1
|
Wu H, Diao J, Li X, Yue D, He G, Jiang X, Li P. Hydrogel-based 3D printing technology: From interfacial engineering to precision medicine. Adv Colloid Interface Sci 2025; 341:103481. [PMID: 40132296 DOI: 10.1016/j.cis.2025.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/03/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Advances in 3D printing technology and the development of hydrogel-based inks have significantly enhanced the potential of precision medicine, promoting progress in medical diagnosis and treatment. The development of 3D printing enables the fabrication of complex gradient structures that emulate natural tissue environments, while advancements in interface engineering facilitate the precise control of interface properties, thereby enhancing the performance of hydrogels in biomedical applications. This review focuses on the latest advancements in three critical 3D printing application areas: efficient real-time detection, drug delivery systems, and regenerative medicine. The application of 3D printing technology enhances nucleic acid-based molecular diagnostic platforms and wearable biosensors for real-time monitoring of physiological parameters, thereby providing robust support for early disease diagnosis. Additionally, it facilitates the development of targeted and controlled drug delivery systems, which offer promising methods for efficient drug utilization, and enables the construction of complex tissue and organ structures with bioactivity and functionality, providing new solutions for regenerative medicine. Collectively, these advancements propel the ongoing progress and development of precision medicine. Furthermore, the challenges associated with 3D printing technology in these three major applications are discussed along with an outlook on prospects.
Collapse
Affiliation(s)
- Haojie Wu
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jibo Diao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xinrong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
2
|
Romo-Valera C, Appel EA, Etxebarria J, Arluzea J, Andollo N. In Vitro Evaluation of Gelatin-Based Hydrogels as Potential Fillers for Corneal Wounds. Biomacromolecules 2025. [PMID: 40079491 DOI: 10.1021/acs.biomac.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Corneal persistent epithelial defects are common ophthalmic injuries that can cause significant visual and structural damage. While diagnosis is straightforward, treatment remains challenging. Noninvasive therapies like eye drops are preferred, but severe neurotrophic keratopathy may require surgical interventions. This study explores gelatin-based hydrogels as noninvasive alternatives for corneal repair. Four photo-cross-linkable hydrogels with gelatin and riboflavin phosphate (RFP) were evaluated: a control and variants incorporating 2.5% dextran (D), 0.4% hyaluronic acid (HA), or 1% methylcellulose (MC). In vitro assessments included physicochemical properties, biocompatibility, and release kinetics alongside ex vivo wound healing assays. The gelatin-RFP hydrogel maintained corneal transparency, while additives reduced it. Dextran slowed compound release, and HA and MC reduced the release rate of larger molecules. All hydrogels showed excellent biocompatibility, and ex vivo models confirmed re-epithelialization, though slower than controls. The unmodified gelatin-RFP hydrogel demonstrated the best potential for corneal tissue engineering, supporting its future clinical translation.
Collapse
Affiliation(s)
- Cristina Romo-Valera
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
| | - Eric A Appel
- Department of Bioengineering and Department of Pediatrics (Endocrinology), Stanford University, Stanford, California 94305, United States
- Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States
- Sarafan ChEM-H, Stanford University, Stanford, California 94305, United States
- Wood Institute for the Environment, Stanford University, Stanford, California 94305, United States
| | - Jaime Etxebarria
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
- Department of Ophthalmology, University Hospital of Cruces, Plaza Cruces S/N, Barakaldo 48903, Spain
| | - Jon Arluzea
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
| | - Noelia Andollo
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Sarriena s/n, Leioa 48940, Spain
- BEGIKER Ophthalmology Research Group, Biobizkaia Health Research Institute, Plaza Cruces S/N, Barakaldo 48903, Spain
| |
Collapse
|
3
|
