1
|
Gong Z, Zhou D, Wu D, Han Y, Yu H, Shen H, Feng W, Hou L, Chen Y, Xu T. Challenges and material innovations in drug delivery to central nervous system tumors. Biomaterials 2025; 319:123180. [PMID: 39985979 DOI: 10.1016/j.biomaterials.2025.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Central nervous system (CNS) tumors, encompassing a diverse array of neoplasms in the brain and spinal cord, pose significant therapeutic challenges due to their intricate anatomy and the protective presence of the blood-brain barrier (BBB). The primary treatment obstacle is the effective delivery of therapeutics to the tumor site, which is hindered by multiple physiological, biological, and technical barriers, including the BBB. This comprehensive review highlights recent advancements in material science and nanotechnology aimed at surmounting these delivery challenges, with a focus on the development and application of nanomaterials. Nanomaterials emerge as potent tools in designing innovative drug delivery systems that demonstrate the potential to overcome the limitations posed by CNS tumors. The review delves into various strategies, including the use of lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, all of which are engineered to enhance drug stability, BBB penetration, and targeted tumor delivery. Additionally, this review highlights the burgeoning role of theranostic nanoparticles, integrating therapeutic and diagnostic functionalities to optimize treatment efficacy. The exploration extends to biocompatible materials like biodegradable polymers, liposomes, and advanced material-integrated delivery systems such as implantable drug-eluting devices and microfabricated devices. Despite promising preclinical results, the translation of these material-based strategies into clinical practice necessitates further research and optimization.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dairan Zhou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Haotian Shen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lijun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
2
|
Wang X, Song B, Wu M, Qin L, Liang W. Immune cell targeting-mediated cytomimetic drug delivery system for BBB-penetrating and precise therapy of in situ glioma. Mater Today Bio 2025; 32:101694. [PMID: 40225137 PMCID: PMC11986483 DOI: 10.1016/j.mtbio.2025.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Gliomas are a group of highly malignant tumors that are prone to recurrence after surgery. Due to the limitation of the blood-brain barrier (BBB), most antitumor drugs cannot cross it. Therefore, improving the delivery efficiency of antitumor drugs in their treatment remains a significant challenge. Herein, we report a unique cellular biomimetic drug delivery system (CTP@RAW) that benefits from the exceptional immune homing and long-term tracking ability of RAW 264.7 cells to specifically penetrate BBB and target tumor sites. The drug (TMZ) is encapsulated in RAW264.7 to avoid being cleared or degraded by the blood, improve bioavailability and reduce systemic toxicity. And that, owning to polydopamine (PDA) coating on the quantum dots-drug nanoparticles, which can endogenously and controllably release TMZ in response to certain tumor microenvironment (high GSH and low pH). This delivery system can also achieve precise localization and real-time visualization of tumors via fluorescence imaging. The released drugs effectively inhibit tumor growth by regulating cytokine expression levels, including GFAP, Ki67, Caspase-3, and TNF-α. Our study demonstrates that this drug delivery system can cross BBB, improve drug delivery efficiency, and has excellent potential for visualization and precision treatment of in situ gliomas.
Collapse
Affiliation(s)
- Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
| | - Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Mengru Wu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
- Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong Academy of Medical Sciences, China
| |
Collapse
|
3
|
Jiang P, Li J. Recent advances in biomimetic nanodelivery systems for the treatment of depression. Mater Today Bio 2025; 32:101781. [PMID: 40290890 PMCID: PMC12033927 DOI: 10.1016/j.mtbio.2025.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Depression and cognitive disorders remain major challenges in healthcare, with conventional treatments often facing limitations such as slow onset, side effects, and poor drug delivery to the brain. Biomimetic nanodelivery systems, including nanozymes, cell membrane-based systems, and exosomes, have emerged as promising solutions to these issues. These systems leverage natural biological processes to enhance drug targeting, improve bioavailability, and regulate complex biological pathways. Nanoenzymes, with their catalytic properties, offer antioxidant and anti-inflammatory benefits, while cell membranes and exosomes provide efficient targeting and immune evasion. However, challenges remain, including the immaturity of large-scale production techniques, stability concerns, and incomplete understanding of their mechanisms of action. Moreover, the long-term safety, pharmacokinetics, and toxicity of these systems require further investigation. Despite these obstacles, the potential of biomimetic nanodelivery systems to revolutionize depression treatment is significant. Future research should focus on optimizing their preparation, improving drug targeting and release, and ensuring clinical safety. Multidisciplinary collaboration will be essential for advancing these systems from the laboratory to clinical practice, offering new therapeutic avenues for depression and other neurological disorders.
Collapse
Affiliation(s)
- Ping Jiang
- General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jian Li
- General Hospital of Northern Theater Command, Shenyang, 110016, China
| |
Collapse
|
4
|
Chithra P, Bhatia D, Solanki R. Advanced nanomicelles for targeted glioblastoma multiforme therapy. BIOMATERIALS ADVANCES 2025; 170:214221. [PMID: 39922136 DOI: 10.1016/j.bioadv.2025.214221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/11/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant primary brain tumor, classified as grade IV by the WHO. Despite standard treatments like surgical resection, radiotherapy and chemotherapy (i.e. temozolomide), GBM's prognosis remains poor due to its heterogeneity, recurrence and the impermeability of the blood-brain barrier (BBB). The exact cause of GBM is unclear with potential factors including genetic predisposition and ionizing radiation. Innovative approaches such as nanomicelles-nanoscale, self-assembled structures made from lipids and amphiphilic polymers show promise for GBM therapy. These nanocarriers enhance drug solubility and stability, enabling targeted delivery of therapeutic agents across the BBB. This review explores the synthesis strategies, characterization and applications of nanomicelles in GBM treatment. Nanomicelles improve the delivery of both hydrophobic and hydrophilic drugs and provide non-invasive delivery options. By offering site-specific targeting, biocompatibility, and stability, nanomicelles can potentially overcome the limitations of current GBM therapies. This review highlights recent advancements in the use of nanomicelles for delivering therapeutic agents and nucleic acids addressing the critical need for advanced treatments to improve GBM patient outcomes.
