1
|
Wang S, Qiu Y, Yu L, Lu K, Du B, Zhang J, Gong H, Ren A, Chen M, Zhang H, Zang XF, Ye X, Cai L, Quan YY, Huang ZS. Molecular engineering strategies for fabricating type-I mitochondria-targeted aggregation-induced emission photosensitizers for apoptosis-ferroptosis synergistically boosting photodynamic therapy. J Colloid Interface Sci 2025; 694:137680. [PMID: 40306126 DOI: 10.1016/j.jcis.2025.137680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
The precise distribution and subcellular localization of photosensitizers (PSs) play a crucial role in maximizing the utilization of reactive oxygen species (ROS) and enhancing photodynamic therapy (PDT). However, the therapeutic efficacy of PDT is significantly compromised by the hypoxic microenvironment, particularly in malignant tumors. To address these challenges, we designed and synthesized three donor-donor-π-bridge-acceptor (D-D-π-A) type aggregation-induced emission (AIE) PSs: TCM-OTs, TCM-OH, and TCPy-OH. By fine-tuning the acceptor and donor substituents, we successfully modulated organelle-targeting specificity and ROS generation to mitigate hypoxia-related limitations. Among these compounds, TCM-OH emerged as a highly promising PS, exhibiting selective mitochondrial targeting and efficient type-I ROS generation. To further enhance its pharmacological properties, we encapsulated each PS into DSPE-PEG2k to form nanoparticles (NPs). Notably, TCM-OH NPs facilitated the production of superoxide (•O2-) and hydroxyl radicals (•OH) within mitochondria, leading to mitochondrial dysfunction and subsequent cell death via a synergistic ferroptosis-apoptosis pathway under light irradiation. Both in vitro and in vivo experiments demonstrated the potent therapeutic efficacy of this strategy, with minimal toxicity, underscoring its potential for hypoxic cancer treatment. Overall, this study provides a rational design framework for developing potent type-I PSs with multimodal capabilities for biomedical applications.
Collapse
Affiliation(s)
- Shihua Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yiting Qiu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lichao Yu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kongqin Lu
- Inner Mongolia Medical University, Hohhot 010110, China
| | - Bing Du
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jin Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hangxin Gong
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Aocheng Ren
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Min Chen
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchen Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xu-Feng Zang
- College of Science, Huzhou University, Huzhou 313000, China
| | - Xiaoxia Ye
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Leyi Cai
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yun-Yun Quan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Zu-Sheng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Ding Q, Rha H, Yoon C, Kim Y, Hong SJ, Kim HJ, Li Y, Lee MH, Kim JS. Regulated cell death mechanisms in mitochondria-targeted phototherapy. J Control Release 2025; 382:113720. [PMID: 40228665 DOI: 10.1016/j.jconrel.2025.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Phototherapy, comprising photodynamic therapy (PDT) and photothermal therapy (PTT), was first introduced over a century ago and has since evolved into a versatile cancer treatment modality. While numerous studies have explored regulated cell death (RCD) mechanisms induced by phototherapy, a comprehensive synthesis centered on mitochondria-targeted phototherapeutic strategies and agents as mediators of RCD is still lacking. This review provides a systematic and in-depth analysis of recent advances in mitochondria-centered mechanisms driving phototherapy-induced death pathways, including apoptosis, autophagy, pyroptosis, immunogenic cell death, ferroptosis, and cuproptosis. We highlight the critical role of mitochondria as central regulators of these death pathways in response to phototherapeutic interventions. Moreover, we discuss fundamental design strategies for developing precision-targeted phototherapeutic materials to enhance efficacy and minimize off-target effects. Finally, we identify prevailing challenges and propose future research directions to address these hurdles, paving the way for next-generation mitochondria-targeted phototherapy as a highly effective strategy for cancer management.