Savelyev AG, Sochilina AV, Babayeva G, Nikolaeva ME, Kuziaeva VI, Prostyakova AI, Sergeev IS, Gorin DA, Khaydukov EV, Generalova AN, Akasov RA. Photocrosslinking of hyaluronic acid-based hydrogels through biotissue barriers. Biomater Sci 2025; 13:980-992. [PMID: 39801275 DOI: 10.1039/d4bm01174k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Photocrosslinkable hydrogels based on hyaluronic acid are promising biomaterials high in demand in tissue engineering. Typically, hydrogels are photocured under the action of UV or blue light strongly absorbed by biotissues, which limits prototyping under living organism conditions. To overcome this limitation, we propose the derivatives of well-known photosensitizers, namely chlorin p6, chlorin e6 and phthalocyanine, as those for radical polymerization in the transparency window of biotissues. Taking into account the efficiency of radical generation and dark and light cell toxicity, we evaluated water miscible pyridine phthalocyanine as a promising initiator for the intravital hydrogel photoprinting of hyaluronic acid glycidyl methacrylate (HAGM) under irradiation near 670 nm. Coinitiators (dithiothreitol or 2-mercaptoethanol) reduce the irradiation dose required for HAGM crosslinking from ∼405 J cm-2 to 80 J cm-2. Patterning by direct laser writing using a scanning 675 nm laser beam was performed to demonstrate the formation of complex shape structures. Young's moduli typical of soft tissue (∼270-460 kPa) were achieved for crosslinked hydrogels. The viability of human keratinocytes HaCaT cells within the photocrosslinking process was shown. To demonstrate scaffolding across the biotissue barrier, the subcutaneously injected photocomposition was crosslinked in BALB/c mice. The safety of the irradiation dose of 660-675 nm light (100 mW cm-2, 15 min) and the non-toxicity of the hydrogel components were confirmed by histomorphologic analysis. The intravitally photocrosslinked scaffolds maintained their shape and size for at least one month, accompanied by slow biodegradation. We conclude that the proposed technology provides a lucrative opportunity for minimally invasive scaffold formation through biotissue barriers.
Collapse
Affiliation(s)
- Alexander G Savelyev
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
| | - Anastasia V Sochilina
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| | - Gulalek Babayeva
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Kashirskoe Shosse 24, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 117198, Miklukho-Maklaya str. 8, Moscow, Russia
| | - Mariya E Nikolaeva
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| | - Valeriia I Kuziaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Anna I Prostyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Igor S Sergeev
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Bol'shoy Bul'var 30 build. 1, Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 121205, Bol'shoy Bul'var 30 build. 1, Moscow, Russia
| | - Evgeny V Khaydukov
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047, Miusskaya Sq. 9, Moscow, Russia
| | - Alla N Generalova
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
| | - Roman A Akasov
- National Research Centre "Kurchatov Institute", 123182, Akademika Kurchatova Sq. 1, Moscow, Russia.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Miklukho-Maklaya str. 16/10, Moscow, Russia
- Moscow Pedagogical State University, 119435, Malaya Pirogovskaya str. 1, Moscow, Russia
| |
Collapse
|
4
|
Li H, Chen X, Rao S, Zhou M, Lu J, Liang D, Zhu B, Meng L, Lin J, Ding X, Zhang Q, Hu D. Recent development of micro-nano carriers for oral antineoplastic drug delivery. Mater Today Bio 2025; 30:101445. [PMID: 39866789 PMCID: PMC11762190 DOI: 10.1016/j.mtbio.2025.101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Chemotherapy is widely recognized as a highly efficacious modality for cancer treatment, involving the administration of chemotherapeutic agents to target and eradicate tumor cells. Currently, oral administration stands as the prevailing and widely utilized method of delivering chemotherapy drugs. However, the majority of anti-tumor medications exhibit limited solubility and permeability, and poor stability in harsh gastrointestinal environments, thereby impeding their therapeutic efficacy for chemotherapy. Therefore, more and more micro-nano drug delivery carriers have been developed and used to effectively deliver anti-cancer drugs, which can overcome physiological barriers, facilitate oral administration, and ultimately improve drug efficacy. In this paper, we first discuss the effects of various biological barriers on micro-nano drug carriers and oral administration approach. Then, the development of micro-nano drug carriers based on various biomedical components, such as micelles, dendrimers, hydrogels, liposomes, inorganic nanoparticles, etc. were introduced. Finally, the current dilemma and the potential of oral drug delivery for clinical treatment were discussed. The primary objective of this review is to introduce various oral delivery methods and serve as a point of reference for the advancement of novel oral delivery carriers, with the ultimate goal of informing the development of future clinical applications.