Collapse
Affiliation(s)
- P Chithra
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
5
|
Du X, Huang J, Zhao C, Hu Z, Zhang L, Xu Z, Liu X, Li X, Zhang Z, Guo S, Yin T, Wang G. Retrospective perspectives and future trends in nanomedicine treatment: from single membranes to hybrid membranes. NANOSCALE 2025; 17:9738-9763. [PMID: 40136036 DOI: 10.1039/d4nr04999c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
At present, various diseases seriously threaten human life and health, and the development of nanodrug delivery systems has brought about a turnaround for traditional drug treatments, with nanoparticles being precisely targeted to improve bioavailability. Surface modification of nanoparticles can prolong blood circulation time and enhance targeting ability. The application of cell membrane-coated nanoparticles further improves their biocompatibility and active targeting ability, providing new hope for the treatment of various diseases. Various types of cell membrane biomimetic nanoparticles have gradually attracted increasing attention due to their unique advantages. However, the pathological microenvironment of different diseases is complex and varied, and the single-cell membrane has several limitations because a single functional property cannot fully meet the requirements of disease treatment. Hybrid cell membranes integrate the advantages of multiple biological membranes and have become an emerging research hotspot. This review summarizes the application of cell membrane biomimetic nanoparticles in the treatment of various diseases and discusses the advantages, challenges and future development of biomimetic nanoparticles. We propose that the fusion of multiple membranes may be a reasonable trend in the future to provide some ideas and directions for the treatment of various diseases.
Collapse
Affiliation(s)
- Xinya Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
- College of Computer Science, Chongqing University, Chongqing, China.
| | - Chuanrong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| | - Ziqiu Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | | | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Xiaoying Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Xinglei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Zhengcai Zhang
- Lepu Medical Technology (Beijing) Co., Ltd, Beijing, China
| | - Songtao Guo
- College of Computer Science, Chongqing University, Chongqing, China.
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
- JinFeng Laboratory, Chongqing, China.
| |
Collapse
|
6
|
Luo Q, Yang J, Yang M, Wang Y, Liu Y, Liu J, Kalvakolanu DV, Cong X, Zhang J, Zhang L, Guo B, Duo Y. Utilization of nanotechnology to surmount the blood-brain barrier in disorders of the central nervous system. Mater Today Bio 2025; 31:101457. [PMID: 39896289 PMCID: PMC11786670 DOI: 10.1016/j.mtbio.2025.101457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/27/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Central nervous system (CNS) diseases are a major cause of disability and death worldwide. Due to the blood-brain barrier (BBB), drug delivery for CNS diseases is extremely challenging. Nano-delivery systems can overcome the limitations of BBB to deliver drugs to the CNS, improve the ability of drugs to target the brain and provide potential therapeutic methods for CNS diseases. At the same time, the choice of different drug delivery methods (bypassing BBB or crossing BBB) can further optimize the therapeutic effect of the nano-drug delivery system. This article reviews the different methods of nano-delivery systems to overcome the way BBB enters the brain. Different kinds of nanoparticles to overcome BBB were discussed in depth.
Collapse
Affiliation(s)
- Qian Luo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jiaying Yang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mei Yang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yingtong Wang
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jixuan Liu
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Dhan V. Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Xianling Cong
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Jinnan Zhang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Biomedical Science, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Yanhong Duo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
7
|
Sandhbor P, John G, Bhat S, Goda JS. Immune response recalibration using immune therapy and biomimetic nano-therapy against high-grade gliomas and brain metastases. Asian J Pharm Sci 2025; 20:101021. [PMID: 40224727 PMCID: PMC11987628 DOI: 10.1016/j.ajps.2025.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 04/15/2025] Open
Abstract
Although with aggressive standards of care like surgical resection, chemotherapy, and radiation, high-grade gliomas (HGGs) and brain metastases (BM) treatment has remained challenging for more than two decades. However, technological advances in this field and immunotherapeutic strategies have revolutionized the treatment of HGGs and BM. Immunotherapies like immune checkpoint inhibitors, CAR-T targeting, oncolytic virus-based therapy, bispecific antibody treatment, and vaccination approaches, etc., are emerging as promising avenues offering new hope in refining patient's survival benefits. However, selective trafficking across the blood-brain barrier (BBB), immunosuppressive tumor microenvironment (TME), metabolic alteration, and tumor heterogeneity limit the therapeutic efficacy of immunotherapy for HGGs and BM. Furthermore, to address this concern, the NanoBioTechnology-based bioinspired delivery system has been gaining tremendous attention in recent years. With technological advances such as Trojan horse targeting and infusing/camouflaging nanoparticles surface with biological molecules/cells like immunocytes, erythrocytes, platelets, glioma cell lysate and/or integrating these strategies to get hybrid membrane for homotypic recognition. These biomimetic nanotherapy offers advantages over conventional nanoparticles, focusing on greater target specificity, increased circulation stability, higher active loading capacity, BBB permeability (inherent inflammatory chemotaxis of neutrophils), decreased immunogenicity, efficient metabolism-based combinatorial effects, and prevention of tumor recurrence by induction of immunological memory, etc. provide new age of improved immunotherapies outcomes against HGGs and BM. In this review, we emphasize on neuro-immunotherapy and the versatility of these biomimetic nano-delivery strategies for precise targeting of hard-to-treat and most lethal HGGs and BM. Moreover, the challenges impeding the clinical translatability of these approaches were addressed to unmet medical needs of brain cancers.