Collapse
Affiliation(s)
- Qihang Ding
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyeonji Rha
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Changyu Yoon
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yujin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - So Jin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hui Ju Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yang Li
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Min Hee Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
3
|
Lima E, Ferreira O, Oliveira JM, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. "From darkness to radiance": Light-induced type I and II ROS-mediated apoptosis for anticancer effects of dansylpiperazine-bearing squaraine dyes. Bioorg Chem 2025; 159:108379. [PMID: 40179580 DOI: 10.1016/j.bioorg.2025.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Photodynamic therapy relies on the generation of cytotoxic effects triggered by the irradiation of a photosensitizer molecule, resulting in the production of reactive oxygen species at concentrations exceeding physiological levels. In this context, squaraine dyes, a prominent family of second-generation photosensitizers, have gained increasing attention for their remarkable properties, with their photobiological characteristics recently emerging as a key focus of in-depth research. Dansylpiperazine-bearing squaraine dyes exhibited strong absorption in the red visible spectral region, excellent photostability, and a predicted ability to interact with human serum albumin, potentially serving as a transport vehicle to target sites. Benzothiazole derivatives excelled in photodynamic activity, demonstrating 7- to 11-fold increased cytotoxicity upon irradiation against prostate adenocarcinoma PC-3 cells and tumor selectivity indices exceeding 10 when compared to normal NHDF cells. In contrast, the introduction of the dansylpiperazino group in indole-derived compounds unexpectedly declined their photodynamic activity. Concerning benzothiazole-based ones, multiple reactive oxygen species were shown to contribute to the photodynamic effects, with singlet oxygen playing a key role. Squaraine internalization was observed in various cytoplasmic organelles, including mitochondria, endoplasmic reticulum, and lysosomes, without clear evidence of preferential localization to any single organelle. Non-genotoxic in the dark, the squaraines induced cell death by apoptosis upon light activation, as evidenced by significant DNA fragmentation and increased caspase 3/7 activation, particularly for the dye with N-ethyl chains, at concentrations below 1.0 μM, underscoring their potency. Checkpoint arrests in G1 and G2/mitosis were observed for non-irradiated and irradiated conditions, respectively, highlighting the antiproliferative effects of these squaraine dyes.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Octávio Ferreira
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - João M Oliveira
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Renato E Boto
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - José R Fernandes
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Paulo Almeida
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Samuel M Silvestre
- RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
| | - Adriana O Santos
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Lucinda V Reis
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
| |
Collapse
|
4
|
Wang F, Lai W, Xie D, Zhou M, Wang J, Xu R, Zhang R, Li G. Nanoparticle-mediated celastrol ER targeting delivery amplify immunogenic cell death in melanoma. J Adv Res 2025; 71:585-601. [PMID: 38897272 DOI: 10.1016/j.jare.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Chemoimmunotherapy, which benefits from the combination of chemotherapy and immunotherapy, has emerged as a promising strategy in cancer treatment. However, effectively inducing a robust immune response remains challenging due to the limited responsiveness across patients. Endoplasmic reticulum (ER) stress is essential for activating intracellular signaling pathways associated with immunogenic cell death (ICD), targeting drugs to ER might enhance ER stress and improve ICD-related immunotherapy. OBJECTIVES To improve the immune response of Chemoimmunotherapy. METHODS ER targeting nanoparticles TSE-CEL/NP were constructed to enhance immunogenic cancer cell death. Flow cytometry, confocal microscope, TEM and immunofluorescence were used to evaluate the ER targeting effect and immunogenic tumor cell death in vitro on B16F10 tumor cells. Unilateral and bilateral tumor models were constructed to investigate the efficacy of anti-tumor and immunotherapy in vivo. Lung metastasis B16F10 melanoma tumor-bearing mice were used to assess the anti-metastasis efficacy. RESULTS TSE-CEL/NP could specially accumulate in ER, thereby induce ER stress. High ER stress trigger the exposure of CRT, the extracellular release of HMGB1 and ATP. These danger signals subsequently promote the recruitment and maturation of dendritic cells (DCs), which in turn increase the proliferation of cytotoxic T lymphocytes (CD8+ T cells), ultimately resulted in an improved immunotherapy efficacy against melanoma. Invivo experiments showed that TSE-CEL/NP exhibits excellent antitumor efficacy and triggers a strong immune response. CONCLUSION Our findings demonstrated that celastrol ER targeting delivery could amplify immunogenic cell death in melanoma, which provide experimental basis for melanoma immunotherapy.
Collapse
Affiliation(s)
- Fengling Wang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Dandan Xie
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Min Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Jie Wang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, No. 183 Xinqiao Road, Chongqing, China.
| |
Collapse
|
5
|
Lima E, Ferreira O, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. D-(+)-Biotinylated squaraine dyes: A journey from synthetic conception, photophysical and -chemical characterization, to the exploration of their photoantitumoral action mechanisms. Eur J Med Chem 2025; 293:117699. [PMID: 40349637 DOI: 10.1016/j.ejmech.2025.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Biotin is primarily taken up by cells through sodium-dependent multivitamin transporter, which is highly expressed in aggressive cancer cell lines, often at levels surpassing those of the folate receptor. This makes biotin an attractive ligand for tumor-targeted drug delivery. Building on this rationale, this study presents a series of six D-(+)-biotin-conjugated squaraine dyes derived from benzothiazole, indolenine, and benz[e]indole, with N-ethyl and N-hexyl chains. These compounds were thoroughly characterized in terms of their photophysical and photochemical properties, revealing strong absorption in the so-called "phototherapeutic window", notable fluorescence, especially the benzothiazole derivatives, aqueous stability, particularly the indolenine-based dyes, and moderate to high photostability. Computational studies further indicated a strong binding affinity to human serum albumin and avidin proteins. All dyes exhibited photodynamic activity, with indolenine derivatives showing remarkable tumor selectivity and benz[e]indole analogs evidencing superior photocytotoxicity. The most promising compounds preferentially accumulated in mitochondria, and both singlet oxygen and other reactive oxygen species were found to play a role in their photobiological effects. Additionally, they were non-genotoxic in the absence of irradiation, and apoptosis was the primary mechanism of cell death upon light activation. This was evidenced by preserved cytoplasmic membrane integrity, nuclear fragmentation, and caspase-3/7 activation, reinforcing the safety and potential of these compounds as phototherapeutic agents. Although cellular uptake via the sodium-dependent multivitamin transporter was not established, and diffusion is expected to be the predominant mechanism, the high predicted avidin-binding affinity of these dyes opens exciting new avenues for photodynamic therapy-combined strategies.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal; RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Octávio Ferreira
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Renato E Boto
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - José R Fernandes
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Paulo Almeida
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Samuel M Silvestre
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal; RISE-Health, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal.