Collapse
Affiliation(s)
- Hongzheng Li
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Xiang Chen
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shangrui Rao
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Minyu Zhou
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianhua Lu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Danna Liang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Bingzi Zhu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Letian Meng
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ji Lin
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoya Ding
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Qingfei Zhang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Danhong Hu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
5
|
Wang Z, Liu J, Chen Q, Wu Y, Li Y, Ou M, Tang S, Deng Z, Liu L, Jiang C, Zhu H, Liu Q, Yang B. Bioactive Glycyrrhizic Acid Ionic Liquid Self-Assembled Nanomicelles for Enhanced Transdermal Delivery of Anti-Photoaging Signal Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412581. [PMID: 39783908 PMCID: PMC11848569 DOI: 10.1002/advs.202412581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared. The components ratios and inherent forming mechanisms of GA-OMT (GAO) are optimized by molecular dynamics simulations and density functional theory calculations. Remarkably, GAO can significantly improve the sparingly soluble properties of palmitoyl pentapeptide-4 (PAL-4), a model peptide drug. Subsequently, GAO self-assembled micelles loading PAL-4 (GAO/PAL-4-SM) are fabricated without additional auxiliary materials. The permeation and subcutaneous retention of PAL-4 are significantly promoted with 10wt.% GAO-SM. Moreover, GAO ILs facilitated PAL-4 permeation by enhancing its miscibility and interaction with stratum corneum (SC), offering a pulling effect and micellar structures for PAL-4, as elucidated by computational simulations. In cellular and animal photoaging experiments, GAO/PAL-4-SM possessed remarkable capabilities in boosting collagen and hyaluronic acid regeneration, mitigating inflammation and apoptosis, accelerating macrophage M2 polarization, thereby lessening skin wrinkles and leveraging elasticity. Collectively, the research innovatively designed an ILs self-assembled nano-micellar transdermal delivery system to enhance the permeability and anti-photoaging effect of signal peptides.
Collapse
Affiliation(s)
- Zhuxian Wang
- Dermatology HospitalSouthern Medical UniversityGuangzhou510091China
| | - Jun Liu
- Dermatology HospitalSouthern Medical UniversityGuangzhou510091China
| | - QiuYu Chen
- Dermatology HospitalSouthern Medical UniversityGuangzhou510091China
| | - Yufan Wu
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Yamei Li
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Mingjie Ou
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Shuwei Tang
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Ziqing Deng
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Li Liu
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Cuiping Jiang
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Hongxia Zhu
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhou510515China
| | - Qiang Liu
- Dermatology HospitalSouthern Medical UniversityGuangzhou510091China
| | - Bin Yang
- Dermatology HospitalSouthern Medical UniversityGuangzhou510091China
| |
Collapse
|
6
|
Zhang B, Hu C, Wang M, Wei H, Li S, Yu H, Wu Y, Wang G, Guo T, Chen H. Facile fabrication of a thermal/pH responsive IPN hydrogel drug carrier based on cellulose and chitosan through simultaneous dual-click strategy. J Colloid Interface Sci 2025; 678:827-841. [PMID: 39217698 DOI: 10.1016/j.jcis.2024.08.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Herein, an interpenetrating network hydrogel (IPN-Gel) based on cellulose and chitosan was synthesized via simultaneous amino-anhydride and azide-alkyne click reaction in water in one pot. The samples were characterized by various analytical methods including FTIR, SEM, XRD, XPS, 1H NMR and so forth. The fabrication conditions were optimized by single factor experiments with water uptake (WU) and gel mass fraction (GMF) as two indexes. The WU and GMF of the IPN-Gel prepared under optimized conditions were 1192.37 % and 74.00 %, respectively. Its WU descended with the ascension in temperature, and first descended and then gradually ascended with the ascension in pH, confirming that the IPN-Gel had thermal/pH dual responsiveness. Using 5-Fu as a model drug, the release behavior of 5-Fu in IPN-Gel was explored. Its release behavior could be regulated by changing temperature and pH values, and it followed the Korsmeyer Peppas model. The viability of 4 T1 cells and HUVEC cells exceeded 80 % after 48 h of incubation at a high concentration of 200 μg/mL IPN-Gel, and hemolytic percentage was below the allowed limit of 5 %. The study provides a new strategy for the preparation of the IPN-Gel with biocompatibility, swelling reversibility and controllable drug release.
