivery of CpG ODNs to the Toll-like receptor-9 expressed human B-cells and plasmacytoid dendritic cells. Therefore, great efforts have been devoted to the advances of efficient delivery systems for CpG ODNs. In this review, we outline new horizons and recent developments in this field, providing a comprehensive summary of the nanoparticle-based CpG delivery systems developed to improve the efficacy of CpG-mediated immune responses, including DNA nanostructures, inorganic nanoparticles, polymer nanoparticles, metal-organic-frameworks, lipid-based nanosystems, proteins and peptides, as well as exosomes and cell membrane nanoparticles. Moreover, future challenges in the establishment of CpG delivery systems for immunotherapeutic applications are discussed. We expect that the continuously growing interest in the development of CpG-based immunotherapy will certainly fuel the excitement and stimulation in medicine research.
Collapse
Affiliation(s)
- Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, 130021, Jilin, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
10
|
Tao Z, Zhang H, Wu S, Zhang J, Cheng Y, Lei L, Qin Y, Wei H, Yu CY. Spherical nucleic acids: emerging amplifiers for therapeutic nanoplatforms. NANOSCALE 2024; 16:4392-4406. [PMID: 38289178 DOI: 10.1039/d3nr05971e] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Gene therapy is a revolutionary treatment approach in the 21st century, offering significant potential for disease prevention and treatment. However, the efficacy of gene delivery is often compromised by the inherent challenges of gene properties and vector-related defects. It is crucial to explore ways to enhance the curative effect of gene drugs and achieve safer, more widespread, and more efficient utilization, which represents a significant challenge in amplification gene therapy advancements. Spherical nucleic acids (SNAs), with their unique physicochemical properties, are considered an innovative solution for scalable gene therapy. This review aims to comprehensively explore the amplifying contributions of SNAs in gene therapy and emphasize the contribution of SNAs to the amplification effect of gene therapy from the aspects of structure, application, and recent clinical translation - an aspect that has been rarely reported or explored thus far. We begin by elucidating the fundamental characteristics and scaling-up properties of SNAs that distinguish them from traditional linear nucleic acids, followed by an analysis of combined therapy treatment strategies, theranostics, and clinical translation amplified by SNAs. We conclude by discussing the challenges of SNAs and provide a prospect on the amplification characteristics. This review seeks to update the current understanding of the use of SNAs in gene therapy amplification and promote further research into their clinical translation and amplification of gene therapy.
Collapse
Affiliation(s)
- Zhenghao Tao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Shang Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Jiaheng Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001, Hengyang, P. R. China.
| |
Collapse
|
11
|
Guo L, Ding J, Zhou W. Converting bacteria into autologous tumor vaccine via surface biomineralization of calcium carbonate for enhanced immunotherapy. Acta Pharm Sin B 2023; 13:5074-5090. [PMID: 38045045 PMCID: PMC10692385 DOI: 10.1016/j.apsb.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/21/2023] [Accepted: 06/18/2023] [Indexed: 12/05/2023] Open
Abstract
Autologous cancer vaccine that stimulates tumor-specific immune responses for personalized immunotherapy holds great potential for tumor therapy. However, its efficacy is still suboptimal due to the immunosuppressive tumor microenvironment (ITM). Here, we report a new type of bacteria-based autologous cancer vaccine by employing calcium carbonate (CaCO3) biomineralized Salmonella (Sal) as an in-situ cancer vaccine producer and systematical ITM regulator. CaCO3 can be facilely coated on the Sal surface with calcium ionophore A23187 co-loading, and such biomineralization did not affect the bioactivities of the bacteria. Upon intratumoral accumulation, the CaCO3 shell was decomposed at an acidic microenvironment to attenuate tumor acidity, accompanied by the release of Sal and Ca2+/A23187. Specifically, Sal served as a cancer vaccine producer by inducing cancer cells' immunogenic cell death (ICD) and promoting the gap junction formation between tumor cells and dendritic cells (DCs) to promote antigen presentation. Ca2+, on the other hand, was internalized into various types of immune cells with the aid of A23187 and synergized with Sal to systematically regulate the immune system, including DCs maturation, macrophages polarization, and T cells activation. As a result, such bio-vaccine achieved remarkable efficacy against both primary and metastatic tumors by eliciting potent anti-tumor immunity with full biocompatibility. This work demonstrated the potential of bioengineered bacteria as bio-active vaccines for enhanced tumor immunotherapy.