| | - Adriana O Santos
- RISE-Health, Faculty of Health Sciences, University of Beira Interior, Avenida Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Lucinda V Reis
- CQ-VR - Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
6
|
Wang M, Ding Q, Su W, Luo M, Yang R, Chen G, Wang Q, Zhang N, Gao J, Wang X, Huang T, Liu P, Fu D, Hong X, Zeng X, Wei Y, Xiao Y. A Mitochondrion-Targeted NIR-II Modulator for Synergistic Ferroptosis-Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501397. [PMID: 40223477 DOI: 10.1002/smll.202501397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have limited clinical efficacy against gastric cancer (GC) due to the nonimmunogenic tumor microenvironment. Therefore, inducing immunogenic cell death (ICD) to reprogram the immunogenic landscape is essential. This study develops HD-FA nanoparticles by encapsulating a novel mitochondrion-targeted NIR-II modulator, HD, within DSPE-PEG-FA. HD-FA exhibits superior spatiotemporal resolution, robust tumor accumulation, and minimal adverse effects. Upon 808 nm laser irradiation, HD-FA generates reactive oxygen species, leading to ferroptosis and oxidative stress damage in GC cells by inhibiting the SLC7A11/GSH/GPX4 axis. HD-FA triggers ICD, resulting in antitumor activity not only in primary tumors but also in distant tumors. Moreover, HD-FA promotes dendritic cell maturation, increases the effector-memory T-cell frequency, and reduces the presence of myeloid-derived suppressor cells, thereby fostering enhanced antitumor immunity. This study presents the first report of a novel NIR-II modulator for GC immunogenic synergistic therapy with ICIs, marking significant advancements in the fight against GC.
Collapse
Affiliation(s)
- Miao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Qihang Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Wuyue Su
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Min Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Runping Yang
- Department of Dermatology, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Guopeng Chen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Nan Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jialu Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaofen Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Pan Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Dujiang Fu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Xuechuan Hong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
- Shenzhen Institute of Wuhan University, Shenzhen, 518057, China
| | - Xiaodong Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yuling Xiao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Hubei Cancer Clinical Study Center & Hubei Key Laboratory of Tumor Biological Behaviors, School of Pharmaceutical Sciences, Wuhan, 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| |
Collapse
|
7
|
Yan Y, Zhang Y, Liu J, Chen B, Wang Y. Emerging magic bullet: subcellular organelle-targeted cancer therapy. MEDICAL REVIEW (2021) 2025; 5:117-138. [PMID: 40224364 PMCID: PMC11987508 DOI: 10.1515/mr-2024-0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/27/2024] [Indexed: 04/15/2025]
Abstract
The therapeutic efficacy of anticancer drugs heavily relies on their concentration and retention at the corresponding target site. Hence, merely increasing the cellular concentration of drugs is insufficient to achieve satisfactory therapeutic outcomes, especially for the drugs that target specific intracellular sites. This necessitates the implementation of more precise targeting strategies to overcome the limitations posed by diffusion distribution and nonspecific interactions within cells. Consequently, subcellular organelle-targeted cancer therapy, characterized by its exceptional precision, have emerged as a promising approach to eradicate cancer cells through the specific disruption of subcellular organelles. Owing to several advantages including minimized dosage and side effect, optimized efficacy, and reversal of multidrug resistance, subcellular organelle-targeted therapies have garnered significant research interest in recent years. In this review, we comprehensively summarize the distribution of drug targets, targeted delivery strategies at various levels, and sophisticated strategies for targeting specific subcellular organelles. Additionally, we highlight the significance of subcellular targeting in cancer therapy and present essential considerations for its clinical translation.