Collapse
Affiliation(s)
- Bing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Mengyuan Wang
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China
| | - Hongliang Wei
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China.
| | - Songmao Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hui Yu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yuxuan Wu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Hongli Chen
- The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
7
|
Wang Y, Jin S, Guo Y, Lu Y, Deng X. Adhesive and injectable hydrogel microspheres for NRF2-mediated periodontal bone regeneration. Int J Oral Sci 2025; 17:7. [PMID: 39788942 PMCID: PMC11717957 DOI: 10.1038/s41368-024-00340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025] Open
Abstract
Regenerating periodontal bone defect surrounding periodontal tissue is crucial for orthodontic or dental implant treatment. The declined osteogenic ability of periodontal ligament stem cells (PDLSCs) induced by inflammation stimulus contributes to reduced capacity to regenerate periodontal bone, which brings about a huge challenge for treating periodontitis. Here, inspired by the adhesive property of mussels, we have created adhesive and mineralized hydrogel microspheres loaded with traditional compound cordycepin (MMS-CY). MMS-CY could adhere to the surface of alveolar bone, then promote the migration capacity of PDLSCs and thus recruit them to inflammatory periodontal tissues. Furthermore, MMS-CY rescued the impaired osteogenesis and ligament-forming capacity of PDLSCs, which were suppressed by the inflammation stimulus. Moreover, MMS-CY also displayed the excellent inhibitory effect on the osteoclastic activity. Mechanistically, MMS-CY inhibited the premature senescence induced by the inflammation stimulus through the nuclear factor erythroid 2-related factor (NRF2) pathway and reducing the DNA injury. Utilizing in vivo rat periodontitis model, MMS-CY was demonstrated to enhance the periodontal bone regeneration by improving osteogenesis and inhibiting the osteoclastic activity. Altogether, our study indicated that the multi-pronged approach is promising to promote the periodontal bone regeneration in periodontitis condition by reducing the inflammation-induced stem cell senescence and maintaining bone homeostasis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Shanshan Jin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yilong Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
8
|
Tong J, Vo QNQ, He X, Liu H, Zhou H, Park CH. Physically crosslinked chitosan/αβ-glycerophosphate hydrogels enhanced by surface-modified cyclodextrin: An efficient strategy for controlled drug release. Int J Biol Macromol 2024; 283:137163. [PMID: 39510462 DOI: 10.1016/j.ijbiomac.2024.137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
This study reports physically crosslinked chitosan/αβ-glycerophosphate (CS/GP) hydrogels containing surface-modified cyclodextrin for efficient controlled drug release. Highly water-soluble β-cyclodextrin-grafted L-serine (CD-g-Ser) compounds were synthesized, and employed as an effective carrier of berberine hydrochloride (Ber) for CS/GP hydrogels. Various characterizations, including gelation time determination, scanning electron microscopy, and viscosity measurement, indicated that the introduction of CD-g-Ser led to increased crosslinking degree, improved temperature sensitivity, and shortened sol-gel phase transition time of the hydrogel. Meanwhile, the sustained release ability for Ber was achieved due to the hydrophobic association between cyclodextrin and Ber. It was observed that within 4 h, the hydrogel containing CD-g-Ser released 40 % of Ber, while the CS/GP hydrogel without CD-g-Ser released 65 % of Ber. Furthermore, in vitro bacteriostasis experiments confirmed the drug-loaded hydrogel had an excellent antibacterial effect against E. coli and S. aureus (diameter of the inhibition zone up to (16.4 and 34.7) mm, respectively), low hemolysis rate (<2 %), and high cell viability (>90 %). The findings indicate that the physical crosslinked CS hydrogel can be used as a new drug delivery system, and its excellent antibacterial effect makes it a potential wound dressing candidate.
