1
|
Xuanyuan X, Liu W, Jiang M, Zhang X, Wen B, Zheng R, Yao N, Zhang T, Feng Y, Qiao C, Zhang H, Luo D, Feng S, Li M, Gao J, Lu Z. Harnessing prazosin for tumors: Liposome hybrid nanovesicles activate tumor immunotherapy via autophagy inhibition. Biomaterials 2025; 319:123184. [PMID: 39985978 DOI: 10.1016/j.biomaterials.2025.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Prazosin (Prz), an antagonist of alpha-1 adrenergic receptors, is conventionally employed in the treatment of hypertension. Our study pioneers the exploration of Prz in oncology, examining its impact on cellular autophagy and its potential to trigger antitumor immune responses. We have developed a novel Prz-loaded liposome hybrid nanovesicle (Prz@LINV) system, integrating tumor-derived nanovesicles (TNV) with liposomes (LIP) to facilitate targeted Prz delivery to tumor sites. This formulation enhances Prz bioavailability and markedly inhibits tumor cell autophagy, leading to immunogenic cell death (ICD) and the activation of antitumor immune responses. Furthermore, Prz@LINV modulates dendritic cells (DCs), augmenting their antigen cross-presentation capacity and thereby potentiating antitumor immunity. These effects were validated in a colorectal cancer mouse model, demonstrating the good biocompatibility of Prz@LINV and its significant inhibition in tumor growth, along with the enhancement of antitumor immune responses. Our findings elucidate a novel mechanism by which Prz inhibits autophagy and enhances the antitumor immune response, providing a foundation for the development of innovative immunotherapeutic strategies. The efficacy of Prz@LINV suggests that Prz may emerge as a pivotal component in future immunotherapeutic regimens, offering patients more potent therapeutic options.
Collapse
Affiliation(s)
- Xinyang Xuanyuan
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Jiang
- The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - BeiBei Wen
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Rui Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Ning Yao
- Department of General Surgery, Joint Support Force 903rd Hospital, Hangzhou, 310013, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yu Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaofeng Qiao
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huiqi Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Dong Luo
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Sa Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Mojahedi M, Tohidkia MR, Kheyrolahzadehand K, Aghanejad A. Theranostics Exosomes as Autophagy mediators in cancer: Recent Trends and Advances. Eur J Pharmacol 2025:177823. [PMID: 40490165 DOI: 10.1016/j.ejphar.2025.177823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/30/2025] [Accepted: 06/06/2025] [Indexed: 06/11/2025]
Abstract
Autophagy plays dual roles in cancer, acting as both a tumor suppressor and a promoter. It maintains cellular integrity by removing damaged components to prevent tumor initiation; however, in established cancers, autophagy may facilitate tumor growth and survival under stress. This complexity highlights the potential of targeting autophagy to enhance the effectiveness of conventional treatments, such as chemotherapy and radiation. In this context, theranostic exosomes (EXOs) emerge as a pivotal advancement in precision medicine, functioning as both biomarkers and targeted drug delivery systems. Their unique ability to integrate therapeutic and diagnostic functions positions them at the forefront of personalized treatment strategies for cancer. Moreover, the interplay between EXOs and autophagy is vital for cellular communication and immune modulation, significantly influencing cancer progression and treatment outcomes. As research continues to explore EXO biology and its relationship with autophagy, challenges such as EXO extraction, cargo loading, and safety must be addressed to fully realize their clinical potential. Ultimately, a deeper understanding of the multifaceted roles of EXOs in mediating autophagy will pave the way for innovative therapeutic strategies aimed at restoring cellular homeostasis and improving patient outcomes.