Collapse
Affiliation(s)
- Yue Yan
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
| | - Yimeng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jianxiong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Department of Central Laboratory, Peking University First Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Chemical Biology Center, Peking University, Beijing, China
| |
Collapse
|
8
|
Zou H, Wang P, Bai Z, Liu L, Wang J, Cheng Y, He B, Zhao Z, Zheng L. An aggregation-induced emission-active lysosome hijacker: Sabotaging lysosomes to boost photodynamic therapy efficacy and conquer tumor therapeutic resistance. Mater Today Bio 2025; 31:101564. [PMID: 40026634 PMCID: PMC11868998 DOI: 10.1016/j.mtbio.2025.101564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Therapeutic resistance is a major challenge in clinical cancer theranostics, often leading to treatment failure and increased patient mortality. Breaking this therapeutic deadlock, enhancing the efficacy of clinical treatments, and ultimately improving patient survival rates are both highly desirable and significantly challenging goals. Herein, we have developed a new fluorescent luminogen, QM-DMAC, which features aggregation-induced emission (AIE), and exceptional viscosity-responsive properties. The AIE-active QM-DMAC can specifically stain lysosomes in tumor cells, offering a high signal-to-noise ratio and enabling specific visualization of variations in lysosomal viscosity, such as those induced by inflammation or autophagy. Furthermore, QM-DMAC effectively generates reactive oxygen species (ROS) under white light irradiation, which precisely induces ROS-mediated lysosomal membrane permeabilization (LMP) and lysosome rupture. This ultimately causes severe cell damage and restores the sensitivity of tumor cells to radiotherapy and chemotherapy. Thus, QM-DMAC serves as a highly efficient lysosome-targeting photosensitizer and an excellent therapeutic sensitizer. This innovative "lysosome hijacking" strategy significantly maximizes the efficacy of photodynamic therapy, conquering therapeutic resistance and boosting the synergistic therapeutic effect when integrated with conventional radiotherapy or chemotherapy. It provides a novel approach to the design of theranostic agents for clinical cancer theranostics.
Collapse
Affiliation(s)
- Hang Zou
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- De Feng Academy, Southern Medical University, Guangzhou, 510515, China
| | - Pingping Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhihao Bai
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liping Liu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingtong Wang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanfang Cheng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bairong He
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- De Feng Academy, Southern Medical University, Guangzhou, 510515, China
- Department of Medical Laboratory, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, 341000, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single-cell and Extracellular Vesicles, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
9
|
Ding H, Su L, Xie Z, Castano AD, Li Y, Perez LR, Chen J, Luo K, Tian X, Battaglia G. Morphological insights in oxidative sensitive nanocarrier pharmacokinetics, targeting, and photodynamic therapy. J Mater Chem B 2025; 13:3852-3863. [PMID: 39946164 DOI: 10.1039/d4tb02194k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Nanoparticle (NP) morphology holds significant importance in nanomedicine, particularly concerning its implications for biological responses. This study investigates the impact of synthesizing polymers with varying degrees of methionine (MET) polymerization on three distinct drug delivery systems: spherical micelles, worm-like micelles, and vesicles, all loaded with the photosensitizer chlorin e6 (Ce6). We analyzed their distribution at both cellular and animal levels, revealing how NP morphology influences cellular uptake, subcellular localization, penetration of multicellular spheroids, blood half-life, and biodistributions across major organs. Employing a physiologically based pharmacokinetic (PBPK) model enabled us to simulate diverse distribution patterns and quantify the targeting efficiency of NPs toward tumors. Our investigation elucidates that spherical micelles exhibit lower accumulation levels within the reticuloendothelial system, potentially mitigating adverse side effects despite their higher glomerular filtration rate. This nuanced understanding underscores the complex interplay between NP morphology and biological responses, providing valuable insights into optimizing therapeutic efficacy while minimizing undesirable effects. We thus report the integration of experimental analyses with PBPK modeling to elucidate the topological characteristics of NP, thereby shedding light on their distribution patterns, therapeutic efficacy, and potential side effects.
Collapse
Affiliation(s)
- Haitao Ding
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Liping Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Zhendong Xie
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
- Institute for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I Reixac, 08028, Barcelona, Spain.
- Department of Electronic and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Aroa Duro Castano
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yunkun Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Lorena Ruiz Perez
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
- Institute for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I Reixac, 08028, Barcelona, Spain.
- Department of Applied Physics, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Junyang Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
- Institute for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I Reixac, 08028, Barcelona, Spain.
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Xiaohe Tian
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
| | - Giuseppe Battaglia
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, Sichuan Province, China.
- Institute for Bioengineering of Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona (Spain), Carrer Baldiri I Reixac, 08028, Barcelona, Spain.