Collapse
Affiliation(s)
- Jianan Tong
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Quang Nhat Quynh Vo
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Xichan He
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Hongyu Liu
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Huiyun Zhou
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Mechanical Design Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Advanced Mechanical Components Design & Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
9
|
Hou Z, Wang Y, Chen S, Luo Z, Liu Y. Licochalcone A loaded multifunctional chitosan hyaluronic acid hydrogel with antibacterial and inflammatory regulating effects to promote wound healing. Int J Biol Macromol 2024; 283:137458. [PMID: 39528175 DOI: 10.1016/j.ijbiomac.2024.137458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The wound healing process is characterized by persistent infection and long-term inflammation. The licochalcone A (LicA) has the potential for skin wound healing and needs a good drug-loading platform to apply its antibacterial and anti-inflammatory effects. In this study, the LicA@chitosan (CS) -hyaluronic acid (HA) hydrogel with antibacterial and anti-inflammatory was developed for wound healing in mice. The SEM displayed that the hydrogel had an obvious porous structure and was very suitable to be used as a delivery carrier for LicA. The FTIR results suggested that the LicA can be effectively loaded in the CS-HA hydrogel. Variable strain scanning, frequency scanning and temperature scanning indicated that the LicA@CS-HA hydrogel can maintain the gel state. The LicA@CS-HA hydrogel had good biological safety, can inhibit the activity of Escherichia coli and Staphylococcus aureus, and can release LicA stably. The LicA@CS-HA hydrogel also has good adhesion and hemostatic properties. Finally, the LicA@CS-HA hydrogel significantly accelerated wound healing in mice skin injury model, and reduced inflammation and orderly collagen deposition were observed by HE and Masson staining. The immunohistochemistry indicated that the LicA@CS-HA hydrogel induced the positive expression of CD31, VEGF, and HIF-1α promoted neovascularization. The LicA@CS-HA hydrogel also down-regulated the expression of M1 macrophage markers CD86, IL-6, and TNF-α, and increased the expression of M2 macrophage markers CD206, IL-4, and IL-10 proteins. The molecular docking demonstrated that the target proteins had better binding activity to LicA. Collectively, the LicA@CS-HA hydrogel has broad application prospects in promoting wound healing.
Collapse
Affiliation(s)
- Zhiquan Hou
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Yahong Wang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Siqi Chen
- School of Public Health, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zhonghua Luo
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
10
|
Kaniewska K, Mackiewicz M, Smutok O, Gonchar M, Katz E, Karbarz M. Enzymatically Triggered Drug Release from Microgels Controlled by Glucose Concentration. ACS Biomater Sci Eng 2024; 10:6415-6424. [PMID: 39356930 PMCID: PMC11480938 DOI: 10.1021/acsbiomaterials.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
This study aims to design microgels for controlled drug release via enzymatically generated pH changes in the presence of glucose. Modern medicine is focused on developing smart delivery systems with controlled release capabilities. In response to this demand, we present the synthesis, characterization, and enzymatically triggered drug release behavior of microgels based on poly(acrylic acid) modified with glucose oxidase (GOx) (p(AA-BIS)-GOx). TEM images revealed that the sizes of air-dried p(AA-BIS)-GOx microgels were approximately 130 nm. DLS measurements showed glucose-triggered microgel size changes upon glucose addition, which depended on buffer concentration. Enzymatically triggered drug release experiments using doxorubicin-loaded microgels with immobilized GOx demonstrated that drug release is strongly dependent on glucose and buffer concentration. The highest differences in release triggered by 5 and 25 mM glucose were observed in HEPES buffer at concentrations of 3 and 9 mM. Under these conditions, 80 and 52% of DOX were released with 25 mM glucose, while 47 and 28% of DOX were released with 5 mM glucose. The interstitial glucose concentration in a tumor ranges from ∼15 to 50 mM. Normal fasting blood glucose levels are about 5.5 mM, and postprandial (2 h after a meal) glucose levels should be less than 7.8 mM. The obtained results highlight the microgel's potential for drug delivery using the enhanced permeability and retention (EPR) effect, where drug release is controlled by enzymatically generated pH changes in response to elevated glucose concentrations.