Collapse
Affiliation(s)
- Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Changsha 410008, China
| |
Collapse
|
12
|
Tang C, Wang H, Guo L, Zou C, Hu J, Zhang H, Zhou W, Yang G. CpG-Conjugated Silver Nanoparticles as a Multifunctional Nanomedicine to Promote Macrophage Efferocytosis and Repolarization for Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37910772 DOI: 10.1021/acsami.3c11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Atherosclerosis (AS) is a major contributor to cardiovascular diseases, necessitating the development of novel therapeutic strategies to alleviate plaque burden. Macrophage efferocytosis, the process by which macrophages clear apoptotic and foam cells, plays a crucial role in plaque regression. However, this process is impaired in AS lesions due to the overexpression of CD47, which produces a "do not eat me" signal. In this study, we investigated the potential of CpG, a toll-like receptor 9 agonist, to enhance macrophage efferocytosis for AS therapy. We demonstrated that CpG treatment promoted the engulfment of CD47-positive apoptotic cells and foam cells by macrophages. Mechanistically, CpG induced a metabolic shift in macrophages characterized by enhanced fatty acid oxidation and de novo lipid biosynthesis, contributing to its pro-efferocytic effect. To enable in vivo application, we conjugated CpG on silver nanoparticles (AgNPs) to form CpG-AgNPs, which could protect CpG from biological degradation, promote its cellular uptake, and release CpG in response to intracellular glutathione. Combining the intrinsic antioxidative and anti-inflammatory abilities of AgNPs, such nanomedicine displayed multifunctionalities to simultaneously promote macrophage efferocytosis and repolarization. In an ApoE-/- mouse model, intravenous administration of CpG-AgNPs effectively targeted atherosclerotic plaques and exhibited potent therapeutic efficacy with excellent biocompatibility. Our study provides valuable insights into CpG-induced macrophage efferocytosis and highlights the potential of CpG-AgNPs as a promising therapeutic strategy for AS.
Collapse
Affiliation(s)
- Cui Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Hui Wang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Chan Zou
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jianming Hu
- First Department of Pathology, Affiliated Hospital, Shihezi University, Shihezi City 832002, Xinjiang Uygur Autonomous Region, China
| | - Hanyong Zhang
- Academician Workstation, Changsha Medical University, Changsha 410219, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Academician Workstation, Changsha Medical University, Changsha 410219, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, Affiliated Hospital, Shihezi University, Shihezi City, Xinjiang 832002, China
| | - Guoping Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- National-Local Joint Engineering Laboratory of Drug Clinical Evaluation Technology, Changsha, Hunan 410000, China
- Hunan Engineering Research Center for Optimization of Drug Formulation and Early Clinical Evaluation, Changsha, Hunan 410013, China
| |
Collapse
|
13
|
Liu S, Yu CY, Wei H. Spherical nucleic acids-based nanoplatforms for tumor precision medicine and immunotherapy. Mater Today Bio 2023; 22:100750. [PMID: 37545568 PMCID: PMC10400933 DOI: 10.1016/j.mtbio.2023.100750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Precise diagnosis and treatment of tumors currently still face considerable challenges due to the development of highly degreed heterogeneity in the dynamic evolution of tumors. With the rapid development of genomics, personalized diagnosis and treatment using specific genes may be a robust strategy to break through the bottleneck of traditional tumor treatment. Nevertheless, efficient in vivo gene delivery has been frequently hampered by the inherent defects of vectors and various biological barriers. Encouragingly, spherical nucleic acids (SNAs) with good modularity and programmability are excellent candidates capable of addressing traditional gene transfer-associated issues, which enables SNAs a precision nanoplatform with great potential for diverse biomedical applications. In this regard, there have been detailed reviews of SNA in drug delivery, gene regulation, and dermatology treatment. Still, to the best of our knowledge, there is no published systematic review summarizing the use of SNAs in oncology precision medicine and immunotherapy, which are considered new guidelines for oncology treatment. To this end, we summarized the notable advances in SNAs-based precision therapy and immunotherapy for tumors following a classification standard of different types of precise spatiotemporal control on active species by SNAs. Specifically, we focus on the structural diversity and programmability of SNAs. Finally, the challenges and possible solutions were discussed in the concluding remarks. This review will promote the rational design and development of SNAs for tumor-precise medicine and immunotherapy.