- Department of Electronic and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
10
|
Zhao X, Wang T, Shang F, Yan J, Jiang M, Zou X, Li G, Song Z, Huang J. Coumarin-Quinazolinone based photosensitizers: Mitochondria and endoplasmic reticulum targeting for enhanced phototherapy via different cell death pathways. Eur J Med Chem 2024; 280:116990. [PMID: 39442335 DOI: 10.1016/j.ejmech.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Organelle-targeted photosensitizers (PSs) offer valuable tools for improving photodynamic therapy (PDT), yet systematic studies on how different organelles influence phototherapeutic outcomes are limited. In particular, the connection between organelle targeting and various modes of programmed cell death remains unclear. In this study, we developed a series of PSs using the Coumarin-Quinazolinone (CQ) scaffold, each designed to target different organelles, including the mitochondria, endoplasmic reticulum (ER), lysosome, and nucleolus. Our results show that their PDT performance is highly dependent on their localization, with phototoxic index (PI) ranging from 2 to 245. Notably, the mitochondria-targeted CQ-Mito and ER-targeted CQ-ER exhibited profound phototherapeutic performances, with PI of 167 and 245 respectively. Our further study reveals that CQ-Mito causes cell death by both apoptosis and ferroptosis, while CQ-ER primarily triggers ferroptosis. This study not only provides new agents for PDT but also offers insights into how organelle targeting influences cell death mechanisms, which can shed light on the design of PSs for controlled cell death.
Collapse
Affiliation(s)
- Xuzi Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Ting Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Fucheng Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Jiangyu Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China
| | - Mingyan Jiang
- Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Xiaoyan Zou
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China
| | - Guorui Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha, 410219, China.
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biomedical Sciences, Hunan University, Changsha, 410082, China; Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha, 410082, Hunan Province, China; Affiliated Hospital of Hunan University/ Xiangtan Central Hospital, Xiangtan, 411100, China.
| |
Collapse
|
11
|
Xu M, Xu Y, Du C, Gu G, Wei G. Biomimetic CuCoO 2 nanosheets reinforced with self-assembling peptide nanofibers for tumor photothermal therapy. RSC Adv 2024; 14:39163-39172. [PMID: 39664248 PMCID: PMC11632949 DOI: 10.1039/d4ra07435a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
The flexible design and unique physical and chemical properties of self-assembled peptides have shown great potential for applications in the fields of materials science, life science, and environmental science. Peptide nanofibers (PNFs), as a kind of bioactive nanomaterials, possess excellent biocompatibility, flexible designability, and multifaceted functionalizability. In this work, we design and describe PNFs that self-assembled by peptide molecules as carriers for bimetallic nanosheets (BMNS), leading to the development of hybrid nanomaterials, BMNS-PNFs, with unique properties. The BMNS-PNFs exhibit a photothermal conversion efficiency (PCE) of up to 31.57%, and can be used as a potential nanoplatform for photothermal therapy (PTT) of lung tumour cells. Through the results, it is shown that the PNFs can reduce the cytotoxicity of BMNS-PNFs and that BMNS-PNFs have excellent cancer cell killing effects, with photothermal killing rates of more than 95% and 90% for lung cancer cells HCC2279 and PC9, respectively. Finally, the comprehensive PTT performance of BMNS-PNFs is analysed by Ranking of Efficiency Performance (REP), and the REP value of BMNS-PNFs is calculated to be 0.741. The peptide sequences used to assemble into PNFs in this study are instructive for functional design and structural modulation of molecular self-assembly, and the constructed bimetallic-biomolecular hybrid materials provide a potential strategy for medical bioengineering.
Collapse
Affiliation(s)
- Mingjin Xu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University Qingdao 266700 PR China
| | - Youyin Xu
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| | - Chenxi Du
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| | - Guanghui Gu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University Qingdao 266700 PR China
| | - Gang Wei
- College of Chemistry & Chemical Engineering, Qingdao University 266071 Qingdao PR China
| |
Collapse
|
12
|
Calori IR, Tedesco AC. How can nanoemulsions be used for photosensitizer drug delivery? Expert Opin Drug Deliv 2024; 21:1701-1703. [PMID: 39555863 DOI: 10.1080/17425247.2024.2430395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Affiliation(s)
- Italo Rodrigo Calori
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS, USA
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
13
|
Meng Y, Wen T, Liu X, Yang A, Meng J, Liu J, Wang J, Xu H. Simultaneous targeting and suppression of heat shock protein 60 to overcome heat resistance and induce mitochondrial death of tumor cells in photothermal immunotherapy. Mater Today Bio 2024; 29:101282. [PMID: 39415762 PMCID: PMC11480245 DOI: 10.1016/j.mtbio.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
As the most aggressive and metastatic subtype of breast cancer, clinical demands of triple negative breast cancer (TNBC) have far not been met. Heat shock protein 60 (HSP60) is over expressed in tumor cells and impair the efficacy of photothermal therapy. In this work, a conjugate composed of self-designed peptide targeting HSP60 and gold nanorods was constructed, referred to as AuNR-P17. Results showed that AuNR-P17 was able to simultaneously down regulate the level of HSP60 and locate in the mitochondria where HSP60 is enriched in the tumor cells of TNBC, which also impeded the interaction between HSP60 and integrin α3, thereby reducing the tumor cells' heat tolerance and metastatic capabilities. At the same time, AuNR-P17 induced remarkable mitochondrial apoptosis when exposed to the laser irradiation of 808 nm. The dual functions of AuNR-P17 led to the decrement of BCL-2 and the activation of p53 and cleaved caspase-3. The danger associated molecular patterns (DAMPs) generated from the mitochondrial apoptosis elicited strong and long-term specific immune responses against TNBC in vivo and ultimately inhibited the tumor metastasis and recurrence with significantly prolonged survival (>100 days) on TNBC mice. In conclusion, this study demonstrated HSP60 a promising potential therapeutic target for triple negative breast cancer and exhibited powerful capacity of AuNR-P17 in photothermal immune therapy.