Collapse
Affiliation(s)
- Puja Sandhbor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore 21218, USA
| | - Geofrey John
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| | - Sakshi Bhat
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| | - Jayant S. Goda
- Department of Radiation Oncology, Advanced Centre for Treatment Research & Education in Cancer, Tata Memorial Centre, Kharghar 410210, India
- Homi Bhabha National Institute, Anushakti Nagar 400094, India
| |
Collapse
|
8
|
Wang C, Zhang X, Zhuang Y, Song X, Sun S, Chen Y, Qi G, Yang Y, Li P, Wei W. Natural Bioactive Compounds Solanesol and Chlorogenic Acid Assembled Nanomicelles for Alzheimer's Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39995296 DOI: 10.1021/acsami.4c22621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Solanesol (Sol) and chlorogenic acid (CHA) are naturally active compounds. Sol exhibits a significant free radical absorption ability and strong antioxidant activity. CHA, a typical phenolic acid, exhibits excellent anticancer, anti-inflammation, and antibacterial properties. Herein, bifunctional nanomicelles (CI@SPK) were skillfully designed to take advantage of the unique properties of Sol and CHA to treat Alzheimer's disease (AD). Hydrophobic Sol was modified with poly(ethylene glycol) to self-assemble into stable nanomicelles (SP). CHA could be encapsulated into the hydrophobic core of these nanomicelles, which increased its bioavailability greatly. Short peptide K (CKLVFFAED) was incorporated (CI@SPK) to facilitate their crossing the blood-brain barrier. Then, CI@SPK targeted the AD lesion area, and CHA was released in greater quantities with the help of IR780 under irradiation with an 808 nm laser, resulting in synergistically scavenging reactive oxygen species (ROS) with Sol. Consequently, the nanomicelles CI@SPK demonstrated capabilities in scavenging ROS, inhibiting β-amyloid (Aβ) aggregation, and eventually modulating microglia phenotype from M1 to M2 to promote Aβ phagocytosis and clearance. In vivo studies indicated that nanomicelles CI@SPK improved the learning and cognitive impairments of APP/PS1 mice by reducing Aβ plaque and inflammation, signifying the potential value of CI@SPK in clinical application for AD treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaowan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yurong Zhuang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaolei Song
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Shihao Sun
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Yong Chen
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Guihong Qi
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Yinan Yang
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Peng Li
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
| | - Wei Wei
- Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102200, P. R. China
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
9
|
Chen S, Li B, Liu B. AIEgen-biomacromolecule conjugates: Visualized delivery and light-controlled theranostic platforms. J Control Release 2025; 378:605-618. [PMID: 39716664 DOI: 10.1016/j.jconrel.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Biomacromolecules play a critical role in advancing disease diagnosis and treatment. Traditional carriers often lack real-time tracking capabilities, controlled drug release, and may induce adverse effects for delivering biomacromolecules. Aggregation-induced emission luminogens (AIEgens) provide significant advantages in biomacromolecule delivery, enabling real-time fluorescence imaging and reactive oxygen species generation for photodynamic therapy (PDT). This dual functionality allows for the visualization of the biomacromolecule delivery process, providing valuable insights into biodistribution, cellular uptake, and drug-cell interactions. Additionally, the light-responsive nature of AIEgens enables precise spatial-temporal control over cargo release and imaging-guided PDT with minimal side effects. In this perspective, we summarize recent advancements in the use of AIEgens for visualized delivery and light-controlled theranostic applications of biomacromolecules, highlighting their potential to overcome challenges in targeted imaging and precision treatments. Key topics covered include covalent linkage strategies and the biomedical applications of AIEgen-functionalized biomacromolecules, including nucleic acids, proteins, polysaccharides, and lipids. We further highlight AIEgen-functionalized gene therapy and PDT for cancer, peptide transport for disease diagnosis, as well as polysaccharides and lipids delivery in antimicrobial treatments. This perspective concludes by addressing future challenges and opportunities, emphasizing the potential of AIEgen-functionalized biomacromolecules to advance precision theranostics.
Collapse
Affiliation(s)
- Siqin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
10
|
Cheng W, Duan Z, Chen H, Wang Y, Wang C, Pan Y, Wu J, Wang N, Qu H, Xue X. Macrophage membrane-camouflaged pure-drug nanomedicine for synergistic chemo- and interstitial photodynamic therapy against glioblastoma. Acta Biomater 2025; 193:392-405. [PMID: 39800099 DOI: 10.1016/j.actbio.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Glioblastoma (GBM) persists as a highly fatal malignancy, with current clinical treatments showing minimal progress over years. Interstitial photodynamic therapy (iPDT) holds promise due to its minimally invasive nature and low toxicity but is impeded by poor photosensitizer penetration and inadequate GBM targeting. Here, we developed a biomimetic pure-drug nanomedicine (MM@CT), which co-assembles the photosensitizer chlorin e6 (Ce6) and the first-line chemotherapeutic drug (temozolomide, TMZ) for GBM, then camouflaged with macrophage membranes. This design eliminates the need for traditional excipients, ensuring formulation safety and achieving exceptionally high drug loading with 73.2 %. By leveraging the biomimetic properties of macrophage membranes, MM@CT evades clearance by the mononuclear phagocyte system and can overcome blood circulatory barriers to target intracranial GBM tumors due to its inherent tumor-homing ability. Consequently, this targeted strategy enables precise delivery of TMZ to the tumor site while significantly enhancing Ce6 accumulation within the tumor tissue. Upon intra-tumoral irradiation using an optical fiber, activated Ce6 synergizes with TMZ to exert both cytotoxic effects from chemotherapy and unique advantages from iPDT simultaneously attacking GBM tumors in a dual manner. In subcutaneous and intracranial GBM mouse models, MM@CT exhibits remarkable anti-tumor efficacy with minimal systemic toxicity, emerging as a promising GBM treatment strategy. STATEMENT OF SIGNIFICANCE: Glioblastoma (GBM) remains a formidable brain cancer, posing significant therapeutic challenges due to the presence of the blood-brain barrier (BBB) and tumor heterogeneity. To overcome these obstacles, we have developed MM@CT, a biomimetic nanomedicine with exceptional drug loading efficiency of 73.2 %. MM@CT incorporates the photosensitizer Ce6 and chemotherapy agent TMZ, encapsulated within nanoparticles and camouflaged with macrophage membranes. This innovative design enables efficient BBB penetration, precise tumor targeting, and synergistic application of chemotherapy and photodynamic therapy. Encouragingly, preclinical evaluations have demonstrated substantial antitumor activity with minimal systemic toxicity, positioning MM@CT as a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Wei Cheng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiran Duan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Han Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanjun Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Pan
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Wu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Wang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haijing Qu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiangdong Xue
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Wang S, Yang L, He W, Zheng M, Zou Y. Cell Membrane Camouflaged Biomimetic Nanoparticles as a Versatile Platform for Brain Diseases Treatment. SMALL METHODS 2025; 9:e2400096. [PMID: 38461538 DOI: 10.1002/smtd.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Although there are various advancements in biomedical in the past few decades, there are still challenges in the treatment of brain diseases. The main difficulties are the inability to deliver a therapeutic dose of the drug to the brain through the blood-brain barrier (BBB) and the serious side effects of the drug. Thus, it is essential to select biocompatible drug carriers and novel therapeutic tools to better enhance the effect of brain disease treatment. In recent years, biomimetic nanoparticles (BNPs) based on natural cell membranes, which have excellent biocompatibility and low immunogenicity, are widely used in the treatment of brain diseases to enable the drug to successfully cross the BBB and target brain lesions. BNPs can prolong the circulation time in vivo, are more conducive to drug aggregation in brain lesions. Cell membranes (CMs) from cancer cells (CCs), red blood cells (RBCs), white blood cells (WBCs), and so on are used as biomimetic coatings for nanoparticles (NPs) to achieve the ability to target, evade clearance, or stimulate the immune system. This review summarizes the application of different cell sources as BNPs coatings in the treatment of brain diseases and discusses the possibilities and challenges of clinical translation.