Collapse
Affiliation(s)
- Songbin Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
14
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
15
|
Chen X, He H, Guo X, Hou M, Zhang X, Li S, Wang C, Zhao G, Li W, Zhang X, Hong W. Calcium Orthophosphate in Liposomes for Co-Delivery of Doxorubicin Hydrochloride/Paclitaxel in Breast Cancer. Mol Pharm 2023; 20:3914-3924. [PMID: 37384449 DOI: 10.1021/acs.molpharmaceut.3c00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Nanoparticles (NPs) show great advantages in cancer treatment by enabling controlled and targeted delivery of payloads to tumor sites through the enhanced permeability and retention (EPR) effect. In this study, highly effective pH-responsive and biodegradable calcium orthophosphate@liposomes (CaP@Lip) NPs with a diameter of 110 ± 20 nm were designed and fabricated. CaP@Lip NPs loaded with hydrophobic paclitaxel and hydrophilic doxorubicin hydrochloride achieved excellent drug loading efficiencies of 70 and 90%, respectively. Under physiological conditions, the obtained NPs are negatively charged. However, they switched to positively charged when exposed to weak acidic environments by which internalization can be promoted. Furthermore, the CaP@Lip NPs exhibit an obvious structural collapse under acid conditions (pH 5.5), which confirms their excellent biodegradability. The "proton expansion" effect in endosomes and the pH-responsiveness of the NPs facilitate the release of encapsulated drugs from individual channels. The effectiveness and safety of the drug delivery systems were demonstrated through in vitro and in vivo experiments, with a 76% inhibition of tumor growth. These findings highlight the high targeting ability of the drug-loaded NPs to tumor sites through the EPR effect, effectively suppressing tumor growth and metastasis. By combining CaP NPs and liposomes, this study not only resolves the toxicity of CaP but also enhances the stability of liposomes. The CaP@Lip NPs developed in this study have significant implications for biomedical applications and inspire the development of intelligent and smart drug nanocarriers and release systems for clinical use.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Huayu He
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinyu Guo
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinzhong Zhang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Guodong Zhao
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xiuping Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Institute of Hepatobiliary Surgery of Chinese PLA, Beijing 100000, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
16
|
Chen H, Guo L, Ding J, Zhou W, Qi Y. A General and Efficient Strategy for Gene Delivery Based on Tea Polyphenols Intercalation and Self-Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302620. [PMID: 37349886 PMCID: PMC10460882 DOI: 10.1002/advs.202302620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Gene therapy that employs therapeutic nucleic acids to modulate gene expression has shown great promise for diseases therapy, and its clinical application relies on the development of effective gene vector. Herein a novel gene delivery strategy by just using natural polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) as raw material is reported. EGCG first intercalates into nucleic acids to yield a complex, which then oxidizes and self-polymerizes to form tea polyphenols nanoparticles (TPNs) for effective nucleic acids encapsulation. This is a general method to load any types of nucleic acids with single or double strands and short or long sequences. Such TPNs-based vector achieves comparable gene loading capacity to commonly used cationic materials, but showing lower cytotoxicity. TPNs can effectively penetrate inside cells, escape from endo/lysosomes, and release nucleic acids in response to intracellular glutathione to exert biological functions. To demonstrate the in vivo application, an anti-caspase-3 small interfering ribonucleic acid is loaded into TPNs to treat concanavalin A-induced acute hepatitis, and excellent therapeutic efficacy is obtained in combination with the intrinsic activities of TPNs vector. This work provides a simple, versatile, and cost-effective gene delivery strategy. Given the biocompatibility and intrinsic biofunctions, this TPNs-based gene vector holds great potential to treat various diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of PathologyZhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524000China
- Department of PathologyShihezi University School of MedicineShiheziXinjiang832002China
| | - Lina Guo
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Jinsong Ding
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Wenhu Zhou
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013China
| | - Yan Qi
- Department of PathologyZhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdong524000China
- Department of PathologyShihezi University School of MedicineShiheziXinjiang832002China
| |
Collapse
|
17
|
Tan H, Liu J, Huang J, Li Y, Xie Q, Dong Y, Mi Z, Ma X, Rong P. Ketoglutaric acid can reprogram the immunophenotype of triple-negative breast cancer after radiotherapy and improve the therapeutic effect of anti-PD-L1. J Transl Med 2023; 21:462. [PMID: 37438720 DOI: 10.1186/s12967-023-04312-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Great progress has been made in applying immunotherapy to the clinical treatment of tumors. However, many patients with triple-negative breast cancer (TNBC) cannot benefit from immunotherapy due to the immune desert type of TNBC, which is unresponsive to immunotherapy. DMKG, a cell-permeable derivative of α-KG, has shown potential to address this issue. METHOD We investigated the effects of combining DMKG with radioimmunotherapy on TNBC. We assessed the ability of DMKG to promote tumor cell apoptosis and immunogenic death induced by radiotherapy (RT), as well as its impact on autophagy reduction, antigen and inflammatory factor release, DC cell activation, and infiltration of immune cells in the tumor area. RESULT Our findings indicated that DMKG significantly promoted tumor cell apoptosis and immunogenic death induced by RT. DMKG also significantly reduced autophagy in tumor cells, resulting in increased release of antigens and inflammatory factors, thereby activating DC cells. Furthermore, DMKG promoted infiltration of CD8 + T cells in the tumor area and reduced the composition of T-regulatory cells after RT, reshaping the tumor immune microenvironment. Both DMKG and RT increased the expression of PD-L1 at immune checkpoints. When combined with anti-PD-L1 drugs (α-PD-L1), they significantly inhibited tumor growth without causing obvious side effects during treatment. CONCLUSION Our study underscores the potential of pairing DMKG with radioimmunotherapy as an effective strategy for treating TNBC by promoting apoptosis, immunogenic death, and remodeling the tumor immune microenvironment. This combination therapy could offer a promising therapeutic avenue for TNBC patients unresponsive to conventional immunotherapy.