Collapse
Affiliation(s)
- Maryam Mojahedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keyvan Kheyrolahzadehand
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Nuclear Medicine, Faculty of Medicine, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhou J, Li Y, Jiang X, Xin Z, Liu W, Zhang X, Zhai Y, Zhang Z, Shi T, Xue M, Zhang M, Wu Y, Chu Y, Wang S, Jin X, Zhu W, Gao J. PD-L1 siRNA incorporation into a cationic liposomal tumor mRNA vaccine enhances cytotoxic T cell activation and prevents immune evasion. Mater Today Bio 2025; 31:101603. [PMID: 40124340 PMCID: PMC11926701 DOI: 10.1016/j.mtbio.2025.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Engaging antigen-presenting cells and T lymphocytes is essential for invigorating the immune system's response to cancer. Nonetheless, challenges such as the low immunogenicity of tumor antigens, the genetic heterogeneity of tumor cells, and the elevated expression of immune checkpoint molecules frequently result in resistance to immunotherapy or enable immune evasion by tumors. To overcome this resistance, we developed a therapeutic tumor vaccine employing cationic liposomes to encapsulate MC38 total RNA alongside PD-L1 siRNA (siPD-L1). The encapsulated total RNA, enriched with tumor mRNA, effectively transduces dendritic cells (DCs), thereby enhancing antigen presentation. The incorporation of siPD-L1 specifically targets and diminishes PD-L1 expression on both DCs and tumor cells, synergistically amplifying the cytotoxic capabilities of CD8+ T cells. Furthermore, cationic liposomes play dual roles as carriers crucial for preserving the integrity of nucleic acids for antigen translation and as inhibitors of autophagy-a process essential for both promoting antigen cross-presentation and revitalizing MHC-I expression on tumor cells, thereby increasing their immunogenicity. This cationic liposomal vaccine represents a promising strategy in cancer immunotherapy, launching a multidimensional offensive against tumor cells that enhances cytotoxic T lymphocyte (CTL) activation and prevents tumor immune evasion.
Collapse
Affiliation(s)
- Jingsheng Zhou
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanyuan Li
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xianghe Jiang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhongyuan Xin
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhuanzhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Te Shi
- Department of Gastroenterology, Chinese People's Liberation Army Naval Medical Center, Shanghai, 200052, China
| | - Minghao Xue
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yanhui Chu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| |
Collapse
|
4
|
Uner B, Akyildiz EO, Kolci K, Reis R. Nanoparticle Formulations for Intracellular Delivery in Colorectal Cancer Therapy. AAPS PharmSciTech 2025; 26:81. [DOI: https:/doi.org/10.1208/s12249-025-03069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/10/2025] [Indexed: 03/30/2025] Open
|
5
|
Uner B, Akyildiz EO, Kolci K, Reis R. Nanoparticle Formulations for Intracellular Delivery in Colorectal Cancer Therapy. AAPS PharmSciTech 2025; 26:81. [PMID: 40055213 DOI: 10.1208/s12249-025-03069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/10/2025] [Indexed: 03/30/2025] Open
Abstract
This study introduces advanced nanoparticle-based drug delivery systems (NDDS) designed for targeted colorectal cancer treatment. We developed and characterized three distinct formulations: Bevacizumab-loaded chitosan nanoparticles (BEV-CHI-NP), polymeric micelles (BEV-PM), and BEV-conjugated exosomes enriched with AS1411 and N1-methyladenosine (AP-BEV + M1A-EXO). Each formulation exhibited optimized physicochemical properties, with particle sizes between 150 and 250 nm and surface charges ranging from + 14.4 to + 43 mV, ensuring stability and targeted delivery. The AP-BEV + M1A-EXO formulation demonstrated targeted delivery to VEGF, a protein commonly overexpressed in colorectal cancer cells, as indicated by localized staining. This suggests a more precise delivery of the therapeutic agent to VEGF-enriched regions. In contrast, the BEV-CHI-NP formulation exhibited a broader pattern of tumor suppression, evidenced by reduced overall staining intensity. The BEV-PM group showed moderate effects, with a relatively uniform protein expression across tumor tissues. In vivo studies indicated that the AP-BEV + M1A-EXO formulation achieved a notable reduction in tumor volume (~ 65.4%) and decreased levels of tumor biomarkers, including CEA and CA 19-9, compared to conventional BEV-API treatment. In vitro experiments using human colon tumor organoids (HCTOs) further supported these findings, showing a significant reduction in cell viability following exposure to AP-BEV + M1A-EXO. These results suggest that combining aptamer specificity with exosome-based delivery systems could enhance the precision and effectiveness of colorectal cancer therapies, representing a potential advancement in treatment strategies. In vivo experiments further revealed that the AP-BEV + M1A-EXO formulation outperformed conventional BEV-API treatment, achieving a four-fold increase in tumor suppression. This formulation resulted in a 65.4% reduction in tumor volume and a significant decrease in tumor biomarkers, including CEA and CA 19-9. In vitro studies also demonstrated a significant reduction in cell viability in human colon tumor organoids exposed to AP-BEV + M1A-EXO. These findings highlight the potential of combining aptamer specificity with exosome-based delivery systems to enhance the precision and efficacy of colorectal cancer therapies, marking a promising step forward in cancer treatment innovation.