Collapse
Affiliation(s)
- Shiyu Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Longfei Yang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wenya He
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
12
|
Ma L, Jiang X, Gao J. Revolutionizing rheumatoid arthritis therapy: harnessing cytomembrane biomimetic nanoparticles for novel treatment strategies. Drug Deliv Transl Res 2025; 15:66-83. [PMID: 38758497 DOI: 10.1007/s13346-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease with severe implications for joint health. The issue of non-specific drug distribution potentially limits the therapeutic efficacy and increases the risk associated with RA treatment. Researchers employed cytomembrane-coated biomimetic nanoparticles (NPs) to enhance the targeting delivery efficacy to meet the demand for drug accumulation within the affected joints. Furthermore, distinct cytomembranes offer unique functionalities, such as immune cell activation and augmented NP biocompatibility. In this review, the current strategies of RA treatments were summarized in detail, and then an overview of RA's pathogenesis and the methodologies for producing cytomembrane-coated biomimetic NPs was provided. The application of cytomembrane biomimetic NPs derived from various cell sources in RA therapy is explored, highlighting the distinctive attributes of individual cytomembranes as well as hybrid membrane configurations. Through this comprehensive assessment of cytomembrane biomimetic NPs, we elucidate the prospective applications and challenges in the realm of RA therapy, and the strategy of combined therapy is proposed. In the future, cytomembrane biomimetic NPs have a broad therapeutic prospect for RA.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Chilechuan dairy economic development zone, Hohhot, Inner Mongolia Autonomous Region, 010110, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
13
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
14
|
Liu H, Zhuo R, Zou C, Xu S, Cai X, Ge Y, Liu G, Wu C, Dai C, Li J, Fan Z, Yang L, Li Y. RVG-peptide-camouflaged iron-coordinated engineered polydopamine nanoenzyme with ROS scavenging and inhibiting inflammatory response for ischemic stroke therapy. Int J Biol Macromol 2024; 282:136778. [PMID: 39442842 DOI: 10.1016/j.ijbiomac.2024.136778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Stroke is one of the most common causes of death and disability. In addition, most neuroprotective agents fail to rescue neurons from cerebral ischemic insults due to their poor ability to penetrate the blood-brain barrier (BBB). Here, the tailored engineered nanoenzyme has been successfully synthesized by coordination-driven co-assembly of dopamine (DA) and iron ion (Fe3+), which is subsequently camouflaged by neuron-specific rabies viral glycoprotein (RVG) peptide to scavenge reactive oxygen species (ROS) and inhibit inflammatory response in damaged neuron for the efficient therapy of ischemic stroke. The resulting nanoenzyme with good biocompatibility, core-shell structure, and suitable diameter can nondestructively cross the BBB and then internalize into the damaged neuron through the camouflaging and homologous targeted strategy of neuron-specific RVG peptide. After intravenous injection into transient middle cerebral artery occlusion (tMCAO) mouse models, nanoenzyme exerted a significant neuroprotective effect, resulting in a 50 % reduction in neurological scores and an approximate 33 % decrease in cerebral infarction volume. Interestingly, such nanoenzyme can eliminate free radicals, reduce neuroinflammation, enhance BBB integrity, improve mitochondrial function, and inhibit neuronal ferroptosis. Taken together, this well-designed nanoenzyme with its excellent biocompatibility and well-understood mechanisms holds promise a robust therapy for ischemic stroke.
Collapse
Affiliation(s)
- Heng Liu
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China; Department of Radiology, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Rengong Zhuo
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chuanyang Zou
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shuyu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Cai
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuxue Ge
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chuang Wu
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Cuilian Dai
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital of Xiamen University, Xiamen 361002, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| | - Zhongxiong Fan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; School of Pharmaceutical Sciences, Institute of Materia Medica, Xinjiang University, Urumqi 830017, China.
| | - Lichao Yang
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Ying Li
- Department of Pharmacy, Xiamen Medical College & The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
15
|
Zhou W, Jiang X, Gao J. Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury. Asian J Pharm Sci 2024; 19:100965. [PMID: 39640057 PMCID: PMC11617990 DOI: 10.1016/j.ajps.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/08/2024] [Accepted: 06/29/2024] [Indexed: 12/07/2024] Open
Abstract
Ischemia/reperfusion (I/R) injury is marked by the restriction and subsequent restoration of blood supply to an organ. This process can exacerbate the initial tissue damage, leading to further disorders, disability, and even death. Extracellular vesicles (EVs) are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells. The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy. The therapeutic potential of EVs derived from stem cells, endothelial cells, and plasma in I/R injury has been actively investigated. Therefore, this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs. We noted that EVs serve as nontoxic, flexible, and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression. The therapeutic efficacy of EVs can be enhanced through various engineering strategies. Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies. Finally, we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance. This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment.
Collapse
Affiliation(s)
- Weihang Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
16
|
Moulton C, Baroni A, Quagliarini E, Leone L, Digiacomo L, Morotti M, Caracciolo G, Podda MV, Tasciotti E. Navigating the nano-bio immune interface: advancements and challenges in CNS nanotherapeutics. Front Immunol 2024; 15:1447567. [PMID: 39600701 PMCID: PMC11588692 DOI: 10.3389/fimmu.2024.1447567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
In recent years, significant advancements have been made in utilizing nanoparticles (NPs) to modulate immune responses within the central nervous system (CNS), offering new opportunities for nanotherapeutic interventions in neurological disorders. NPs can serve as carriers for immunomodulatory agents or platforms for delivering nucleic acid-based therapeutics to regulate gene expression and modulate immune responses. Several studies have demonstrated the efficacy of NP-mediated immune modulation in preclinical models of neurological diseases, including multiple sclerosis, stroke, Alzheimer's disease, and Parkinson's disease. While challenges remain, advancements in NPs engineering and design have led to the development of NPs using diverse strategies to overcome these challenges. The nano-bio interface with the immune system is key in the conceptualization of NPs to efficiently act as nanotherapeutics in the CNS. The biomolecular corona plays a pivotal role in dictating NPs behavior and immune recognition within the CNS, giving researchers the opportunity to optimize NPs design and surface modifications to minimize immunogenicity and enhance biocompatibility. Here, we review how NPs interact with the CNS immune system, focusing on immunosurveillance of NPs, NP-induced immune reprogramming and the impact of the biomolecular corona on NPs behavior in CNS immune responses. The integration of NPs into CNS nanotherapeutics offers promising opportunities for addressing the complex challenges of acute and chronic neurological conditions and pathologies, also in the context of preventive and rehabilitative medicine. By harnessing the nano-bio immune interface and understanding the significance of the biomolecular corona, researchers can develop targeted, safe, and effective nanotherapeutic interventions for a wide range of CNS disorders to improve treatment and rehabilitation. These advancements have the potential to revolutionize the treatment landscape of neurological diseases, offering promising solutions for improved patient care and quality of life in the future.