Collapse
Affiliation(s)
- Yiling Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xuanxin Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Aiyun Yang
- Translational Medicine Laboratory, Beijing Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jianhua Wang
- Translational Medicine Laboratory, Beijing Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
14
|
Chen T, Liang K, Wang J, Li J, Xue X, Hao Y, Liang H, Ren H, Xiao H, Ge J, Tang B. An Aged Tree with a New Bloom: A Simple Spatiotemporal Programming Strategy Enables Carbon Dot Photosensitizers to Regulate Cell Pyroptosis for Enhanced Tumor Photodynamic-Immunotherapy. NANO LETTERS 2024; 24:14709-14719. [PMID: 39504147 DOI: 10.1021/acs.nanolett.4c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Pyroptosis induced by photodynamic therapy (PDT) is a promising field in both PDT and immunotherapy for tumors. However, effectively inducing tumor cell pyroptosis while triggering a strong immune response using current photosensitizers remains challenging. Herein, the developed positively charged carbon dots (PCDs) nanoPSs were utilized to modulate tumor cell pyroptosis for the first time through a simple spatiotemporal programming strategy. Briefly, PCDs enabled precisely time-dependent targeting of the cell membrane or lysosome. Upon light irradiation, in vitro studies revealed that lysosome-targeted PDT primarily induced apoptosis, while membrane-targeted PDT triggered pyroptosis, resulting in enhanced PDT efficacy and robust activation of the immune response. Conclusively, in vivo studies demonstrated that PCDs could serve as a novel pyroptosis nanotuner for enhanced photodynamic-immunotherapy, thereby simultaneously eliminating primary tumors and inhibiting distant tumor growth and metastases. This spatiotemporal programming strategy unprecedentedly offers a rejuvenation of aged PSs and expands the biomedical use of CDs in immunotherapy.
Collapse
Affiliation(s)
- Tiejin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jian Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaokuang Xue
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongliang Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huanyi Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
15
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
16
|
Li Z, Lu J, Li X. Recent Progress in Thermally Activated Delayed Fluorescence Photosensitizers for Photodynamic Therapy. Chemistry 2024; 30:e202401001. [PMID: 38742479 DOI: 10.1002/chem.202401001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Photodynamic therapy (PDT) is a rapidly growing discipline that is expected to become an encouraging noninvasive therapeutic strategy for cancer treatment. In the PDT process, an efficient intersystem crossing (ISC) process for photosensitizers from the singlet excited state (S1) to the triplet excited state (T1) is critical for the formation of cytotoxic reactive oxygen species and improvement of PDT performance. Thermally activated delayed fluorescence (TADF) molecules featuring an extremely small singlet-triplet energy gap and an efficient ISC process represent an enormous breakthrough for the PDT process. Consequently, the development of advanced TADF photosensitizers has become increasingly crucial and pressing. The most recent developments in TADF photosensitizers aimed at enhancing PDT efficiency for bio-applications are presented in this review. TADF photosensitizers with water dispersibility, targeting ability, activatable ability, and two-photon excitation properties are highlighted. Furthermore, the future challenges and perspectives of TADF photosensitizers in PDT are proposed.
Collapse
Affiliation(s)
- Ziqi Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Jianjun Lu
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
| | - Xuping Li
- State Key Laboratory of Clean and Efficient Coal Utilization, Tai Yuan, Taiyuan University of Technology, Taiyuan, 030024, P.R. China
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot, 010020, P.R. China
| |
Collapse
|
17
|
Wang TY, Zhu XY, Jia HR, Zhu YX, Zhou YX, Li YH, Gao CZ, Pan GY, Wu FG. Devastating the Supply Wagons: Multifaceted Liposomes Capable of Exhausting Tumor to Death via Triple Energy Depletion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308861. [PMID: 38372029 DOI: 10.1002/smll.202308861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 02/20/2024]
Abstract
The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.