Collapse
Affiliation(s)
- Burcu Uner
- Department of Pharmaceutical and Administrative Sciences, University of Health Science and Pharmacy in St. Louis, St. Louis, Missouri, 63110, USA.
| | - Erdogan Oguzhan Akyildiz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34755, Turkey
| | - Kubra Kolci
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34755, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, 34755, Turkey
| | - Rengin Reis
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, 34755, Turkey
| |
Collapse
|
6
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
7
|
Shi M, Yuan H, Li Y, Guo Z, Wei J. Targeting Macrophage Phenotype for Treating Heart Failure: A New Approach. Drug Des Devel Ther 2024; 18:4927-4942. [PMID: 39525046 PMCID: PMC11549885 DOI: 10.2147/dddt.s486816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Heart failure (HF) is a disease with high morbidity and mortality rates worldwide and significantly affects human health. Currently, the treatment options for HF are limited, and there is an urgent need to discover new therapeutic targets and strategies. Macrophages are innate immune cells involved in the development of HF. They play a crucial role in maintaining cardiac homeostasis and regulating cardiac stress. Recently, macrophages have received increasing attention as potential targets for treating HF. With the improvement of technological means, the study of macrophages in HF has made great progress. This article discusses the biological functions of macrophage phagocytosis, immune response, and tissue repair. The polarization, pyroptosis, autophagy, and apoptosis are of macrophages, deeply involved in the pathogenesis of HF. Modulation of the phenotypic changes of macrophages can improve immune-inflammation, myocardial fibrosis, energy metabolism, apoptosis, and angiogenesis in HF.
Collapse
Affiliation(s)
- Min Shi
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Hui Yuan
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 41020, People’s Republic of China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Zhihua Guo
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- First Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 41020, People’s Republic of China
| | - Jiaming Wei
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Key Laboratory of Colleges and Universities of Intelligent TCM Diagnosis and Preventive Treatment of Chronic Diseases, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| |
Collapse
|
8
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Sun K, Zhi Y, Ren W, Li S, Zheng J, Gao L, Zhi K. Crosstalk between O-GlcNAcylation and ubiquitination: a novel strategy for overcoming cancer therapeutic resistance. Exp Hematol Oncol 2024; 13:107. [PMID: 39487556 PMCID: PMC11529444 DOI: 10.1186/s40164-024-00569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024] Open
Abstract
Developing resistance to cancer treatments is a major challenge, often leading to disease recurrence and metastasis. Understanding the underlying mechanisms of therapeutic resistance is critical for developing effective strategies. O-GlcNAcylation, a post-translational modification that adds GlcNAc from the donor UDP-GlcNAc to serine and threonine residues of proteins, plays a crucial role in regulating protein function and cellular signaling, which are frequently dysregulated in cancer. Similarly, ubiquitination, which involves the attachment of ubiquitin to to proteins, is crucial for protein degradation, cell cycle control, and DNA repair. The interplay between O-GlcNAcylation and ubiquitination is associated with cancer progression and resistance to treatment. This review discusses recent discoveries regarding the roles of O-GlcNAcylation and ubiquitination in cancer resistance, their interactions, and potential mechanisms. It also explores how targeting these pathways may provide new opportunities to overcome cancer treatment resistance in cancer, offering fresh insights and directions for research and therapeutic development.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Jingjing Zheng
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
| |
Collapse
|
10
|
Xu Q, Wang M, Zhang F, Chen G, Shu Z, Li L, Zhang F, Wang Y, Wang Y, Duan X, Yu M. A Bimetallic Electro-Sensitizer Improves ROS Therapy by Relieving Autophagy-Induced ROS Tolerance and Immune Suppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402312. [PMID: 39077967 DOI: 10.1002/smll.202402312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Reactive oxygen species (ROS)-dependent monotherapy usually demonstrates poor therapeutic outcomes, due to the accompanied activation of protective autophagy in tumor cells, which results in ROS tolerance and immune suppression. In this study, a bimetallic electro-sensitizer, Pt-Ir NPs is constructed, loaded with the autophagy inhibitor chloroquine (Pt-Ir-CQ NPs), to enhance the effectiveness of electrotherapy by inhibiting autophagy and activating anti-tumor immune responses. This novel electrotherapy platform demonstrates unique advantages, particularly in the treatment of hypoxic and immunosuppressive tumors. First, the electro-sensitizer catalyzes water molecules into ROS under electric field, achieving tumor ablation through electrotoxicity. Second, the incorporated CQ inhibits the protective autophagy induced by electrotherapy, restoring the sensitivity of tumor cells to ROS and thereby enhancing the anti-tumor effects of electrotherapy. Third, Pt-Ir-CQ NPs enhance the functionality of antigen-presenting cells and immunogenic cells through inhibiting autophagy, synergistically activating the anti-tumor immune responses along with the immunogenic cell death (ICD) effect induced by electrotherapy. This study provides a novel approach for the effective ablation and long-term inhibition of solid tumors through flexible modulation by an exogenous electric field.