Collapse
Affiliation(s)
| | - Anna Baroni
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Leone
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Marta Morotti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Vittoria Podda
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ennio Tasciotti
- Human Longevity Program, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, Università telematica San Raffaele, Rome, Italy
| |
Collapse
|
17
|
Liu P, Lan S, Gao D, Hu D, Chen Z, Li Z, Jiang G, Sheng Z. Targeted blood-brain barrier penetration and precise imaging of infiltrative glioblastoma margins using hybrid cell membrane-coated ICG liposomes. J Nanobiotechnology 2024; 22:603. [PMID: 39367395 PMCID: PMC11452969 DOI: 10.1186/s12951-024-02870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Surgical resection remains the primary treatment modality for glioblastoma (GBM); however, the infiltrative nature of GBM margins complicates achieving complete tumor removal. Additionally, the blood-brain barrier (BBB) poses a formidable challenge to effective probe delivery, thereby hindering precise imaging-guided surgery. Here, we introduce hybrid cell membrane-coated indocyanine green (ICG) liposomes (HM-Lipo-ICG) as biomimetic near-infrared (NIR) fluorescent probes for targeted BBB penetration and accurate delineation of infiltrative GBM margins. HM-Lipo-ICG encapsulates clinically approved ICG within its core and utilizes a hybrid cell membrane exterior, enabling specific targeting and enhanced BBB permeation. Quantitative assessments demonstrate that HM-Lipo-ICG achieves BBB penetration efficiency 2.8 times higher than conventional ICG liposomes. Mechanistically, CD44 receptor-mediated endocytosis facilitates BBB translocation of HM-Lipo-ICG. Furthermore, HM-Lipo-ICG enables high-contrast NIR imaging, achieving a signal-to-background ratio of 6.5 in GBM regions of an orthotopic glioma mouse model, thereby improving tumor margin detection accuracy fourfold (84.4% vs. 22.7%) compared to conventional ICG liposomes. Application of HM-Lipo-ICG facilitates fluorescence-guided precision surgery, resulting in complete resection of GBM cells. This study underscores the potential of hybrid cell membrane-coated liposomal probes in precisely visualizing and treating infiltrative GBM margins.
Collapse
Affiliation(s)
- Ping Liu
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, #466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, P. R. China
| | - Siyi Lan
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Duyang Gao
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Dehong Hu
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Zhen Chen
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ziyue Li
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, #466 Xingang Middle Road, Haizhu District, Guangzhou, 510317, P. R. China.
| | - Zonghai Sheng
- Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.
| |
Collapse
|
18
|
Byeon H, Quraishi A, Khalaf MI, Mp S, Khan IR, Dutta AK, Dasari R, Yellu RR, Reegu FA, Bhatt MW. Bio-inspired EEG signal computing using machine learning and fuzzy theory for decision making in future-oriented brain-controlled vehicles. SLAS Technol 2024; 29:100187. [PMID: 39209118 DOI: 10.1016/j.slast.2024.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
One kind of autonomous vehicle that can take instructions from the driver by reading their electroencephalogram (EEG) signals using a Brain-Computer Interface (BCI) is called a Brain-Controlled Vehicle (BCV). The operation of such a vehicle is greatly affected by how well the BCI works. At present, there are limitations on the accuracy of BCI recognition, the number of distinguishable command categories, and the execution duration of command recognition. Consequently, vehicles that are exclusively controlled by EEG signals demonstrate suboptimal control performance. To address the difficulty of improving the control capabilities of brain-controlled cars while maintaining BCI performance, a fuzzy logic-based technique called as Fuzzy Brain-Control Fusion Control is introduced. This approach uses Fuzzy Discrete Event System (FDES) supervisory theory to verify the accuracy of the driver's brain-controlled directives. Concurrently, a fuzzy logic-based automatic controller is developed to generate decisions automatically in accordance with the present state of the vehicle via fuzzy reasoning. The final decision is then reached through the application of secondary fuzzy reasoning to the accuracy of the driver's instructions and the automated decisions to make adjustments that are more consistent with human intent. A clever BCI gadget known as the Consistent State Visual Evoked Potential (SSVEP) is utilized to show the viability of the proposed technique. We recommend that additional research should be conducted at this time to confirm that our recommended system may further improve the control execution of BCI-fueled cars, regardless of whether BCIs have special limitations.