Collapse
Affiliation(s)
- Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ya-Xuan Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yong-Xi Zhou
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Guang-Yu Pan
- School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541100, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
18
|
Zhu XY, Wang TY, Jia HR, Wu SY, Gao CZ, Li YH, Zhang X, Shan BH, Wu FG. A ferroptosis-reinforced nanocatalyst enhances chemodynamic therapy through dual H 2O 2 production and oxidative stress amplification. J Control Release 2024; 367:892-904. [PMID: 38278369 DOI: 10.1016/j.jconrel.2024.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), β-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.
Collapse
Affiliation(s)
- Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Tian-Yu Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Hao-Ran Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Cheng-Zhe Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yan-Hong Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
19
|
Huang Y, Song B, Chen K, Kong D, Yuan J. Time-gated luminescent probes for lysosomal singlet oxygen: Synthesis, characterizations and bioimaging applications. Anal Chim Acta 2024; 1287:342063. [PMID: 38182371 DOI: 10.1016/j.aca.2023.342063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUD Single oxygen (1O2), the molecular oxygen at its excited state, plays a crucial role in the photodynamic therapy (PDT) of some diseases owing to its strong oxidizing property to destroy malignant cells. Although the fluorescent probe technique has proven its powerful application abilities for detection of 1O2 in biological systems, most of the reported fluorescent probes suffered from the interference of background autofluorescence of biological samples. It is clear that the real-time and in situ, background-free fluorescent detection of 1O2 generated in live cells, especially in some organelles, is of great significance for understanding the action mechanism of PDT drugs. RESULTS By introducing a lysosome-anchoring motif, a morpholine moiety, into a 1O2-specifically-reactive terpyridine polyacid ligand, [4'-(9-anthryl)-2,2':6',2″-terpyridine-6,6″-diyl] bis(methylenenitrilo) tetrakis (acetic acid) (ATTA), and chelating with lanthanide ions (Eu3+ or Tb3+), two lanthanide complex-based "turn-on" luminescent probes that can be used for the background-free time-gated luminescent (TGL) detection of lysosomal 1O2, Lyso-ATTA-Eu3+ and Lyso-ATTA-Tb3+, have been developed. The probes exhibit fast luminescence responses (within 2.5 min) towards 1O2 with high selectivity and sensitivity (<0.75 μM) in a wide pH range (4-11). And the excellent lysosome-localization performance of the probes allowed them to be used for the monitoring of endogenous 1O2 in lysosomes, which enabled the variability of lysosomal-1O2 concentrations induced by different photosensitizers to be successfully discriminated. Furthermore, by doping Lyso-ATTA-Eu3+ into the polyethylene glycol (PEG) hydrogel, the smart luminescent sensor film, PEG-Lyso-ATTA-Eu3+, was prepared, and successfully used for the detection of the on-site 1O2 production during the PDT process of psoriatic disease in model mice. SIGNIFICANT Two lysosome-targetable background-free TGL probes for 1O2 were firstly reported. The developed smart luminescent sensor film could be a powerful tool for the clinical monitoring of PDT on skin diseases without using sophisticated and expensive instruments.
Collapse
Affiliation(s)
- Yundi Huang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Kaiwen Chen
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Deshu Kong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
20
|
Zheng F, Huang Y, Shen Y, Chen G, Peng Y, Zhuang X. Fluorinated triphenylamine silicon phthalocyanine nanoparticles with two-color imaging guided in vitro photodynamic therapy through lysosomal dysfunction. Photodiagnosis Photodyn Ther 2023; 43:103734. [PMID: 37553039 DOI: 10.1016/j.pdpdt.2023.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
Lysosome-targeting therapy has emerged as a promising strategy for combating drug-resistant tumors. However, the synthesis of nanodrugs to achieve efficient lysosome targeting remains a challenging task. In this study, a nanoparticle DSPE@TPA-FBPA-SiPc was developed for lysosome targeting therapy. The nanoparticle was prepared by loading 2-[4-(diphenylamino)-1-diphenicacid-1-carbobenzoxy-4-(1,1,1,3,3,3-hexafluoropropane-4-phenoxy) silicon phthalocyanine (TPA-FBPA-SiPc) into 1,2-distearoyl-sn‑glycero-3-phosphoethanolamine-N-[succinyl(polyethyleneglycol)-2000] (DSPE). DSPE@TPA-FBPA-SiPc demonstrated remarkable capabilities such as two-color imaging, lysosome targeting and in vitro photodynamic therapy functions. The results revealed that DSPE@TPA-FBPA-SiPc efficiently accumulated in lysosomes, leading to generation of a high amount of reactive oxygen species upon irradiation. This induced apoptosis in MCF-7 cells by disrupting lysosomal function. Consequently, DSPE@TPA-FBPA-SiPc holds great potential as a photosensitizer for photodynamic therapy, utilizing the lysosomal-mediated cell death pathway.