Collapse
Affiliation(s)
- Qinqin Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Manchun Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fengling Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Gui Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhilin Shu
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yu Wang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongxia Wang
- Breast Department, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Xiaohui Duan
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
11
|
Zhang J, Cao J, Wang L, Li S, Meng F, Liang X, Jiang H, Luo R, Zhu D, Zhang F, Zhang L, Zhang X, Mei L. Neoantigen sequestrated autophagosomes as therapeutic cancer vaccines. J Control Release 2024; 376:369-381. [PMID: 39413847 DOI: 10.1016/j.jconrel.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Neoantigens serve as ideal personalized cancer vaccines because of their high immunogenicity, ability to evade central thymic tolerance, and minimal risk of eliciting autoimmune responses. Herein, we describe a genetically engineered autophagosome-based neoantigen vaccine (APNV) in combination with an immune checkpoint inhibitor (anti-PD-1 antibody) for cancer immunotherapy. The APNV was derived from engineered NIH 3T3 cells, which co-express melanoma neoantigens and autophagosome maker microtubule-associated proteins 1 A/1B light chain 3B (LC3), from which the LC3-labeled neoantigen-autophagosomes were isolated. These purified autophagosomes, in conjunction with vaccine adjuvants high-mobility group box 1 (HMGB1) and granulocyte-macrophage colony-stimulating factor (GM-CSF), were integrated into a hydrogel to create an APNV. The APNV effectively activated dendritic cells both in vitro and in vivo. Moreover, APNV, in combination with checkpoint blockade therapy, significantly hampered post-surgical tumor recurrence in a subcutaneous melanoma tumor model and effectively impeded metastatic progression in a melanoma lung metastasis model. This APNV may be conducive to making personalized therapeutic neoantigen vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinxie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Liuchang Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Sitong Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Hanyu Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China; Guangdong Second Provincial General Hospital, Guangdong Medical University, Guangzhou 510317, PR China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
12
|
Zeng H, Li H, Wang L, You S, Liu S, Dong X, He F, Dai J, Wei Q, Dong Z, Zhang Y, Yang J, Yang X, Wang J, Hu L. Recombinant humanized type III collagen inhibits ovarian cancer and induces protective anti-tumor immunity by regulating autophagy through GSTP1. Mater Today Bio 2024; 28:101220. [PMID: 39290464 PMCID: PMC11405829 DOI: 10.1016/j.mtbio.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of death from malignancy in women and lacks safe and efficient treatment. The novel biomaterial, recombinant humanized collagen type III (rhCOLIII), has been reported to have various biological functions, but its role in OC is unclear. This study aimed to reveal the function and mechanism of action of rhCOLIII in OC. We developed an injectable recombinant human collagen (rhCOL)-derived material with a molecular weight of 45 kDa, with a stable triple helix structure, high biocompatibility, water solubility and biosafety. The anti-tumor activity of rhCOLIII was comprehensively evaluated through in vitro and in vivo experiments. In vitro, our results showed that rhCOLIII inhibited the proliferation, migration, and invasion of ovarian cancer cells (OCCs), and induced apoptosis. In addition, rhCOLIII not only inhibited autophagy of OCCs but also increased the expression of MHC-1 molecule within OCCs. To further elucidate the mechanism of rhCOLIII in OC, we conducted joint analysis of RNA-Seq and proteomics, and found that rhCOLIII exerted anti-tumor function and autophagy inhibition by downregulating Glutathione S-transferase P1 (GSTP1). Furthermore, various rescue experiments were designed to demonstrate that rhCOLIII suppressed autophagy and proliferation of OCCs by mediating GSTP1. In vivo, we found that rhCOLIII could inhibit tumor growth and promote CD8+ T cell infiltration. Our results indicate that rhCOLIII has great anti-tumor potential activity in OC, and induces protective anti-tumor immunity by regulating autophagy through GSTP1. These findings illustrate the potential therapeutic prospects of rhCOLIII for OC treatment.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Hu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Li Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Shuang You
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Shuaibin Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Xiaojing Dong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Fan He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing 400010, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing 400010, China