Collapse
Affiliation(s)
- Haewon Byeon
- Department of AI and Software, Inje University, Gimhae 50834, Republic of Korea; Inje University Medical Big Data Research Center, Gimhae 50834, Republic of Korea
| | - Aadam Quraishi
- M.D Research, Intervention Treatment Institute, Houston, TX, USA
| | - Mohammed I Khalaf
- Department of Computer Science, Al Maarif University College, Al Anbar, 31001, Iraq
| | - Sunil Mp
- Department of Electronics and Communication Engineering, School of Engineering and Technology, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Ad Diriyah, Riyadh 13713, Kingdom of Saudi Arabia
| | - Rakeshnag Dasari
- Department of CSE, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510, India
| | | | - Faheem Ahmad Reegu
- Department of Electrical and Electronics Engineering, College of Engineering and Computer Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | | |
Collapse
|
19
|
Zhang Z, Li J, Wang Y, Tang C, Zhou Y, Li J, Lu X, Wang Y, Ma T, Xu H, Li X. Angiopep-2 conjugated biomimetic nano-delivery system loaded with resveratrol for the treatment of methamphetamine addiction. Int J Pharm 2024; 663:124552. [PMID: 39111355 DOI: 10.1016/j.ijpharm.2024.124552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Methamphetamine (METH) addiction can damage the central nervous system, resulting in cognitive impairment and memory deficits. Low target effects have limited the utility of anti-addiction drugs because the presence of the blood-brain barrier hinders the effective delivery of drugs to the brain. Angiopep-2 can recognize and target low-density lipoprotein receptor-associated protein 1 (LRP-1) on the surface of cerebral capillary endothelial cells, causing cross-cell phagocytosis, and thus has high blood-brain barrier transport capacity. Resveratrol (RSV) has been found to be a neuroprotective agent in many nervous system diseases. In our study, we modified Angiopep-2 on the surface of the erythrocyte membrane to obtain a modified erythrocyte membrane (Ang-RBCm) and coated RSV-loaded poly(ε-caprolactone)-poly(ethylene glycol) (PCL-PEG) nanoparticles with Ang-RBCm (Ang-RBCm@RSVNPs) to treat METH addiction. Our results showed that Ang-RBCm@RSVNPs can penetrate the blood-brain barrier and accumulate in the brain better than free RSV. Besides, mice treatetd with Ang-RBCm@RSVNPs showed less preference to METH-paired chamber and no noticeable tissue toxicity or abnormality was found in H&E staining images. Electrophysiological experiments demonstrated Ang-RBCm@RSVNPs could elevate synaptic plasticity impaired by METH. These indicated that Ang-RBCm@RSVNPs has better anti-addiction and neuroprotective effects. Therefore, Ang-RBCm@RSVNPs has great potential in the treatment of METH addiction.
Collapse
Affiliation(s)
- Ziting Zhang
- Department of Geriatircs, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jiaxin Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yanling Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China
| | - Chunming Tang
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yao Zhou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jinyu Li
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xiaowei Lu
- Department of Geriatircs, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Yijun Wang
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China.
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Huae Xu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Xiaolin Li
- Department of Geriatircs, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
20
|
Duan M, Cao R, Yang Y, Chen X, Liu L, Ren B, Wang L, Goh BC. Blood-Brain Barrier Conquest in Glioblastoma Nanomedicine: Strategies, Clinical Advances, and Emerging Challenges. Cancers (Basel) 2024; 16:3300. [PMID: 39409919 PMCID: PMC11475686 DOI: 10.3390/cancers16193300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a prevalent type of malignancy within the central nervous system (CNS) that is associated with a poor prognosis. The standard treatment for GBM includes the surgical resection of the tumor, followed by radiotherapy and chemotherapy; yet, despite these interventions, overall treatment outcomes remain suboptimal. The blood-brain barrier (BBB), which plays a crucial role in maintaining the stability of brain tissue under normal physiological conditions of the CNS, also poses a significant obstacle to the effective delivery of therapeutic agents to GBMs. Recent preclinical studies have demonstrated that nanomedicine delivery systems (NDDSs) offer promising results, demonstrating both effective GBM targeting and safety, thereby presenting a potential solution for targeted drug delivery. In this review, we first explore the various strategies employed in preclinical studies to overcome the BBB for drug delivery. Subsequently, the results of the clinical translation of NDDSs are summarized, highlighting the progress made. Finally, we discuss potential strategies for advancing the development of NDDSs and accelerating their translational research through well-designed clinical trials in GBM therapy.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Ruina Cao
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Wuhan 430070, China;
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Xiaoguang Chen
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lian Liu
- Department of Pharmacology, Health Science Center, Yangtze University, Jingzhou 434023, China;
| | - Boxu Ren
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou 434023, China; (M.D.); (X.C.)
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore
| |
Collapse
|
21
|
Zhang T, Zheng X, Lin R, Sun H, Wu H, Zhang J, Chen S, Li Y, Xu D, Gao J. Lyophilizable Stem Cell-Hybrid Liposome with Long-Term Stability and High Targeting Capacity. Adv Healthc Mater 2024; 13:e2400704. [PMID: 38781020 DOI: 10.1002/adhm.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The hybridization of liposome with stem cell membranes is an emerging technology to prepare the nanovehicle with the capacity of disease-responsive targeting. However, the long-term storage of this hybrid liposome has received limited attention in the literature, which is essential for its potential applicability in the clinic. Therefore, the preservation of long-term activity of stem cell-hybrid liposome using freeze-drying is investigated in the present study. Mesenchymal stem cell-hybrid liposome is synthesized and its feasibility for freeze-drying under different conditions is examined. Results reveal that pre-freezing the hybrid liposome at -20 °C in Tris buffer solution (pH 7.4) containing 10% trehalose can well preserve the liposomal structure for at least three months. Notably, major membrane proteins on the hybrid liposome are protected in this formulation and CXCR4-associated targeting capacity is maintained both in vitro and in vivo. Consequently, the hybrid liposome stored for three months demonstrates a comparable tumor inhibition as the fresh-prepared one. The present study provides the first insights into the long-term storage of stem cell hybrid liposome using lyophilization, which may make an important step forward in enhancing the long-term stability of these promising biomimetic nanovehicle and ease the logistics and the freeze-storage in the potential clinical applications.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Xixi Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaosheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
22
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
23
|
Ma Y, Yi J, Ruan J, Ma J, Yang Q, Zhang K, Zhang M, Zeng G, Jin L, Huang X, Li J, Yang H, Wu W, Sun D. Engineered Cell Membrane-Coated Nanoparticles: New Strategies in Glioma Targeted Therapy and Immune Modulation. Adv Healthc Mater 2024; 13:e2400514. [PMID: 38652681 DOI: 10.1002/adhm.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Gliomas, the most prevalent primary brain tumors, pose considerable challenges due to their heterogeneity, intricate tumor microenvironment (TME), and blood-brain barrier (BBB), which restrict the effectiveness of traditional treatments like surgery and chemotherapy. This review provides an overview of engineered cell membrane technologies in glioma therapy, with a specific emphasis on targeted drug delivery and modulation of the immune microenvironment. This study investigates the progress in engineered cell membranes, encompassing physical, chemical, and genetic alterations, to improve drug delivery across the BBB and effectively target gliomas. The examination focuses on the interaction of engineered cell membrane-coated nanoparticles (ECM-NPs) with the TME in gliomas, emphasizing their potential to modulate glioma cell behavior and TME to enhance therapeutic efficacy. The review further explores the involvement of ECM-NPs in immunomodulation techniques, highlighting their impact on immune reactions. While facing obstacles related to membrane stability and manufacturing scalability, the review outlines forthcoming research directions focused on enhancing membrane performance. This review underscores the promise of ECM-NPs in surpassing conventional therapeutic constraints, proposing novel approaches for efficacious glioma treatment.