Collapse
Affiliation(s)
- Klaudia Kaniewska
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Marcin Mackiewicz
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| | - Oleh Smutok
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Mykhailo Gonchar
- Institute
of Cell Biology, National Academy of Sciences
of Ukraine, Lviv 79005, Ukraine
| | - Evgeny Katz
- Department
of Chemistry and Biomolecular Science, Clarkson
University, Potsdam 13699, New York, United States
| | - Marcin Karbarz
- Faculty
of Chemistry, University of Warsaw, 1 Pasteura, Warsaw, PL 02-093, Poland
- Biological
and Chemical Research Center, University
of Warsaw, 101 Żwirki
i Wigury Av., Warsaw, PL 02-089, Poland
| |
Collapse
|
11
|
Wang Z, Liu J, Zheng Y, Zhang B, Hu Y, Wu Y, Li Y, Liu L, Zhu H, Liu Q, Yang B. Copper Ion-Inspired Dual Controllable Drug Release Hydrogels for Wound Management: Driven by Hydrogen Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401152. [PMID: 38593320 DOI: 10.1002/smll.202401152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Bacterial infections and inflammation progression yield huge trouble for the management of serious skin wounds and burns. However, some hydrogel dressing exhibit poor wound-healing capabilities. Additionally, little information is given on the molecular theory of hydrogel gelation mechanisms and drug release performance from drug-polymer network in the water environment. Herein, cationic guar gum (CG) is first mixed with dipotassium glycyrrhizinate (DG), and then crosslinked Cu2+ to strengthen the mechanical strength followed by encapsulating mussel adhesive protein (MAP) as composite dressings. Intriguingly, CG-Cu2+ 0.5-DG10 possessed proper rheological properties and mechanical strength predominantly driven by strong CG-H2O-Cu2+ and Cu2+-CG hydrogen bonding interaction. Weak DG-CG hydrogen bonding only controlled DG release in the initial 4 h, while strong hydrogen bonding is the main force regulating the sustained release of Cu2+ within 48 h. The incorporation of MAP further loosened the tight crosslinking of CG-Cu2+ 0.5-DG10. The screened CG-Cu2+ 0.5-DG10/MAP possessed excellent self-healing, injectability, antibacterial, anti-inflammatory, cell proliferation-promotion activities with high biocompatibility. Therefore, CG-Cu2+ 0.5-DG10/MAP hydrogel expedited wound closure on S. aureus-infected full-thickness skin wound model and lowered necrosis progression to the unburned interspaces on a rat burn model. The results highlight the promising translational potential of Cu2+-inspired hydrogels for the management of burns and infected wounds.
Collapse
Affiliation(s)
- Zhuxian Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Jun Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Yixin Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bohai Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yamei Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Liu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China
| |
Collapse
|
12
|
Wang P, Wang S, Wang D, Li Y, Yip RCS, Chen H. Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol 2024; 274:133195. [PMID: 38885869 DOI: 10.1016/j.ijbiomac.2024.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Yuanyuan Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| |
Collapse
|
13
|
Liu J, Song J, Zeng L, Hu B. An Overview on the Adhesion Mechanisms of Typical Aquatic Organisms and the Applications of Biomimetic Adhesives in Aquatic Environments. Int J Mol Sci 2024; 25:7994. [PMID: 39063236 PMCID: PMC11277488 DOI: 10.3390/ijms25147994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Water molecules pose a significant obstacle to conventional adhesive materials. Nevertheless, some marine organisms can secrete bioadhesives with remarkable adhesion properties. For instance, mussels resist sea waves using byssal threads, sandcastle worms secrete sandcastle glue to construct shelters, and barnacles adhere to various surfaces using their barnacle cement. This work initially elucidates the process of underwater adhesion and the microstructure of bioadhesives in these three exemplary marine organisms. The formation of bioadhesive microstructures is intimately related to the aquatic environment. Subsequently, the adhesion mechanisms employed by mussel byssal threads, sandcastle glue, and barnacle cement are demonstrated at the molecular level. The comprehension of adhesion mechanisms has promoted various biomimetic adhesive systems: DOPA-based biomimetic adhesives inspired by the chemical composition of mussel byssal proteins; polyelectrolyte hydrogels enlightened by sandcastle glue and phase transitions; and novel biomimetic adhesives derived from the multiple interactions and nanofiber-like structures within barnacle cement. Underwater biomimetic adhesion continues to encounter multifaceted challenges despite notable advancements. Hence, this work examines the current challenges confronting underwater biomimetic adhesion in the last part, which provides novel perspectives and directions for future research.
Collapse
Affiliation(s)
| | - Junyi Song
- College of Science, National University of Defense Technology, Changsha 410073, China
| | | | - Biru Hu
- College of Science, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|