| | - Jingcong Dai
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Quan Wei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zhiyong Dong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yanli Zhang
- Imaging Core Facility, Technology Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Jingbo Yang
- University College London, 19 Gordon Square, Bloomsbury, London, WC1H 0AW, England, UK
| | - Xia Yang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, Shanxi, China
| | - Jian Wang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd., Taiyuan 030032, Shanxi, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing 400010, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing 400010, China
| |
Collapse
|
13
|
Zhou Z, Mai Y, Zhang G, Wang Y, Sun P, Jing Z, Li Z, Xu Y, Han B, Liu J. Emerging role of immunogenic cell death in cancer immunotherapy: Advancing next-generation CAR-T cell immunotherapy by combination. Cancer Lett 2024; 598:217079. [PMID: 38936505 DOI: 10.1016/j.canlet.2024.217079] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Immunogenic cell death (ICD) is a stress-driven form of regulated cell death (RCD) in which dying tumor cells' specific signaling pathways are activated to release damage-associated molecular patterns (DAMPs), leading to the robust anti-tumor immune response as well as a reversal of the tumor immune microenvironment from "cold" to "hot". Chimeric antigen receptor (CAR)-T cell therapy, as a landmark in anti-tumor immunotherapy, plays a formidable role in hematologic malignancies but falls short in solid tumors. The Gordian knot of CAR-T cells for solid tumors includes but is not limited to, tumor antigen heterogeneity or absence, physical and immune barriers of tumors. The combination of ICD induction therapy and CAR-T cell immunotherapy is expected to promote the intensive use of CAR-T cell in solid tumors. In this review, we summarize the characteristics of ICD, stress-responsive mechanism, and the synergistic effect of various ICD-based therapies with CAR-T cells to effectively improve anti-tumor capacity.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yumiao Mai
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Henan Province Key Laboratory of Cardiac Injury and Repair, Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan, 450052, China
| | - Yingjie Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Pan Sun
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhaohe Jing
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jian Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
14
|
Zhao G, Wang Y, Fan Z, Xiong J, Ertas YN, Ashammakhi N, Wang J, Ma T. Nanomaterials in crossroad of autophagy control in human cancers: Amplification of cell death mechanisms. Cancer Lett 2024; 591:216860. [PMID: 38583650 DOI: 10.1016/j.canlet.2024.216860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Cancer is the result of genetic abnormalities that cause normal cells to grow into neoplastic cells. Cancer is characterized by several distinct features, such as uncontrolled cell growth, extensive spreading to other parts of the body, and the ability to resist treatment. The scientists have stressed the development of nanostructures as novel therapeutic options in suppressing cancer, in response to the emergence of resistance to standard medicines. One of the specific mechanisms with dysregulation during cancer is autophagy. Nanomaterials have the ability to specifically carry medications and genes, and they can also enhance the responsiveness of tumor cells to standard therapy while promoting drug sensitivity. The primary mechanism in this process relies on autophagosomes and their fusion with lysosomes to break down the components of the cytoplasm. While autophagy was initially described as a form of cellular demise, it has been demonstrated to play a crucial role in controlling metastasis, proliferation, and treatment resistance in human malignancies. The pharmacokinetic profile of autophagy modulators is poor, despite their development for use in cancer therapy. Consequently, nanoparticles have been developed for the purpose of delivering medications and autophagy modulators selectively and specifically to the cancer process. Furthermore, several categories of nanoparticles have demonstrated the ability to regulate autophagy, which plays a crucial role in defining the biological characteristics and response to therapy of tumor cells.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 100000, China
| | - Zhongru Fan
- Department of Urology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
| | - Jian Xiong
- Department of Obstetrics and Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye; Department of Biomedical Engineering, Erciyes University, Kayseri, 39039, Türkiye.
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Jianfeng Wang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| | - Ting Ma
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|