Collapse
Affiliation(s)
- Fangmei Zheng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Yan Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Yating Shen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Guizhi Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Yiru Peng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.
| | | |
Collapse
|
21
|
Pan W, Shao H, Ma L, Tong X, Zhang Z, Li Q, Yang X, Liu K, Gao M, Wang Y. Photoactivatable Sequential Destruction of Multiorganelles for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37121-37129. [PMID: 37523306 DOI: 10.1021/acsami.3c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Organelle-targeted therapy guided by fluorescence imaging is promising for precise cancer treatment. However, most current organelle-targeted therapeutics can only destruct single organelles, which suffer from limited therapeutic efficacy. To address this challenge, a photoactivatable probe was developed for sequential photodynamic destruction of multiorganelles in cancer cells, including lysosomes, lipid droplets, and mitochondria. This photoactivatable probe not only exhibits efficient cancer cell eradication in vitro but also can suppress tumor growth in vivo. Simultaneously, the photoactivatable probe enables sequential destruction of multiple organelles in cancer cells, which can be observed in situ through the conversion of green-to-red fluorescence facilitated by a photooxidative dehydrogenation reaction. We believe this photoactivatable probe for sequential destruction of multiple organelles associated with fluorescence color conversion provides a new strategy for cancer treatment with greatly improved efficacy.
Collapse
Affiliation(s)
- Wenping Pan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Hongwei Shao
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Limin Ma
- Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xubo Tong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Zicong Zhang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Qian Li
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xin Yang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Kai Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Meng Gao
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Key Laboratory of Biomedical Engineering of Guangdong Province, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
22
|
Guo Z, Zhu AT, Fang RH, Zhang L. Recent Developments in Nanoparticle-Based Photo-Immunotherapy for Cancer Treatment. SMALL METHODS 2023; 7:e2300252. [PMID: 36960932 PMCID: PMC10192221 DOI: 10.1002/smtd.202300252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Phototherapy is an emerging approach for cancer treatment that is effective at controlling the growth of primary tumors. In the presence of light irradiation, photothermal and photodynamic agents that are delivered to tumor sites can induce local hyperthermia and the production of reactive oxygen species, respectively, that directly eradicate cancer cells. Nanoparticles, characterized by their small size and tunable physiochemical properties, have been widely utilized as carriers for phototherapeutic agents to improve their biocompatibility and tumor-targeted delivery. Nanocarriers can also be used to implement various codelivery strategies for further enhancing phototherapeutic efficiency. More recently, there has been considerable interest in augmenting the immunological effects of nanoparticle-based phototherapies, which can yield durable and systemic antitumor responses. This review provides an overview of recent developments in using nanoparticle technology to achieve photo-immunotherapy.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey T Zhu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
23
|
Liang Q, Yu F, Cai H, Wu X, Ma M, Li Z, Tedesco AC, Zhu J, Xu Q, Bi H. Photo-activated autophagy-associated tumour cell death by lysosome impairment based on manganese-doped graphene quantum dots. J Mater Chem B 2023; 11:2466-2477. [PMID: 36843492 DOI: 10.1039/d2tb02761e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Autophagy is indispensable in normal cellular processes, yet detrimental to cancer treatment because it severely lowers the therapeutic efficiency. One of the keys to solve this problem may lie in lysosomes, which requires the rational design of nanomedicine that is capable of localizing and maintaining its efficacy in lysosomes. In this work, a facile and versatile nanoplatform based on manganese-doped graphene quantum dots (Mn-FGQDs) is developed for effective and precise photodynamic impairment of lysosomes. Specifically, the incorporation of Mn not only strengthens the generation capability of reactive oxygen species (ROS), but also facilitates its accumulation in lysosomes. Moreover, Mn-FGQDs are structurally robust and retain their high photodynamic efficiency in the lysosomal environment. On this basis, the light-triggered generation of ROS would primarily influence the function of lysosomes, leading to lysosome impairment and thereby effectively blocking the protective autophagy recycling. More impressively, a continuous increase in the oxidative stress level in lysosomes causes severe autophagy dysfunction, as revealed from an abnormal increase in autophagosomes and autolysosomes. This eventually results in autophagy-associated cancer cell death accompanied by the characteristics of apoptosis and ferroptosis. Overall, the present work paves a new way for cancer therapy via precise lysosome impairment induced autophagy dysfunction.
Collapse
Affiliation(s)
- Qingjng Liang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Feng Yu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Hao Cai
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| | - Xiaoyan Wu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| | - Menghui Ma
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
| | - Zijian Li
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| | - Antonio Claudio Tedesco
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.,Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|