Collapse
Affiliation(s)
- Yilei Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Jia Yi
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maolan Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Guoming Zeng
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Haifeng Yang
- JinFeng Laboratory, Chongqing, 401329, China
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou University, Wenzhou, 325035, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
24
|
Kang W, Xu Z, Lu H, Liu S, Li J, Ding C, Lu Y. Advances in biomimetic nanomaterial delivery systems: harnessing nature's inspiration for targeted drug delivery. J Mater Chem B 2024; 12:7001-7019. [PMID: 38919030 DOI: 10.1039/d4tb00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The properties of nanomaterials make them promising and advantageous for use in drug delivery systems, but challenges arise from the immune system's recognition of exogenous nanoparticles, leading to their clearance and reduced targeting efficiency. Drawing inspiration from nature, this paper explores biomimetic strategies to transform recognizable nanomaterials into a "camouflaged state." The focal point of this paper is the exploration of bionic nanoparticles, with a focus on cell membrane-coated nanoparticles. These biomimetic structures, particularly those mimicking red blood cells (RBCs), white blood cells (WBCs), platelets, and cancer cells, demonstrate enhanced drug delivery efficiency and prolonged circulation. This article underscores the versatility of these biomimetic structures across diverse diseases and explores the use of hybrid cell membrane-coated nanoparticles as a contemporary trend. This review also investigated exosomes and protein bionic nanoparticles, emphasizing their potential for specific targeting, immune evasion, and improved therapeutic outcomes. We expect that this continued development based on biomimetic nanomaterials will contribute to the efficiency and safety of disease treatment.
Collapse
Affiliation(s)
- Weiqi Kang
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Zhe Xu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Siwei Liu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan 628000, P. R. China.
| |
Collapse
|
25
|
Branco F, Cunha J, Mendes M, Vitorino C, Sousa JJ. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS NANO 2024; 18:16359-16394. [PMID: 38861272 PMCID: PMC11223498 DOI: 10.1021/acsnano.4c01790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Glioblastoma (GBM) remains the epitome of aggressiveness and lethality in the spectrum of brain tumors, primarily due to the blood-brain barrier (BBB) that hinders effective treatment delivery, tumor heterogeneity, and the presence of treatment-resistant stem cells that contribute to tumor recurrence. Nanoparticles (NPs) have been used to overcome these obstacles by attaching targeting ligands to enhance therapeutic efficacy. Among these ligands, peptides stand out due to their ease of synthesis and high selectivity. This article aims to review single and multiligand strategies critically. In addition, it highlights other strategies that integrate the effects of external stimuli, biomimetic approaches, and chemical approaches as nanocatalytic medicine, revealing their significant potential in treating GBM with peptide-functionalized NPs. Alternative routes of parenteral administration, specifically nose-to-brain delivery and local treatment within the resected tumor cavity, are also discussed. Finally, an overview of the significant obstacles and potential strategies to overcome them are discussed to provide a perspective on this promising field of GBM therapy.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Cunha
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria Mendes
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| | - João J. Sousa
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra
Chemistry Centre, Institute of Molecular Sciences − IMS, Faculty
of Sciences and Technology, University of
Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
26
|
Liu T, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. Targeted Delivery of Macrophage Membrane Biomimetic Liposomes Through Intranasal Administration for Treatment of Ischemic Stroke. Int J Nanomedicine 2024; 19:6177-6199. [PMID: 38911498 PMCID: PMC11194020 DOI: 10.2147/ijn.s458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
27
|
Chi S, Wang C, Liu Z. Biomimetic Nanocomposites for Glioma Imaging and Therapy. Chemistry 2024; 30:e202304338. [PMID: 38538540 DOI: 10.1002/chem.202304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Indexed: 04/24/2024]
Abstract
Glioma, the most common primary brain tumor, is highly invasive and grows rapidly. As such, the survival of glioma patients is relatively short, highlighting the vital importance of timely diagnosis and treatment of glioma. However, the blood brain barrier (BBB) and the non-targeting delivery systems of contrast agents and drugs greatly hinder the effective glioma imaging and therapy. Fortunately, in recent years, investigators have constructed various biomimetic delivery platforms utilizing the exceptional advantages of biomimetic nanocomposites, such as immune evasion, homologous targeting ability, and BBB penetrating ability, to achieve efficient and precise delivery of substances to glioma sites for improved diagnosis and treatment. In this concept, we present the application of these biomimetic nanocomposites in fluorescence imaging (FI), magnetic resonance imaging (MRI), and multi-modal imaging, as well as in chemotherapy, phototherapy, and combined therapy for glioma. Lastly, we provide our perspective on this research field.
Collapse
Affiliation(s)
- Siyu Chi
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Caixia Wang
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Zhihong Liu
- College of Health Science and Engineering, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
28
|
Zhong Z, Deng W, Wu J, Shang H, Tong Y, He Y, Huang Q, Ba X, Chen Z, Tang K. Cell membrane coated nanoparticles as a biomimetic drug delivery platform for enhancing cancer immunotherapy. NANOSCALE 2024; 16:8708-8738. [PMID: 38634521 DOI: 10.1039/d4nr00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cancer immunotherapy, a burgeoning modality for cancer treatment, operates by activating the autoimmune system to impede the growth of malignant cells. Although numerous immunotherapy strategies have been employed in clinical cancer therapy, the resistance of cancer cells to immunotherapeutic medications and other apprehensions impede the attainment of sustained advantages for most patients. Recent advancements in nanotechnology for drug delivery hold promise in augmenting the efficacy of immunotherapy. However, the efficacy is currently constrained by the inadequate specificity of delivery, low rate of response, and the intricate immunosuppressive tumor microenvironment. In this context, the investigation of cell membrane coated nanoparticles (CMNPs) has revealed their ability to perform targeted delivery, immune evasion, controlled release, and immunomodulation. By combining the advantageous features of natural cell membranes and nanoparticles, CMNPs have demonstrated their unique potential in the realm of cancer immunotherapy. This review aims to emphasize recent research progress and elucidate the underlying mechanisms of CMNPs as an innovative drug delivery platform for enhancing cancer immunotherapy. Additionally, it provides a comprehensive overview of the current immunotherapeutic strategies involving different cell membrane types of CMNPs, with the intention of further exploration and optimization.