Collapse
Affiliation(s)
- Hongpei Tan
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jing Huang
- Department of Anesthesiology, Zhuzhou Central Hospital, Zhuzhou, 412000, China
| | - Yanan Li
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Qiongxuan Xie
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Yuqian Dong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ze Mi
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Pengfei Rong
- Department of Radiology, Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
18
|
Wang F, Pu K, Li J. Activating Nanomedicines with Electromagnetic Energy for Deep-Tissue Induction of Immunogenic Cell Death in Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201083. [PMID: 36316270 DOI: 10.1002/smtd.202201083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/12/2022] [Indexed: 05/17/2023]
Abstract
Immunotherapy is an attractive approach for cancer therapy, while its antitumor efficacy is still limited, especially for non-immunogenic tumors. Nanomedicines can be utilized to convert the non-immunogenic "cold" tumors to immunogenic "hot" tumors via inducing immunogenic cell death (ICD), thereby promoting the antitumor immune response. Some nanomedicines that can produce local heat and reactive oxygen species upon the stimulation of electromagnetic energy are the main candidates for inducing the ICD effect. However, their applications are often restricted due to the poor tissue penetration depths of electromagnetic energy, such as light. By contrast, ultrasound, X-ray, alternating magnetic field, and microwave show excellent tissue penetration depths and thereby can be used for sonodynamic therapy, radiotherapy, magnetic hyperthermia therapy, and microwave ablation therapy, all of which can effectively induce ICD. Herein, the combination of deep-tissue electromagnetic energy with nanomedicines for inducing ICD and cancer immunotherapy are summarized. In particular, the designs of nanomedicines to amplify ICD effect in the presence of deep-tissue electromagnetic energy and sensitize tumors to various immunotherapies will be discussed. At the end of this review, a brief conclusion and discussion of current challenges and further perspectives in this subfield are provided.
Collapse
Affiliation(s)
- Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 637457, Singapore
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
19
|
Meng Y, Huang J, Ding J, Yan B, Li Y, Gao X, Zhou W. Poly-thymine DNA templated MnO 2 biomineralization as a high-affinity anchoring enabling tumor targeting delivery. J Colloid Interface Sci 2023; 637:441-452. [PMID: 36716668 DOI: 10.1016/j.jcis.2023.01.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Manganese oxide nanomaterials (MONs) are emerging as a type of highly promising nanomaterials for diseases diagnosis, and surface modification is the basis for colloidal stability and targeting delivery of the nanomaterials. Here, we report the in-situ functionalization of MnO2 with DNA through a biomineralization process. Using adsorption-oxidation method, DNA templated Mn2+ precursor to biomineralize into nano-cubic seed, followed by the growth of MnO2 to form cube/nanosheet hybrid nanostructure. Among four types of DNA homopolymers, poly-thymine (poly-T) was found to stably attach on MnO2 surface to resist various biological displacements (phosphate, serum, and complementary DNA). Capitalized on this finding, a di-block DNA was rationally designed, in which the poly-T block stably anchored on MnO2 surface, while the AS1411 aptamer block was not only an active ligand for tumor targeting delivery, but also a carrier for photosensitizer (Ce6) loading. Upon targeting delivery into tumor cells, the MnO2 acted as catalase-mimic nanozyme for oxygenation to sensitize photodynamic therapy, and the released Mn2+ triggered chemodynamic therapy via Fenton-like reaction, achieving synergistic anti-tumor effect with full biocompatibility. This work provides a simple yet robust strategy to functionalize metal oxides nanomaterials for biological applications via DNA-templated biomineralization.
Collapse
Affiliation(s)
- Yingcai Meng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China; Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Bohua Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha 410004, Hunan, China.
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China.
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|