Collapse
Affiliation(s)
- Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji medical college, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
29
|
Lei T, Yang Z, Li H, Qin M, Gao H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer's disease. Adv Drug Deliv Rev 2024; 207:115219. [PMID: 38401847 DOI: 10.1016/j.addr.2024.115219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Emerging evidence suggests that vascular pathological changes play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The dysfunction of the cerebral vasculature occurs in the early course of AD, characterized by alterations in vascular morphology, diminished cerebral blood flow (CBF), impairment of the neurovascular unit (NVU), vasculature inflammation, and cerebral amyloid angiopathy. Vascular dysfunction not only facilitates the influx of neurotoxic substances into the brain, triggering inflammation and immune responses but also hampers the efflux of toxic proteins such as Aβ from the brain, thereby contributing to neurodegenerative changes in AD. Furthermore, these vascular changes significantly impact drug delivery and distribution within the brain. Therefore, developing targeted delivery systems or therapeutic strategies based on vascular alterations may potentially represent a novel breakthrough in AD treatment. This review comprehensively examines various aspects of vascular alterations in AD and outlines the current interactions between nanoparticles and pathological changes of vascular.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Ning P, Du F, Wang H, Gong X, Xia Y, Zhang X, Deng H, Zhang R, Wang Z. Genetically engineered macrophages as living cell drug carriers for targeted cancer therapy. J Control Release 2024; 367:697-707. [PMID: 38331001 DOI: 10.1016/j.jconrel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Precise targeting is a major prerequisite for effective cancer therapy because it ensures a sufficient therapeutic dosage in tumors while minimizing off-target side effects. Herein, we report a live-macrophage-based therapeutic system for high-efficiency tumor therapy. As a proof of concept, anti-human epidermal growth factor receptor-2 (HER2) affibodies were genetically engineered onto the extracellular membrane of macrophages (AE-Mφ), which further internalized doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) nanoparticles (NPs) to produce a macrophage-based therapeutic system armed with anti-HER2 affibodies. NPs(DOX)@AE-Mφ were able to target HER2+ cancer cells and specifically elicit affibody-mediated cell therapy. Most importantly, the superior HER2 + -targeting capability of NPs(DOX)@AE-Mφ greatly guaranteed high accumulation at the tumor site for improved chemotherapy, which acted synergistically with cell therapy to significantly enhance anti-tumor efficacy. This study suggests that NPs(DOX)@AE-Mφ could be utilized as an innovative 'living targeted drug' platform for combining both macrophage-mediated cell therapy and targeted chemotherapy for the individualized treatment of solid tumors.
Collapse
Affiliation(s)
- Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Haotian Wang
- Department of radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110801, China
| | - Xiaocheng Gong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Xianghan Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Ruili Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
31
|
Wu W, Zheng J, Wang R, Wang Y. Ion channels regulate energy homeostasis and the progression of metabolic disorders: Novel mechanisms and pharmacology of their modulators. Biochem Pharmacol 2023; 218:115863. [PMID: 37863328 DOI: 10.1016/j.bcp.2023.115863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
The progression of metabolic diseases, featured by dysregulated metabolic signaling pathways, is orchestrated by numerous signaling networks. Among the regulators, ion channels transport ions across the membranes and trigger downstream signaling transduction. They critically regulate energy homeostasis and pathogenesis of metabolic diseases and are potential therapeutic targets for treating metabolic disorders. Ion channel blockers have been used to treat diabetes for decades by stimulating insulin secretion, yet with hypoglycemia and other adverse effects. It calls for deeper understanding of the largely elusive regulatory mechanisms, which facilitates the identification of new therapeutic targets and safe drugs against ion channels. In the article, we critically assess the two principal regulatory mechanisms, protein-channel interaction and post-translational modification on the activities of ion channels to modulate energy homeostasis and metabolic disorders through multiple novel mechanisms. Moreover, we discuss the multidisciplinary methods that provide the tools for elucidation of the regulatory mechanisms mediating metabolic disorders by ion channels. In terms of translational perspective, the mechanistic analysis of recently validated ion channels that regulate insulin resistance, body weight control, and adverse effects of current ion channel antagonists are discussed in details. Their small molecule modulators serve as promising new drug candidates to combat metabolic disorders.
Collapse
Affiliation(s)
- Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
32
|
Alves-Sampaio A, Del-Cerro P, Collazos-Castro JE. Composite Fibrin/Carbon Microfiber Implants for Bridging Spinal Cord Injury: A Translational Approach in Pigs. Int J Mol Sci 2023; 24:11102. [PMID: 37446280 DOI: 10.3390/ijms241311102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Biomaterials may enhance neural repair after spinal cord injury (SCI) and testing their functionality in large animals is essential to achieve successful clinical translation. This work developed a porcine contusion/compression SCI model to investigate the consequences of myelotomy and implantation of fibrin gel containing biofunctionalized carbon microfibers (MFs). Fourteen pigs were distributed in SCI, SCI/myelotomy, and SCI/myelotomy/implant groups. An automated device was used for SCI. A dorsal myelotomy was performed on the lesion site at 1 day post-injury for removing cloths and devitalized tissue. Bundles of MFs coated with a conducting polymer and cell adhesion molecules were embedded in fibrin gel and used to bridge the spinal cord cavity. Reproducible lesions of about 1 cm in length were obtained. Myelotomy and lesion debridement caused no further neural damage compared to SCI alone but had little positive effect on neural regrowth. The MFs/fibrin gel implant facilitated axonal sprouting, elongation, and alignment within the lesion. However, the implant also increased lesion volume and was ineffective in preventing fibrosis, thus precluding functional neural regeneration. Our results indicate that myelotomy and lesion debridement can be advantageously used for implanting MF-based scaffolds. However, the implants need refinement and pharmaceuticals will be necessary to limit scarring.
Collapse
Affiliation(s)
- Alexandra Alves-Sampaio
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Patricia Del-Cerro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| | - Jorge E Collazos-Castro
- Neural Repair and Biomaterials Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda S-N, 45071 Toledo, Spain
| |
Collapse
|